Software Aspects of |IEEE
Floating-Point Computations for
Numerical Applications in High

Energy Physics

J.M. Arnold
Intel Compiler and Languages
Developer Products Division
Software and Services Group
Intel Corporation

11 May 2010

Agenda

m Standards

m Floating-Point Numbers

m Common Formats and Hardware

m Rounding Modes and Errors

m [hey're Not Real!

m Techniques for Improving Accuracy
m Compiler Options

m Pitfalls and Hazards

References

Q& A

Jeff Arnold Intel and CERN openlab — 2 / 37

N

m |t's the most widely-used standard for floating-point computation

Standard for Floating-Point Arithmetic
IEEE 754-2008

m |t is followed by most modern hardware and software
Implementations

m Some software assumes |IEEE 754 compliance

m Replaces earlier standards such as |[EEE 74-1985

‘ Jeff Arnold Intel and CERN openlab — 3 / 37

|IEEE 754-2008

The standard defines

m Arithmetic formats

[0 finite numbers, infinities, NANSs

m Interchange formats
[J encodings as bit strings
[0 binary formats

m Rounding algorithms

m Operations

Exception handling

‘ Jeff Arnold Intel and CERN openlab — 4 / 37

What is a Floating-Point Number?

value

where

sign
radix

exponent
significand

digits

r=(—1)°8°xm

s € {0,1}
B e {2,10}

S {emz’na emaaz}

p—1
1=0

d; € 10,5 — 1], dy # 0 generally

Jeff Arnold Intel and CERN openlab -5 / 37

N

What is a Floating-Point Number?

Some examples for § = 2:

40=(-1)"x2*%x1.0---0
—0.1=(=1)' x27*x 1.1001 - - -
0.01 = (—1)" x 277 x 1.01000111101011100001 - - -

Jeff Arnold Intel and CERN openlab — 6 / 37

N

Special Floating-Point Values

m 0
O Yes, there is a —0

0 +0 == -0 but 1.0/ £ 0.0 = +o¢

B 100
m NaN
[0 Not a number. E.g., v/—1

m Denormals

O |z| < gemin
D0<m<1(d0:())

‘ Jeff Arnold Intel and CERN openlab — 7 / 37

Common Floating-Point Formats

6 P Emin Cmax SiZG

float || 2 24 -126 +127 32 bits
double || 2 53 -1022 +1023 64 bits
extended || 2 64 -16382 +16383 80 bits
quad || 2 113 -16382 +16383 128 bits

m extended is found in x87-style hardware
m on ltanium, extended is 82 bits

m quad is typically emulated in software

‘ Jeff Arnold Intel and CERN openlab — 8 / 37

N

x87 Floating-Point Hardware

m Introduced with the Intel 8087 floating-point co-processor
m 3 floating-point registers implemented as a stack
m Supports single, double and extended formats

m Rounding precision only controls the size of the significand, not the
exponent range

m Potential exists for “double rounding” problems
Consider 1848874847.0 ® 19954562207.0:
The result is 36893488147419103232 using x87
but 36893488147419111424 using SSE
36893488147419107329 1s exact

Jeff Arnold Intel and CERN openlab — 9 / 37

SSE Floating-Point Hardware

N

m The number of SSE registers and their sizes vary by processor but
the format of float and double remain the same

m Supports float and double formats

m Permits better reproducibility because all results are either float or
double; no extended significand or increased exponent range as with
x87 hardware

m Supported by both SISD and SIMD instructions

Jeff Arnold Intel and CERN openlab — 10 / 37

N

Rounding Modes
There are four rounding modes
m Round to nearest even

[0 round to the nearest floating-point number

O if midway between numbers, round to the floating-point
number with the even significand

[1 this is the default
m Round toward +o0
m Round toward —oo
m Round toward 0

[J also called chopping or truncation

‘ Jeff Arnold Intel and CERN openlab — 11 / 37

Rounding Modes

N

m Many math libraries and other software make assumptions about
the current rounding mode of a process

m Don't change the default unless you really know what you're doing

m And if you know what you're doing, you probably won't change it

Jeff Arnold Intel and CERN openlab — 12 / 37

Errors

N

m ulp = units in the last place
for x € [8, 8], ulp(z) = Be7PH

m Fundamental operations produce correctly rounded results

they have an absolute error < 0.5 ulp provided no exceptions occur

m Compilers and math libraries may trade accuracy for performance

[0 “fast” math libraries
[0 reduced accuracy math libraries

0 rearrangements such as z/y = x * (1.0/y)

‘ Jeff Arnold Intel and CERN openlab — 13 / 37

N

m In each interval [3¢, 3¢T1), there are BP~! floating-point numbers

Floating-Point Numbers are not Real!

but there are many more real numbers in that interval

m Even if a and b are floating-point numbers, a + b may not be a
floating-point number

m Floating-point operations may not associate

(@ ® b) & ¢ may not equal a @ (b ® ¢)

m Floating-point operations may not distribute

a® (b@® c) may not equal (a ®b) @ (a ® ¢)

Jeff Arnold Intel and CERN openlab — 14 / 37

Floating-Point Numbers are not Real!

