Progress with the Minimum Bias modeling in Herwig++

Minimum Bias and Underlying Event Working Group

Andrzej Siódmok in collaboration with Manuel Bähr, Stefan Gieseke, Christian Röhr, Mike Seymour on behalf of Herwig++ group

Karlsruhe Institute of Technology

CERN, 7 September 2010

Outline

This talk:

- ▶ Introduction Underlying event in Herwig++
- ▶ New data! ATLAS @ 900 GeV and @ 7 TeV
- Colour structure
- ▶ Outlook

Underlying event in Herwig++

UA5 model (deprecated, only for reference)

▶ Included from Herwig++ 2.0.

[Herwig++, hep-ph/0609306]

- ► Little predictive power.
- ▶ Was default in fHerwig. Superseded by JIMMY

[JM Butterworth, JR Forshaw, MH Seymour, ZP C72 637 (1996)]

Underlying event in Herwig++

[Herwig++, 0711.3137]

Semihard UE

- ▶ Default from Herwig++ 2.1.
 - Multiple hard interactions, $p_t \geqslant p_t^{min}$ [Bähr, Gieseke, Seymour, JHEP 0807:076]
- ► Similar to JIMMY
- ► Good description of harder Run I UE data (Jet20).

Underlying event in Herwig++

Semihard+Soft UE

Default from Herwig++ 2.3.

- [Herwig++, 0812.0529]
- Extension to soft interactions, $p_t \leqslant p_t^{min}$ [Bähr, Gieseke, Seymour, JHEP 0807:076]
- ▶ Theoretical work with simplest possible extension.

[Bähr, Butterworth, Seymour, JHEP 0901:065]

"Hot Spot" model.

[Bähr, Butterworth, Gieseke, Seymour, 0905.4671]

Starting point: hard inclusive jet cross section.

$$\sigma^{\rm inc}(s; p_t^{\rm min}) = \sum_{i,j} \int_{p_t^{\rm min^2}} \mathrm{d}p_t^2 f_{i/h_1}(x_1, \mu^2) \otimes \frac{\mathrm{d}\hat{\sigma}_{i,j}}{\mathrm{d}p_t^2} \otimes f_{j/h_2}(x_2, \mu^2) \,,$$

 $\sigma^{\rm inc} > \sigma_{\rm tot}$ eventually (for moderately small $p_t^{\rm min}$).

Interpretation: σ^{inc} counts *all* partonic scatters that happen during a single *pp* collision \Rightarrow more than a single interaction.

$$\sigma^{\rm inc} = \bar{n}\sigma_{\rm inel}$$
.

Use eikonal approximation (= independent scatters). Leads to Poisson distribution of number m of additional scatters,

$$P_m(\vec{b},s) = \frac{\bar{n}(\vec{b},s)^m}{m!} e^{-\bar{n}(\vec{b},s)} .$$

Then we get σ_{inel} :

$$\sigma_{\rm inel} = \int \mathrm{d}^2 \vec{b} \, \sum_{n=1}^{\infty} P_m(\vec{b}, s) = \int \mathrm{d}^2 \vec{b} \left(1 - \mathrm{e}^{-\vec{n}(\vec{b}, s)} \right) \; .$$

Cf. σ_{inel} from scattering theory in eikonal approx. with scattering amplitude $a(\vec{b},s)=\frac{1}{2i}(e^{-\chi(\vec{b},s)}-1)$

$$\sigma_{inel} = \int d^2\vec{b} \left(1 - e^{-2\chi(\vec{b},s)}\right) \qquad \Rightarrow \quad \chi(\vec{b},s) = \tfrac{1}{2} \vec{n}(\vec{b},s) \; . \label{eq:sigma-inel}$$

 $\chi(\vec{b},s)$ is called *eikonal* function.

From parton model assumptions we get: $\bar{n}(\overrightarrow{b},s) = A(\overrightarrow{b})\sigma^{inc}(s;p_t^{min})$

$$A(b) = \int d^{2}\vec{b}'G_{A}(|\vec{b}'|)G_{B}(|\vec{b} - \vec{b}'|)$$

 $G(\vec{b})$ from electromagnetic FF:

$$G_p(\vec{b}) = G_{\vec{p}}(\vec{b}) = \int \frac{\mathrm{d}^2 \vec{k}}{(2\pi)^2} \frac{\mathrm{e}^{i\vec{k}\cdot\vec{b}}}{(1+\vec{k}^2/\mu^2)^2}$$

But μ^2 not fixed to the electromagnetic 0.71 GeV². Free for colour charges.

Good description of Run I Underlying event data ($\chi^2 = 1.3$).

Only $p_T^{ljet} > 20 \,\text{GeV}$.

So far only hard MPI. Now extend to soft interactions with

$$\chi_{\text{tot}} = \chi_{OCD} + \chi_{\text{soft}}$$
.

Similar structures of eikonal functions:

$$\chi_{\text{soft}} = \frac{1}{2} A_{\text{soft}}(\vec{b}) \sigma_{\text{soft}}^{\text{inc}}$$

Simplest possible choice: $A_{\rm soft}(\vec{b};\mu)=A_{\rm hard}(\vec{b};\mu)=A(\vec{b};\mu).$ Then

$$\chi_{\text{tot}} = \frac{A(\vec{b}; \mu)}{2} \left(\sigma_{\text{hard}}^{\text{inc}} + \sigma_{\text{soft}}^{\text{inc}} \right) .$$

One new parameter $\sigma_{\text{soft}}^{\text{inc}}$.

