
Software Aspects of IEEE

Floating-Point Computations for

Numerical Applications in High

Energy Physics

J.M. Arnold
Intel Compiler and Languages
Developer Products Division
Software and Services Group

Intel Corporation

11 May 2010

Agenda

Jeff Arnold Intel and CERN openlab – 2 / 37

■ Standards

■ Floating-Point Numbers

■ Common Formats and Hardware

■ Rounding Modes and Errors

■ They’re Not Real!

■ Techniques for Improving Accuracy

■ Compiler Options

■ Pitfalls and Hazards

■ References

■ Q & A

Standard for Floating-Point Arithmetic

Jeff Arnold Intel and CERN openlab – 3 / 37

IEEE 754-2008

■ It’s the most widely-used standard for floating-point computation

■ It is followed by most modern hardware and software
implementations

■ Some software assumes IEEE 754 compliance

■ Replaces earlier standards such as IEEE 74-1985

IEEE 754-2008

Jeff Arnold Intel and CERN openlab – 4 / 37

The standard defines

■ Arithmetic formats

◆ finite numbers, infinities, NANs

■ Interchange formats

◆ encodings as bit strings

◆ binary formats

■ Rounding algorithms

■ Operations

■ Exception handling

What is a Floating-Point Number?

Jeff Arnold Intel and CERN openlab – 5 / 37

value x = (−1)sβe ×m

where

sign s ∈ {0, 1}
radix β ∈ {2, 10}
exponent e ∈ {emin, emax}

significand m =

p−1∑

i=0

diβ
−i

digits di ∈ [0, β − 1], d0 6= 0 generally

What is a Floating-Point Number?

Jeff Arnold Intel and CERN openlab – 6 / 37

Some examples for β = 2:

4.0 = (−1)0 × 22 × 1.0 · · · 0
−0.1 = (−1)1 × 2−4 × 1.1001 · · ·
0.01 = (−1)0 × 2−7 × 1.01000111101011100001 · · ·

Special Floating-Point Values

Jeff Arnold Intel and CERN openlab – 7 / 37

■ ±0

◆ Yes, there is a −0

◆ +0 == −0 but 1.0/± 0.0 ⇒ ±∞

■ ±∞

■ NaN

◆ Not a number. E.g.,
√
−1

■ Denormals

◆ |x| < βemin

◆ 0 < m < 1 (d0 = 0)

Common Floating-Point Formats

Jeff Arnold Intel and CERN openlab – 8 / 37

β p emin emax Size
float 2 24 -126 +127 32 bits

double 2 53 -1022 +1023 64 bits
extended 2 64 -16382 +16383 80 bits

quad 2 113 -16382 +16383 128 bits

■ extended is found in x87-style hardware

■ on Itanium, extended is 82 bits

■ quad is typically emulated in software

x87 Floating-Point Hardware

Jeff Arnold Intel and CERN openlab – 9 / 37

■ Introduced with the Intel 8087 floating-point co-processor

■ 8 floating-point registers implemented as a stack

■ Supports single, double and extended formats

■ Rounding precision only controls the size of the significand, not the
exponent range

■ Potential exists for “double rounding” problems

Consider 1848874847.0⊗ 19954562207.0:

The result is 36893488147419103232 using x87

but 36893488147419111424 using SSE

36893488147419107329 is exact

SSE Floating-Point Hardware

Jeff Arnold Intel and CERN openlab – 10 / 37

■ Supports float and double formats

■ The number of SSE registers and their sizes vary by processor but
the format of float and double remain the same

■ Permits better reproducibility because all results are either float or
double; no extended significand or increased exponent range as with
x87 hardware

■ Supported by both SISD and SIMD instructions

Rounding Modes

Jeff Arnold Intel and CERN openlab – 11 / 37

There are four rounding modes

■ Round to nearest even

◆ round to the nearest floating-point number

◆ if midway between numbers, round to the floating-point
number with the even significand

◆ this is the default

■ Round toward +∞

■ Round toward −∞

■ Round toward 0

◆ also called chopping or truncation

Rounding Modes

Jeff Arnold Intel and CERN openlab – 12 / 37

■ Many math libraries and other software make assumptions about
the current rounding mode of a process

■ Don’t change the default unless you really know what you’re doing

■ And if you know what you’re doing, you probably won’t change it

Errors

Jeff Arnold Intel and CERN openlab – 13 / 37

■ ulp ⇒ units in the last place

for x ∈ [βe, βe+1], ulp(x) = βe−p+1

■ Fundamental operations produce correctly rounded results

they have an absolute error ≤ 0.5 ulp provided no exceptions occur

■ Compilers and math libraries may trade accuracy for performance

◆ “fast” math libraries

◆ reduced accuracy math libraries

◆ rearrangements such as x/y ⇒ x ∗ (1.0/y)

Floating-Point Numbers are not Real!

