

INTRODUCTION TO ALICE PHYSICS

-

EYYUBOVA GYULNARA UNIVERSITY OF OSLO

ALICE — A Large lon Collider Experiment — is being prepared to study the physics of nuclear matter under extreme conditions of temperature and density.

Schematic view of high energy PbPb collisions by URQMD model.

THE QUARK-GLUON PLASMA

98 Contemporary Physics Education Project (CPEP)

A PROCESS OF COLLISION

Many-body system, statistical approach, hydro approach

system expands and cools, hadronization

One important feature of relativistic heavy ion collisions is that hadrons show a collective behavior.

- > The chemical freeze out fixes the particle yields at the hadronization stage
- > the kinetic freeze out affects particle momenta.

QGP OBSERVABLES (PROBES)

Particle production is dominated by soft particles

EFFECTS OF SOFT PROCESSES, DOMINATING THE LOW MOMENTUM REGION, ARE WELL INTERPRETED BY HYDRODYNAMICAL MODELS,

IN THE INTERMEDIATE MOMENTUM REGION (PT 2-5GEV/C) THE ROLE OF SOFT AND HARD PROCESSES IS STILL UNDER INVESTIGATION

Central collisions	SPS	RHIC	LHC
s ^{1/2} (GeV)	17	200	5500
dN _{ch} /dy	500	650	3-8 x10 ³
ε (GeV/fm ³)	2.5	3.5	15-40
V _f (fm ³)	10 ³	7x10 ³	2x10 ⁴
τ _{QGP} (fm/c)	<1	1.5-4.0	4-10

"Centrality" characterizes a collision and categorizes events.

■N_{PART} number of participating nucleos

■N_{COLL} number of binary (nucleon-nucleon) collisions

QGP OBSERVABLES (PROBES)

In ALICE, the QGP observables are traditionally subdivided into three classes:

- I. soft probes (with the typical p < 2 GeV/c)
- II. heavy-flavour probes (using the particles having c- and b-quarks)
- III. high-pt probes (in the p range above 5-6 GeV/c).

soft probes

Multiplicity Measurements!

Why?

Multiplicity provides insights on:

- Energy density of the system
 (via Bjorken formula)
- Mechanisms of particle production

(hard vs. soft)

Phenix: E_T measurement at 130 GeV ϵ_0 = 4.6 [GeV/fm³] PRL 87, 052301 (2001)

Above the critical value $\mathcal{E}_{c} \sim 1 \text{ GeV/fm}^{3}$

In central AuAu collisions at RHIC ($\sqrt{s}=200$ GeV) about 5000 particles are created

$$\eta = \frac{1}{2} \cdot \ln\left(\frac{|\mathbf{p}| + p_L}{|\mathbf{p}| - p_L}\right) = -\ln\left[\tan\left(\frac{9}{2}\right)\right]$$

Soft physics at the LHC

- Extrapolation of dN_{ch}/dη_{max} vs √s
 - Fit to $dN/d\eta \propto \ln s$
 - Saturation model (dN/d $\eta \propto \sqrt{s^{\lambda}}$ with λ =0.288)
 - The first 10k events at the LHC could be decisive

Scaling properties of Multiplicity Measurements!

• Total multiplicity:

$$N_{ch} = \int \frac{dN}{d\eta} d\eta$$

 N_{ch} per participant pair different from p-p, but compatible with e⁺e⁻, collisions at the same energy

Simple scaling rules dominate!

DETAILED ANALYSIS OF PARTICLE SPECTRA

Fit with hydro-dynamically motivated "blast waves" to gain insight into the dynamics of the collision.

- → Can describe the data with a common transverse "flow" velocity.
- \rightarrow This velocity is large $\langle B_{\rm T} \rangle \sim 0.5c$

Retiere and Lisa – nucl-th/0312024

MOMENTUM AND SPECIES DEPENDENCE OF V_{2}

Lower Momentum

Higher Momentum

 \rightarrow the mass splitting can be described in full hydro models (with, e.g., the additional collective transverse flow velocity from spectra fits)

STAR PRC 72 (05) 014904

ARRIVAL AT HYDRODYNAMIC LIMIT

It's been predicted (Phys Lett B474 (2000) 27.) in the low density limit, $v_2 \propto \epsilon$ and the density of scattering centres. le. $v_2/\epsilon \propto (1/S) dN_{ch}/d\eta$ v2/ ϵ should saturate at large particle densities (hydro-limit).

heavy-flavour probes

Quarkonium is bound state of a heavy quark and its antiquark

u	d	5	с	Ь	t
2.4 MeV	4.8 MeV	104 MeV	1.27 GeV	4.2 GeV	171.2 GeV

quark mass $m_Q >> \Lambda_{QCD}$ and quark velocity v << 1 allows <u>nonrelativistic</u> treatment, production described in pQCD