Taking the Tevatron data together with the wide range of possible values of σ_{tot} considered at LHC, we see that this model is to simple.

Extension: Relax the constraint of identical overlap functions:

$$A_{soft}(b) = A(b, \mu_{soft})$$

Fix the two parameters μ_{soft} and $\sigma_{\text{soft}}^{\text{inc}}$ in

$$\chi_{\rm tot}(\vec{b},s) = \frac{1}{2} \left(A(\vec{b};\mu) \sigma^{\rm inc} {\rm hard}(s;p_t^{\rm min}) + A(\vec{b};\mu_{\rm soft}) \sigma^{\rm inc}_{\rm soft} \right)$$

from two constraints. Require simultaneous description of $\sigma_{\rm tot}$ and $b_{\rm el}$ (measured/well predicted),

$$\begin{split} &\sigma_{tot}(s) \stackrel{!}{=} 2 \int d^2\vec{b} \left(1 - \mathrm{e}^{-\chi_{tot}(\vec{b},s)}\right) \,, \\ &b_{el}(s) \stackrel{!}{=} \int d^2\vec{b} \frac{b^2}{\sigma_{tot}} \left(1 - \mathrm{e}^{-\chi_{tot}(\vec{b},s)}\right) \,. \end{split}$$

Sum up:

 \Rightarrow at the end of the day we have two main parameters: μ^2 , p_t^{min} .

New data! The first comparison ...

New data! The first comparison ...

New data! The first comparison ...

Colour structure of soft events. $p_{disruvt} = \text{probability of disruption (default} = 1, \text{ completely disconected)}.$

New data! The first comparison ...

- Colour structure of soft events. $p_{disrupt}$ = probability of disruption (default = 1, completely disconected).
- ▶ Problem: diffraction \Rightarrow Diffractive suppressed with cut: $N_{ch} \ge 6$

- ► We used a diffractive suppressed sample with cut: $N_{ch} \ge 6$
- Attention: The ATLAS graphs for N_{ch} ≥ 6 are public, but the data points are not. We read the data points from the plots using:
 - ► EasyNData Peter Uwer [arXiv:0710.2896]
 - DataThief B. Tummers, http://datathief.org/
 - g3data J. Frantz, http://www.frantz.fi/software/g3data.php
 - some other tricks ...
 - question to the collaborations: can we do something about this?

I am happy to provide data points with corresponding Rivet analyses if someone needs it.

Extending the hadronization model in Herwig(++):

▶ QCD parton showers provide pre-confinement ⇒ colour-anticolour pairs form highly excited hadronic states, the clusters

For details look at Christians Röhr's Diploma thesis

Extending the hadronization model in Herwig(++):

QCD parton showers provide pre-confinement
 ⇒ colour-anticolour pairs form highly excited hadronic states, the clusters

Extending the hadronization model in Herwig(++):

- ▶ QCD parton showers provide pre-confinement
 ⇒ colour-anticolour pairs form highly excited hadronic states, the clusters
- ► CR in the cluster hadronization model: allow reformation of clusters, e.g. (il) + (jk)
- ► Physical motivation: exchange of soft gluons during non-perturbative hadronization phase

Extending the hadronization model in Herwig(++):

- QCD parton showers provide pre-confinement
 ⇒ colour-anticolour pairs form highly excited hadronic states, the clusters
- ► CR in the cluster hadronization model: allow reformation of clusters, e.g. (il) + (jk)
- ▶ Physical motivation: exchange of soft gluons during non-perturbative hadronization phase

Implementation¹

► Allow CR if the cluster mass decreases,

$$M_{il} + M_{ki} < M_{ii} + M_{kl},$$

where $M_{ab}^2 = (p_a + p_b)^2$ is the (squared) cluster mass

Accept alternative clustering with probability p_{reco} (model parameter) \Rightarrow this allows to switch on CR smoothly

For details look at Christians Röhr's Diploma thesis

Can we still describe the LEP data similar to Herwig++ w/o colour reconnection?

Preliminary results

We repeated tuning of the hadronization to the LEP data (above 2 examples). Both tunings (with and w/o colour rec.) seems to describe the data at the same level.

Can we still describe the LEP data similar to Herwig++ w/o colour reconnection?

Preliminary results

Prefered by LEP data is: $0.2 \le p_{\text{reco}} \le 0.6$

Preliminary results

Preliminary results

Preliminary results

Preliminary results

Preliminary results

(space for improvement)

Many thanks to the Professor team for help and hints how to use their program!

Very preliminary results

Many thanks to the Professor team for help and hints how to use their program!

Very preliminary results

Many thanks to the Professor team for help and hints how to use their program!

Very preliminary results

Many thanks to the Professor team for help and hints how to use their program!

Summary

- New implementation of colour reconnection is in validation and seems to work very well!
- New "tuning" gives a good description of the ATLAS 900 GeV data!
- ATLAS 7TeV data will be investigated in more details soon.
- Still space for improvements: better LEP tune, treatment of remnants pdf, more involved overlap function, energy dependent parameters...
- Minimum bias/underlying event/diffraction under constant improvement!
- Stay tuned!