Software Aspects of IEEE Floating-Point Computations for Numerical Applications in High Energy Physics

J.M. Arnold
Intel Compiler and Languages
Developer Products Division
Software and Services Group
Intel Corporation

11 May 2010

Agenda

- Standards
- Floating-Point Numbers

■ Common Formats and Hardware
■ Rounding Modes and Errors
■ They're Not Real!
■ Techniques for Improving Accuracy

- Compiler Options
- Pitfalls and Hazards

■ References
■ Q \& A

Standard for Floating-Point Arithmetic

IEEE 754-2008

- It's the most widely-used standard for floating-point computation
- It is followed by most modern hardware and software implementations

■ Some software assumes IEEE 754 compliance
■ Replaces earlier standards such as IEEE 74-1985

IEEE 754-2008

The standard defines

- Arithmetic formats
- finite numbers, infinities, NANs
- Interchange formats
- encodings as bit strings
- binary formats

■ Rounding algorithms

- Operations

■ Exception handling

What is a Floating-Point Number?

value

$$
x=(-1)^{s} \beta^{e} \times m
$$

where

$$
\begin{array}{ll}
\text { sign } & s \in\{0,1\} \\
\text { radix } & \beta \in\{2,10\} \\
\text { exponent } & e \in\left\{e_{\min }, e_{\max }\right\} \\
& m=\sum_{i=0}^{p-1} d_{i} \beta^{-i} \\
\text { significand } & d_{i} \in[0, \beta-1], d_{0} \neq 0 \text { generally } \\
\text { digits } &
\end{array}
$$

What is a Floating-Point Number?

Some examples for $\beta=2$:

$$
\begin{aligned}
4.0 & =(-1)^{0} \times 2^{2} \times 1.0 \cdots 0 \\
-0.1 & =(-1)^{1} \times 2^{-4} \times 1 . \underline{1001} \cdots \\
0.01 & =(-1)^{0} \times 2^{-7} \times 1 . \underline{01000111101011100001 \cdots} \cdots
\end{aligned}
$$

Special Floating-Point Values

■ ± 0

- Yes, there is a -0
$\bullet+0==-0$ but $1.0 / \pm 0.0 \Rightarrow \pm \infty$
■ $\pm \infty$
- NaN
- Not a number. E.g., $\sqrt{-1}$

■ Denormals

- $|x|<\beta^{e_{\text {min }}}$
- $0<m<1\left(d_{0}=0\right)$

Common Floating-Point Formats

	β	p	$e_{\min }$	$e_{\max }$	Size
float	2	24	-126	+127	32 bits
double	2	53	-1022	+1023	64 bits
extended	2	64	-16382	+16383	80 bits
quad	2	113	-16382	+16383	128 bits

■ extended is found in x87-style hardware
■ on Itanium, extended is 82 bits
■ quad is typically emulated in software

x87 Floating-Point Hardware

■ Introduced with the Intel 8087 floating-point co-processor

- 8 floating-point registers implemented as a stack

■ Supports single, double and extended formats
■ Rounding precision only controls the size of the significand, not the exponent range

■ Potential exists for "double rounding" problems
Consider $1848874847.0 \otimes 19954562207.0$:
The result is 36893488147419103232 using $\times 87$ but 36893488147419111424 using SSE

36893488147419107329 is exact

SSE Floating-Point Hardware

- Supports float and double formats

■ The number of SSE registers and their sizes vary by processor but the format of float and double remain the same

■ Permits better reproducibility because all results are either float or double; no extended significand or increased exponent range as with x87 hardware

■ Supported by both SISD and SIMD instructions

Rounding Modes

There are four rounding modes
■ Round to nearest even

- round to the nearest floating-point number
- if midway between numbers, round to the floating-point number with the even significand
- this is the default

■ Round toward $+\infty$
■ Round toward $-\infty$
■ Round toward 0

- also called chopping or truncation

Rounding Modes

■ Many math libraries and other software make assumptions about the current rounding mode of a process

■ Don't change the default unless you really know what you're doing
■ And if you know what you're doing, you probably won't change it

Errors

■ulp \Rightarrow units in the last place
for $x \in\left[\beta^{e}, \beta^{e+1}\right], u l p(x)=\beta^{e-p+1}$

- Fundamental operations produce correctly rounded results they have an absolute error ≤ 0.5 ulp provided no exceptions occur
- Compilers and math libraries may trade accuracy for performance
- "fast" math libraries
- reduced accuracy math libraries
- rearrangements such as $x / y \Rightarrow x *(1.0 / y)$

Floating-Point Numbers are not Real!

