

Daniela Rebuzzi, Pavia University and INFN on behalf of the VBF subgroup

Co-contacts: Ansgar Denner (*PSI*), Sinead Farrington (*Oxford*), Christoph Hackstein (*Karlsruhe*), Carlo Oleari (*Milano-Bicocca*) Collaborators: A. Benaglia, A. Ballestrero, P. Govoni, F. Maltoni, P. Nason

VBF Process

Vector Boson Fusion (VBF) process

Second Higgs production channel in size, important discovery channel for SM Higgs with low mass, clean experimental signature

- it proceed through both t- and s-channel
- in general only t-channel considered as *true* $VBF \rightarrow$ s-channel is the so-called *Higgs-strahlung* or Higgs associate production
- \bullet but: s-channel shares same initial and final states \rightarrow should in principle be generated as well, including interference
 - practically: s-channel contributions do not survive typical VBF analysis cuts

VBF Calculations and Programs

- VBF is pure EW process at LO
- QCD NLO corrections account for 5-10%
- VBF process calculated at up NNLO QCD (very recent results) and NLO EW

Available Programs:

- VV2H [M. Spira]: only t-channel, NLO QCD
- VBF@NLO [D. Zeppenfeld et al]: NLO QCD
- HAWK [M. Ciccolini, A. Denner, A. Dittmaier]: NLO QCD and NLO EW, s- and tchannel included, but can also switch off s-channel
- NNLO QCD calculation [P. Bolzoni, F. Maltoni, S.-O. Moch, M. Zaro]
- Pythia/FHerwig: simulate only t-channel
- Sherpa: automatically has to include s-channel because of gauge invariance

VBF NNLO QCD: Calculations

[P. Bolzoni, F. Maltoni, S.-O. Moch, M. Zaro, arXiv:1003.4451v1]

- Calculations for t-channel (interference with s-channel at the order of per mil)
- Performed in *structure function approach*, i.e. VBF treated as a double DIS process where the two (virtual) vector bosons emitted by the hadronic initial states fuse into an Higgs boson
 - cross section computed as a product of the matrix element for VBF and the DIS hadronic tensor (expressed in terms of the standard DIS structure functions)
- This factorization is still valid at NLO (neglecting a small interference effects)
- At NNLO the factorization breaks down (possible links of the the two final quark lines) but most of the not included corrections are IR and UV finite, gauge invariant and suppressed
- Other corrections $O(\alpha^{3}_{EW} \alpha^{2})$ are also included and computed in $m_{b} \rightarrow 0$, $m_{t} \rightarrow \infty$ limit and in this approximation they contribute below the percent level to the total cross section

VBF NNLO QCD: Results

[P. Bolzoni, F. Maltoni, S.-O. Moch, M. Zaro, arXiv:1003.4451v1]

- Results stable at 2% against QCD scales variation and at 2% from PDF uncertainties, uniformly over the full mass range
- \rightarrow the highest precision in LHC cross section!

$\sqrt{S} = 7 \text{ TeV}$										
Higgs mass	LO	NLO	NNLO							
120	$1.235\substack{+0.131\\-0.116}$	$1.320\substack{+0.054\\-0.022}$	$1.324\substack{+0.025\\-0.024}$							
160	$0.857\substack{+0.121 \\ -0.099}$	$0.915\substack{+0.046\\-0.016}$	$0.918\substack{+0.019\\-0.015}$							
200	$0.614\substack{+0.106\\-0.082}$	$0.655\substack{+0.038\\-0.012}$	$0.658\substack{+0.015\\-0.010}$							
300	$0.295\substack{+0.070\\-0.049}$	$0.314\substack{+0.022\\-0.010}$	$0.316\substack{+0.008\\-0.004}$							
400	$0.156\substack{+0.045\\-0.030}$	$0.166\substack{+0.013\\-0.007}$	$0.167\substack{+0.005\\-0.001}$							