For example, if

then

a = 10+30
b= —a
c=1.0

(adb) Bc=1.0
a®(bdc)=0.0

N

Jeff Arnold Intel and CERN openlab — 15 / 37

N

Techniques for Improving Accuracy

m Accurate summation

[J adding values while avoiding

= loss of precision
= catastrophic cancellation

m Accurate multiplication

m Accurate interchange of data

‘ Jeff Arnold Intel and CERN openlab — 16 / 37

Accurate Summation Techniques

m Use double precision
m Sort the values before adding
[1 sort by value or absolute value
[J sort by increasing or decreasing
m Process positive and negative values separately

m Dekker's extended-precision addition algorithm

‘ Jeff Arnold Intel and CERN openlab — 17 / 37

Dekker’'s Extended-Precision Addition

Algorithm
Compute s and t such that s=a®banda+b=s+1

N

void Dekker (const double a, const double b,
double* s, doublex t) {
if (abs(b) > abs(a)) {
double temp = a;
a = b;
b = temp;
+
// Don’t allow value-unsafe optimizations
s = a + b;
double z = *s - a;
xt = b - z;
return;

Jeff Arnold Intel and CERN openlab — 18 / 37

N

Kahan’s Summation Algorithm

Sum a series of numbers accurately

double Kahan(const double al[], const int n) {
double s = al[0];
double t = O;
for(int i = 1; i < n; i++) {
double y = al i 1 - t;
double z = s + y;
t=(z-s) - y;
s = z;
+

return s;

‘ Jeff Arnold Intel and CERN openlab — 19 / 37

Accurate Multiplication

N

m Veltkamp splitting

split *+ = x5, + x; where the number of non-zero digits in each
significand is = p/2

this can be done exactly using normal floating-point operations

m Dekker's multiplication scheme
Z2=T*xY = Zpt+ 2

again, this can be done exactly using normal floating-point
operations

Jeff Arnold Intel and CERN openlab — 20 / 37

Veltkamp Splitting

void vSplitting(const double x, const int sp,
double* x_high, double*x x_low) {
unsigned long C = (1UL << sp) + 1;
double a = C * x;
double b = x - a;
*x_high = a + b;
*x_low = x — *x_high;

Jeff Arnold Intel and CERN openlab — 21 / 37

N

Dekker Multiplication

void dMultiply(double x, double y, double* r_1, doublex r_2) {
const int SHIFT_POW = 27; // 53/2 for double precision
double x_high, x_low, y_high, y_low,;
double a, b, c;
vSplit(x, SHIFT_POW, &x_high, &x_low);
vSplit(y, SHIFT_POW, &y_high, &y_low);
*r_1 = x * y;
a = x_high * y_high - *r_1;
b = a + x_high * y_low,;
c = b + x_low * y_high;
xr_2 = ¢ + x_low *x y_low;

Jeff Arnold Intel and CERN openlab — 22 / 37

N

Accurate Interchange

m Use binary files

m Reading and writing using %f isn't good enough

internal = external = internal may not recover the same value
m Use %a (or %A) formatting to print floating-point data

00 the value is formatted as [-]0xh.hhhh...p£d
0 the usual length modifiers apply (e.g., %1 or %L)
[0 major limitation: not all linuxes support %a for input

[0 an example where x = 0.1,y = x xx,z = 0.01

xr = 0.100000 (0x1.999999999999ap-4)
y = 0.010000 (0x1.47ael47ael47bp-7)
z = 0.010000 (0x1.47ael47aeld7cp-7)

‘ Jeff Arnold Intel and CERN openlab — 23 / 37

Compiler Options
Compiler Options Control
m Value safety
m Expression evaluation
m Precise exceptions
m Floating-point contractions
m ‘Force to zero”