■ In each interval $\left[\beta^{e}, \beta^{e+1}\right.$), there are β^{p-1} floating-point numbers but there are many more real numbers in that interval

■ Even if a and b are floating-point numbers, $a+b$ may not be a floating-point number

■ Floating-point operations may not associate $(a \oplus b) \oplus c$ may not equal $a \oplus(b \oplus c)$

■ Floating-point operations may not distribute $a \otimes(b \oplus c)$ may not equal $(a \otimes b) \oplus(a \otimes c)$

Floating-Point Numbers are not Real!

For example, if

$$
\begin{aligned}
a & =10^{+30} \\
b & =-a \\
c & =1.0
\end{aligned}
$$

then

$$
\begin{aligned}
& (a \oplus b) \oplus c=1.0 \\
& a \oplus(b \oplus c)=0.0
\end{aligned}
$$

Techniques for Improving Accuracy

■ Accurate summation

- adding values while avoiding
- loss of precision
- catastrophic cancellation
- Accurate multiplication
- Accurate interchange of data

Accurate Summation Techniques

■ Use double precision

- Sort the values before adding
- sort by value or absolute value
- sort by increasing or decreasing

■ Process positive and negative values separately
■ Dekker's extended-precision addition algorithm

Dekker's

Algorithm

Compute s and t such that $s=a \oplus b$ and $a+b=s+t$

```
void Dekker(const double a, const double b,
    double* s, double* t) {
    if (abs(b) > abs(a)) {
    double temp = a;
    a = b;
    b = temp;
    }
    // Don't allow value-unsafe optimizations
    *s = a + b;
    double z = *s - a;
    *t = b - z;
    return;
}
```


Kahan's Summation Algorithm

Sum a series of numbers accurately

```
double Kahan(const double a[], const int n) {
    double s = a[0];
    double t = 0;
    for(int i = 1; i < n; i++) {
        double y = a[ i ] - t;
        double z = s + y;
        t = ( z - s ) - y;
        s = z;
    }
    return s;
}
```


Accurate Multiplication

■ Veltkamp splitting
split $x \Rightarrow x_{h}+x_{l}$ where the number of non-zero digits in each significand is $\approx p / 2$
this can be done exactly using normal floating-point operations
■ Dekker's multiplication scheme
$z=x * y \Rightarrow z_{h}+z_{l}$
again, this can be done exactly using normal floating-point operations

Veltkamp Splitting

```
void vSplitting(const double x, const int sp,
    double* x_high, double* x_low) {
    unsigned long C = ( 1UL << sp ) + 1;
    double a = C * x;
    double b = x - a;
    *x_high = a + b;
    *x_low = x - *x_high;
}
```


Dekker Multiplication

```
void dMultiply(double x, double y, double* r_1, double* r_2) {
    const int SHIFT_POW = 27; // 53/2 for double precision
    double x_high, x_low, y_high, y_low;
    double a, b, c;
    vSplit(x, SHIFT_POW, &x_high, &x_low);
    vSplit(y, SHIFT_POW, &y_high, &y_low);
    *r_1 = x * y;
    a = x_high * y_high - *r_1;
    b = a + x_high * y_low;
    c = b + x_low * y_high;
    *r_2 = c + x_low * y_low;
}
```


Accurate Interchange

■ Use binary files
■ Reading and writing using \%f isn't good enough internal \Rightarrow external \Rightarrow internal may not recover the same value