HAWK Program

HAWK (Higgs bosons Attached to WeaK bosons) Monte Carlo integrator for $pp \to H$

- + 2jets includes
 - NLO QCD and electroweak corrections
 - all weak-boson fusion and quark-antiquark annihilation diagrams
 - all interferences at LO and NLO
 - contributions from incoming photons
 - leading heavy-Higgs-boson effects at two-loop order
 - contributions of b-quark pdfs at LO
 - an interface to LHApdf (default = standalone with MRST2004QED and CTEQ6 pdf tables)

HAWK Results

HAWK version 1.0 (released on Jan 26, 2010, updated on Feb 24, 2010) results are presented in the following slides

- Job configuration
 - input parameters as in https://twiki.cern.ch/twiki/bin/view/LHCPhysics/
 SMInputParameter
 - MSTW2008 and CTEQ6.6 PDF sets used
 - Central scale value $\mu = M_W$ (default)
 - renormalization and factorization scale varied (simultaneously) by factor $\xi = 2$, diagonally, i.e. with $\mu_R = \mu_F = \xi \cdot \mu$ (for results in the ATLAS Note $\xi = 4$)
 - Integration accuracy reached: 0.1%

• Some comments

- main limitation: CPU time! NLO EW makes it rather slow
- NWA for the Higgs boson → Ansgar is working on the implementation of the Breit-Wigner convolution - status: ready but under test
- LHAPDF interface implemented \rightarrow in principle MRST2004qed should be used, since it is the only O(α) PDF set available BUT no error sets

Technical Issues

- HAWK CPU running time (EW + s-channel): 12-15 h for 2M events on a standard
 2.2 GHz machine
- 16 (mass points, from 100 GeV to 400 GeV, 20 GeV step) × 44 (or 40, PDF eigenvectors) × 2 (PDF sets) ≈ 1400 jobs → possibility to use the GRID exploited
- A script to run HAWK (but in principle any static linked executable) is available on our TWiki <u>https://twiki.cern.ch/twiki/bin/view/LHCPhysics/VBF</u>
- Caveat: the pilot will kill job not progressing, where progress is defined as the output file being updated → options maxCpuCount should be properly set
- *Integration problem* found not observed before:

780000	:	109.99796	+-	1.07135	:	109.77335	+-	0.19175
800000	:	NaN	+_	NaN	:	NaN	+_	NaN
820000	:	112.41634	+-	1.98251	:	NaN	+-	NaN
• • •								

- Fix quickly provided by the authors
- The problem affected ~30% of the jobs, which had then to be rerun

Cross Sections: Central Values

- only t-channel s- and t- channels
- with and w/o EW corrections

Scale Uncertainties

- Cross sections evaluated on 44 PDF error sets for CTEQ6.6 or 40 for MSTW2008
- PDF uncertainties estimated as in [P. Nadolsky, et al. arXiv:0802.0007v2] (CTEQ prescription)

$$\Delta X = |\vec{\nabla} X| = \frac{1}{2} \sqrt{\sum_{i=1}^{N} (X_i^{(+)} - X_i^{(-)})^2}$$

where $X_{i}^{(+)}$ and $X_{i}^{(-)}$ are the values of X computed from the two sets of PDF along the (\pm) direction of the *i*-th eigenvector

- positive and negative PDF errors on X assumed to be the same
- No α_S uncertainty evaluated here α_S value taken from the PDF set

Uncertainty Combination

VBF@NLO Results

- Calculating uncertainties including α_S , following the recipe from the PDF group (or the TEMPORARY one by S. Forte)
- Extent HAWK results to higher masses when the real Higgs mass will be implemented
- Additional improvement of HAWK: Higgs-boson decays, production of unweighted events, interface to parton showers, contributions from gg initial states with effective Hgg couplings, anomalous HWW and HZZ couplings
- VBF@NLO calculation ongoing, for comparison with HAWK results