Jeff Arnold Intel and CERN openlab – 14 / 37

■ In each interval [βe, βe+1), there are βp−1 floating-point numbers

but there are many more real numbers in that interval

■ Even if a and b are floating-point numbers, a+ b may not be a
floating-point number

■ Floating-point operations may not associate

(a⊕ b)⊕ c may not equal a⊕ (b⊕ c)

■ Floating-point operations may not distribute

a⊗ (b⊕ c) may not equal (a⊗ b)⊕ (a⊗ c)

Floating-Point Numbers are not Real!

Jeff Arnold Intel and CERN openlab – 15 / 37

For example, if

a = 10+30

b = −a

c = 1.0

then

(a⊕ b)⊕ c = 1.0

a⊕ (b⊕ c) = 0.0

Techniques for Improving Accuracy

Jeff Arnold Intel and CERN openlab – 16 / 37

■ Accurate summation

◆ adding values while avoiding

■ loss of precision

■ catastrophic cancellation

■ Accurate multiplication

■ Accurate interchange of data

Accurate Summation Techniques

Jeff Arnold Intel and CERN openlab – 17 / 37

■ Use double precision

■ Sort the values before adding

◆ sort by value or absolute value

◆ sort by increasing or decreasing

■ Process positive and negative values separately

■ Dekker’s extended-precision addition algorithm

Dekker’s Extended-Precision Addition

Algorithm

Jeff Arnold Intel and CERN openlab – 18 / 37

Compute s and t such that s = a⊕ b and a+ b = s+ t

void Dekker(const double a, const double b,

double* s, double* t) {

if (abs(b) > abs(a)) {

double temp = a;

a = b;

b = temp;

}

// Don’t allow value-unsafe optimizations

*s = a + b;

double z = *s - a;

*t = b - z;

return;

}

Kahan’s Summation Algorithm

Jeff Arnold Intel and CERN openlab – 19 / 37

Sum a series of numbers accurately

double Kahan(const double a[], const int n) {

double s = a[0];

double t = 0;

for(int i = 1; i < n; i++) {

double y = a[i] - t;

double z = s + y;

t = (z - s) - y;

s = z;

}

return s;

}

Accurate Multiplication

Jeff Arnold Intel and CERN openlab – 20 / 37

■ Veltkamp splitting

split x ⇒ xh + xl where the number of non-zero digits in each
significand is ≈ p/2

this can be done exactly using normal floating-point operations

■ Dekker’s multiplication scheme

z = x ∗ y ⇒ zh + zl

again, this can be done exactly using normal floating-point
operations

Veltkamp Splitting

Jeff Arnold Intel and CERN openlab – 21 / 37

void vSplitting(const double x, const int sp,

double* x_high, double* x_low) {

unsigned long C = (1UL << sp) + 1;

double a = C * x;

double b = x - a;

*x_high = a + b;

*x_low = x - *x_high;

}

Dekker Multiplication

Jeff Arnold Intel and CERN openlab – 22 / 37

void dMultiply(double x, double y, double* r_1, double* r_2) {

const int SHIFT_POW = 27; // 53/2 for double precision

double x_high, x_low, y_high, y_low;

double a, b, c;

vSplit(x, SHIFT_POW, &x_high, &x_low);

vSplit(y, SHIFT_POW, &y_high, &y_low);

*r_1 = x * y;

a = x_high * y_high - *r_1;

b = a + x_high * y_low;

c = b + x_low * y_high;

*r_2 = c + x_low * y_low;

}

Accurate Interchange

Jeff Arnold Intel and CERN openlab – 23 / 37

■ Use binary files

■ Reading and writing using %f isn’t good enough

internal ⇒ external ⇒ internal may not recover the same value

■ Use %a (or %A) formatting to print floating-point data

◆ the value is formatted as [-]0xh.hhhh. . .p±d

◆ the usual length modifiers apply (e.g., %l or %L)

◆ major limitation: not all linuxes support %a for input

◆ an example where x = 0.1, y = x ∗ x, z = 0.01

x = 0.100000 (0x1.999999999999ap-4)

y = 0.010000 (0x1.47ae147ae147bp-7)

z = 0.010000 (0x1.47ae147ae147cp-7)

Compiler Options

Jeff Arnold Intel and CERN openlab – 24 / 37

Compiler Options Control

■ Value safety

■ Expression evaluation

■ Precise exceptions

■ Floating-point contractions

■ “Force to zero”

◆ denormals are forced to 0

◆ may improve performance, especially if hardware doesn’t
support denormals

Value Safety

Jeff Arnold Intel and CERN openlab – 25 / 37

Transformations which may affect results

■ Reassociation

(x+ y) + z ⇒ x+ (y + z)