- Use \% a (or \%A) formatting to print floating-point data
- the value is formatted as [-] $0 x h . h h h h . . . p \pm d$
- the usual length modifiers apply (e.g., \%1 or \%L)
- major limitation: not all linuxes support \%a for input
- an example where $x=0.1, y=x * x, z=0.01$

$$
\begin{aligned}
& x=0.100000(0 \times 1.999999999999 \mathrm{ap}-4) \\
& y=0.010000(0 \times 1.47 \mathrm{ae} 147 \mathrm{ae} 147 \mathrm{bp}-7) \\
& z=0.010000(0 \times 1.47 \mathrm{ae} 147 \mathrm{ae} 147 \mathrm{cp}-7)
\end{aligned}
$$

Compiler Options

Compiler Options Control

■ Value safety

- Expression evaluation
- Precise exceptions

■ Floating-point contractions
■ "Force to zero"

- denormals are forced to 0
- may improve performance, especially if hardware doesn't support denormals

Value Safety

Transformations which may affect results

- Reassociation

$$
(x+y)+z \Rightarrow x+(y+z)
$$

- Distribution
$x *(y+z) \Rightarrow x * y+x * z$
■ Vectorized loops
■ Reductions
■ OpenMP reductions

Compiler Options - icc

The -fp-model keyword controls floating-point semantics

- fast [=1|2]; default is fast=1
allows "value-unsafe" optimizations
- precise
allows value-safe optimizations only
■ source - double - extended
precision of intermediate results
■ except
strict exception semantics
■ may be specified more than once

Compiler Options - icc

To improve the reproducibility of results
■-fp-model precise
value-safe optimizations only
■-fp-model source
intermediate precisions as written
■-ftz
no denormals; e.g., abrupt underflows
■ but performance relative to -03 will be affected

Compiler Options - gcc

Same capabilities as with icc but option names are different
■-funsafe-math-optimizations allows unsafe optimizations; a "composite" option

■ -fassociative-math
allows reassociations
■-ffast-math
a "composite" option
■-freciprocal-math
replace divides by multiplication

- and many more
very few are enabled by any -0 switch

Compiler Options - gcc

Compared with icc, gcc is more conservative, cautious and strict about its choice of defaults for floating-point optimizations

Be Aware of Approximation Errors

■ Neither 0.1 nor 0.01 can be presented exactly as floating-point numbers

$$
(0.1) \otimes(0.1) \neq f l(0.01)
$$

Testing for Equality

■ Testing floating-point numbers for equality can be problematic

- especially if the values are computed roundoff error
- even if they are constants approximation error
- beware of never-ending loops while (a != b) \{...\}
- consider using \leq, \geq etc depending on the nature of the algorithm

Testing for Equality

■ Testing floating-point numbers for equality can be problematic

- using absolute errors is usually wrong
if (abs(a-b) < 1.0-8) $\{\ldots\}$
- use relative errors
if (abs(a-b)/b < epsilon)\{...\}
but avoid dividing by 0 !
- you may want to use $u l p(a)$ and $u l p(b)$
- consider writing an AlmostEqual routine

Be Aware of Consistency Errors

Assume an $x 87$ hardware environment

```
X = ...
y = ... // result probably in a floating-point register
if ( x != y ) {
    // no changes to x or y but y may have been written to memory
    }
    if ( x == y ) { // result may be inconsistent with previous test
    }
```


A Recent Example

Itanium hardware environment with Fused Multiply-Add (FMA)

```
a += b*c - d*e
...
```

To make better use of FMA, the compiler changed this into

```
a = ( a - d*e ) + b*c
```

...
and the answer changed and a ROOT stress test failed! Using -fp-model strict solved the problem.

References

1. To write good floating-point code, you must read "What Every Computer Scientist Should Know About Floating-Point Arithmetic," by David Goldberg. ACM Computing Surveys 23, 1, 5-48 (1991)
2. An excellent recent text: "Handbook of Floating-Point Arithmetic," by J-M Muller et al. (Birkhäuser, 2010)
3. "Art of Computer Programming, Volume 2: Seminumerical Algorithms." Donald Knuth.

Recent Papers from Intel

1. "Consistency of Floating-Point Results" by Corden and Kreitzer
2. "Floating-Point Calculations and the ANSI C, C++ and Fortran Standards" by Corden and Kreitzer

Questions?

