Comments on systematics of corrected MB distributions

Karel Safarik (presented by A. Morsch)

Meeting of the Minimum Bias and Underlying Event WG CERN, Sept. 7, 2010

For discussion (1)

- The event sample to normalize to
 - Sample defined by physics process
 - INEL (ALICE)
 - NSD (less well defined) (ALICE, CMS)
 - Sample defined by detector acceptance
 - INEL with at least one particle in some acceptance window
 - Published up to now:
 - ALICE in η window
 - ATLAS in both η and p_T window

For discussion (2)

- The track sample to be normalized
 - Correct down to $p_T = 0$ (used by ALICE and CMS)
 - Use a p_T cut-off defined by tracking efficiency (used by everybody)

Sample defined by physics process

Advantage

- Comparison with theoretical models, not necessarily a MC
- Comparison with other experiment

Disadvantage

- Model dependent
 - One has to correct for the non-observed (triggered selected) events. However, this extrapolation is not done just using the models: usually one uses constraint from ones own data and/or previous measurements.

Sample defined by detector acceptance

Advantage

- less model dependent, but not completely
- for finite tracking inefficiency ε

$$N_{event} = \sum_{M} P_{M} \left(-\varepsilon^{M} \right)$$
 $N_{track} = \sum_{M} P_{M} M \left(-\varepsilon \right)$

– <N> depends on true multiplicity distribution at low multiplicity (M)

Sample defined by detector acceptance

Disadvantage

This is suitable only for models formulated as Monte
 Carlo generators, but there are models which are not.
 Example: QGSM

Correction down to $p_T = 0$

Advantage

- Again comparison with non-MC models and with other experiments.
- This correction can only be used when an experiment reaches low tracking efficiency for very low $p_{\rm T}$
 - The correction is small and very well-constrained (one measures the value on a already falling spectrum and it is constrained to zero at $p_{\rm T}$ =0
 - in ALICE conservative error of ~0.5% on mean multiplicity

Correction down to $p_T = 0$

Disadvantage

- One assumes that $p_{\rm T}$ dependence is falling down monotonically with $p_{\rm T}$ from 50MeV/c (ALICE) to 0
- However, that seems reasonable and the model dependence is very small.

Use a p_T cut-off defined by tracking efficiency

- · Advantage: well suited for MC model comparison,
 - However, there are still model dependent corrections (unless one goes to very large $p_T \sim 1.5$ GeV).
 - At 500 MeV p and anti-p will have substantial energy loss (see Bethe-Bloch), one has to correct for this to get the momentum at primary vertex to do the $p_{\rm T}$ cut!
 - This correction is purely model dependent (relative amount of protons (even worse antiprotons)) their momentum spectra, and ultimately uncorrectable are dE/dx fluctuations).
 - Usually this uncertainty is much larger than the correction towards 0 (from a much lower cut-off).

Use a p_T cut-off defined by tracking efficiency

- Disadvantage
 - Comparison with non-MC models and other experiments practically impossible
 - Tuning of MC models in restricted range (1/3 of charged particles in p_T in the case of ATLAS)

Conclusions

• Event selection

 we have to do both, events samples defined by physics processes and detector acceptance

Track selection

 Correction or cut-off, depends on what is more suitable for a given detector and particular reconstruction method, i.e. which gives less systematic uncertainty and larger coverage.