The effective potential of interaction:

$$V(r) = -\frac{\alpha_{eff}}{r} + kr$$

$$V_{color} = \frac{q}{4\pi r} \qquad V_{confinement} = kr$$

The Coulomb part is potential induced by one-gluon exchange

k- string tension coefficient (1 GeV/fm)

$$\Psi(1S) \equiv J / \Psi$$
$$\Psi(2S) \equiv \Psi'$$
$$\Psi(1P) \equiv \chi_c$$

S(L=0) and P(L=1) states

Charmonium family

Bottomonium family

J/ψ suppression – classic QGP signature

proposed by T. Masui, H. Satz, Phys. Lett. B178, 416 (1986).

The idea is :

The modification of charmonia in the QGP, in terms of suppressed (or enhanced) production

color screening

The potential in QGP:

Y(15) $J/\psi(15)$ $\psi'(25)$ T/T_c $1/\langle \mathbf{r} \rangle [fm^{-1}]$ Y(15) $J/\psi(15)$ $\chi_b'(2P)$ $\chi_c(1P)$ Y''(35) $\Psi''(25)$ T_{diss}

 $\lambda_D(T)$ (Debye length) is the distance at which the effective charge is reduced 1/e

$r > \lambda_D \rightarrow No$ bound state

 $\mathsf{T}_{\mathsf{diss}}(\Psi') < \mathsf{T}_{\mathsf{diss}}(\Upsilon(\texttt{3S})) < \mathsf{T}_{\mathsf{diss}}(\mathsf{J}/\Psi) \approx \mathsf{T}_{\mathsf{diss}}(\Upsilon(\texttt{2S})) \leq \mathsf{T}_{\mathsf{C}} < \mathsf{T}_{\mathsf{diss}}(\Upsilon(\texttt{1S})) \leq \mathsf{T}_{\mathsf{diss$

COMPARISON OF RHIC AND SPS RESULTS

survive at least up to T ${\approx}2\text{Tcrit},~\text{while the less bounded state}~\Psi$ ' melt near Tcrit

Too much suppression at RHIC in Standard QGP Scenario

Most actual models have Suppression + various regeneration mechanisms

However, at higher energies (RHIC, LHC) the situation becomes more complicated, because the charmonia can be regenerated in the hot

medium by recombination.

high-p_t probes

JETS IN HEAVY ION COLLISIONS

Interaction at the quark (parton) level

• Models of jet suppression

Various approaches; main points:

 ΔE_{med} is independent of parton energy.

 ΔE_{med} depends on length of medium, L.

 ΔE_{med} gives access to gluon density dN_g/dy or transport coefficient $\hat{q} = \frac{\sqrt{1}/\lambda}{\lambda}$ Leads to a deficit of high p_T hadrons compared to p+p collisions (no medium).

COMPARING AU+AU SPECTRA TO PP

Use The Nuclear Modification Factor

PHOBOS: Phys. Lett. B578, 297 (2004)

$$R_{AA} = \frac{dN^{AA}/dp_{\rm T}d\eta}{\langle N_{\rm coll} \rangle dN^{pp}/dp_{\rm T}d\eta}$$

 $\rightarrow R_{AA} = 1$ if Au+Au is simply an incoherent sum of pp collisions

Jet quenching was discovered for the first time at RHIC.

SUPPRESSION OF HIGH MOMENTUM PARTICLES

→ strong suppression of high p_T yields in AuAu Central Collisions

IMPORTANT CROSS CHECK OF N_{COLL} EXPECTATION

Direct Photons

PHENIX: Phys.Rev.Lett. 96 (2006) 202301

→ Direct photons scale as N_{coll} (and they don't interact with the medium)

HIGH-PT PROBES HEAVY QUARKS ENERGY LOSS IN QGP

The heavy quarks at intermediate pt will lose less energy as compared with the light quarks at the same momenta due to the 'dead-cone' effect.

CAPABILITY OF ALICE DETECTOR

ALICE unique features:

- Possibility to measure charged-particle density up to dNch/dy = 8000
- Excellent tracking and impact parameter resolution.

(Typical p resolution obtained with the magnetic field of 0.5 T is 1% at pt

1 GeV/c and 4% at pt 100 GeV/c.)

□ Acceptance at low p_T (~0.2 GeV)

Excellent PID capabilities

From p 0.1 GeV/c to a few GeV/c the charged particles are identified by combining the PID information provided by ITS, TPC, TRD, TOF and HMPID. Electrons above 1 GeV/c are identified by TRD, and muons are registered by the muon spectrometer.

HEAVY-ION PHYSICS WITH ALICE