■ Distribution

x ∗ (y + z) ⇒ x ∗ y + x ∗ z

■ Vectorized loops

■ Reductions

■ OpenMP reductions

Compiler Options – icc

Jeff Arnold Intel and CERN openlab – 26 / 37

The -fp-model keyword controls floating-point semantics

■ fast[=1|2]; default is fast=1

allows “value-unsafe” optimizations

■ precise

allows value-safe optimizations only

■ source — double — extended

precision of intermediate results

■ except

strict exception semantics

■ may be specified more than once

Compiler Options – icc

Jeff Arnold Intel and CERN openlab – 27 / 37

To improve the reproducibility of results

■ -fp-model precise

value-safe optimizations only

■ -fp-model source

intermediate precisions as written

■ -ftz

no denormals; e.g., abrupt underflows

■ but performance relative to -O3 will be affected

Compiler Options – gcc

Jeff Arnold Intel and CERN openlab – 28 / 37

Same capabilities as with icc but option names are different

■ -funsafe-math-optimizations

allows unsafe optimizations; a “composite” option

■ -fassociative-math

allows reassociations

■ -ffast-math

a “composite” option

■ -freciprocal-math

replace divides by multiplication

■ and many more

very few are enabled by any -O switch

Compiler Options – gcc

Jeff Arnold Intel and CERN openlab – 29 / 37

Compared with icc, gcc is more conservative, cautious and strict about
its choice of defaults for floating-point optimizations

Be Aware of Approximation Errors

Jeff Arnold Intel and CERN openlab – 30 / 37

■ Neither 0.1 nor 0.01 can be presented exactly as floating-point
numbers

(0.1)⊗ (0.1) 6= fl(0.01)

Testing for Equality

Jeff Arnold Intel and CERN openlab – 31 / 37

■ Testing floating-point numbers for equality can be problematic

◆ especially if the values are computed

roundoff error

◆ even if they are constants

approximation error

◆ beware of never-ending loops

while (a != b) {...}
◆ consider using ≤, ≥ etc depending on the nature of the

algorithm

Testing for Equality

Jeff Arnold Intel and CERN openlab – 32 / 37

■ Testing floating-point numbers for equality can be problematic

◆ using absolute errors is usually wrong

if (abs(a-b) < 1.0-8){. . .}
◆ use relative errors

if (abs(a-b)/b < epsilon){. . .}
but avoid dividing by 0!

◆ you may want to use ulp(a) and ulp(b)

◆ consider writing an AlmostEqual routine

Be Aware of Consistency Errors

Jeff Arnold Intel and CERN openlab – 33 / 37

Assume an x87 hardware environment

...

x = ...

y = ... // result probably in a floating-point register

if (x != y) {

...

// no changes to x or y but y may have been written to memory

...

}

if (x == y) { // result may be inconsistent with previous test

...

}

A Recent Example

Jeff Arnold Intel and CERN openlab – 34 / 37

Itanium hardware environment with Fused Multiply-Add (FMA)

...

a += b*c - d*e

...

To make better use of FMA, the compiler changed this into

...

a = (a - d*e) + b*c

...

and the answer changed and a ROOT stress test failed! Using
-fp-model strict solved the problem.

References

Jeff Arnold Intel and CERN openlab – 35 / 37

1. To write good floating-point code, you must read “What Every
Computer Scientist Should Know About Floating-Point Arithmetic,”
by David Goldberg. ACM Computing Surveys 23, 1, 5-48 (1991)

2. An excellent recent text: “Handbook of Floating-Point Arithmetic,”
by J-M Muller et al. (Birkhäuser, 2010)

3. “Art of Computer Programming, Volume 2: Seminumerical
Algorithms.” Donald Knuth.

Recent Papers from Intel

Jeff Arnold Intel and CERN openlab – 36 / 37

1. “Consistency of Floating-Point Results” by Corden and Kreitzer

2. “Floating-Point Calculations and the ANSI C, C++ and Fortran
Standards” by Corden and Kreitzer

Jeff Arnold Intel and CERN openlab – 37 / 37

Questions?

	Agenda
	Standard for Floating-Point Arithmetic
	IEEE 754-2008
	What is a Floating-Point Number?
	What is a Floating-Point Number?
	Special Floating-Point Values
	Common Floating-Point Formats
	x87 Floating-Point Hardware
	SSE Floating-Point Hardware
	Rounding Modes
	Rounding Modes
	Errors
	Floating-Point Numbers are not Real!
	Floating-Point Numbers are not Real!
	Techniques for Improving Accuracy
	Accurate Summation Techniques
	Dekker's Extended-Precision Addition Algorithm
	Kahan's Summation Algorithm
	Accurate Multiplication
	Veltkamp Splitting
	Dekker Multiplication
	Accurate Interchange
	Compiler Options
	Value Safety
	Compiler Options – icc
	Compiler Options – icc
	Compiler Options – gcc
	Compiler Options – gcc
	Be Aware of Approximation Errors
	Testing for Equality
	Testing for Equality
	Be Aware of Consistency Errors
	A Recent Example
	References
	Recent Papers from Intel
	