[1 denormals are forced to 0

[0 may improve performance, especially if hardware doesn’t
support denormals

‘ Jeff Arnold Intel and CERN openlab — 24 / 37

Value Safety

Transformations which may affect results

m Reassociation

(x+y)+z=2+ (y+ 2)

m Distribution

rx(y+2)=>cxy+a*2
m Vectorized loops
m Reductions

m OpenMP reductions

‘ Jeff Arnold Intel and CERN openlab — 25 / 37

N

Compiler Options — icc
The -fp-model keyword controls floating-point semantics

m fast[=1]|2]; default is fast=1

allows “value-unsafe” optimizations

B precise

allows value-safe optimizations only

m source — double — extended

precision of intermediate results

m except

strict exception semantics

m may be specified more than once

Jeff Arnold Intel and CERN openlab — 26 / 37

Compiler Options — icc
To improve the reproducibility of results
m -fp-model precise
value-safe optimizations only

m -fp-model source

iIntermediate precisions as written

m —-ftz

no denormals; e.g., abrupt underflows

m but performance relative to -03 will be affected

Jeff Arnold Intel and CERN openlab — 27 / 37

Compiler Options — gcc

N

Same capabilities as with icc but option names are different

—-funsafe-math-optimizations

allows unsafe optimizations; a “composite” option

—-fassociative—math

allows reassociations

—-ffast-math

a ‘‘composite” option

—freciprocal-math

replace divides by multiplication

and many more

very few are enabled by any -0 switch

Jeff Arnold Intel and CERN openlab — 28 / 37

N

Compared with icc, gcc is more conservative, cautious and strict about
its choice of defaults for floating-point optimizations

Compiler Options — gcc

Jeff Arnold Intel and CERN openlab — 29 / 37

Be Aware of Approximation Errors

N

m Neither 0.1 nor 0.01 can be presented exactly as floating-point
numbers

(0.1) ® (0.1) # f1(0.01)

Jeff Arnold Intel and CERN openlab — 30 / 37

N

Testing for Equality

m Testing floating-point numbers for equality can be problematic

[0 especially if the values are computed
roundoff error

[0 even if they are constants
approximation error

[0 beware of never-ending loops
while (a !'=b) {...}

[0 consider using <, > etc depending on the nature of the
algorithm

‘ Jeff Arnold Intel and CERN openlab — 31 / 37

N

Testing for Equality

m Testing floating-point numbers for equality can be problematic

[J using absolute errors is usually wrong
if (abs(a-b) < 1.0-8){...}

[0 use relative errors
if (abs(a-b)/b < epsilon){...}
but avoid dividing by 0!

0 you may want to use ulp(a) and ulp(b)

[1 consider writing an AlmostEqual routine

Jeff Arnold Intel and CERN openlab — 32 / 37

Be Aware of Consistency Errors

N

Assume an x87 hardware environment

X = ...
y = ... // result probably in a floating-point register
if (x'=y) {

// no changes to x or y but y may have been written to memory

+

if (x ==y) { // result may be inconsistent with previous test

+

‘ Jeff Arnold Intel and CERN openlab — 33 / 37

A Recent Example

N

Itanium hardware environment with Fused Multiply-Add (FMA)

a += b*c - dxe

To make better use of FMA, the compiler changed this into

a = (a-dxe) + bxc

and the answer changed and a ROOT stress test failed! Using
-fp-model strict solved the problem.

‘ Jeff Arnold Intel and CERN openlab — 34 / 37

References

1. To write good floating-point code, you must read “What Every

Computer Scientist Should Know About Floating-Point Arithmetic,”
by David Goldberg. ACM Computing Surveys 23, 1, 5-48 (1991)

2. An excellent recent text: “Handbook of Floating-Point Arithmetic,”
by J-M Muller et al. (Birkhauser, 2010)

3. "Art of Computer Programming, Volume 2: Seminumerical
Algorithms.” Donald Knuth.

‘ Jeff Arnold Intel and CERN openlab — 35 / 37

Recent Papers from Intel

N

2. "Floating-Point Calculations and the ANSI C, C++ and Fortran
Standards” by Corden and Kreitzer

1. “Consistency of Floating-Point Results” by Corden and Kreitzer

Jeff Arnold Intel and CERN openlab — 36 / 37

Questions?

Jeff Arnold Intel and CERN openlab — 37 / 37

	Agenda
	Standard for Floating-Point Arithmetic
	IEEE 754-2008
	What is a Floating-Point Number?
	What is a Floating-Point Number?
	Special Floating-Point Values
	Common Floating-Point Formats
	x87 Floating-Point Hardware
	SSE Floating-Point Hardware
	Rounding Modes
	Rounding Modes
	Errors
	Floating-Point Numbers are not Real!
	Floating-Point Numbers are not Real!
	Techniques for Improving Accuracy
	Accurate Summation Techniques
	Dekker's Extended-Precision Addition Algorithm
	Kahan's Summation Algorithm
	Accurate Multiplication
	Veltkamp Splitting
	Dekker Multiplication
	Accurate Interchange
	Compiler Options
	Value Safety
	Compiler Options – icc
	Compiler Options – icc
	Compiler Options – gcc
	Compiler Options – gcc
	Be Aware of Approximation Errors
	Testing for Equality
	Testing for Equality
	Be Aware of Consistency Errors
	A Recent Example
	References
	Recent Papers from Intel
	

