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Standard for Floating-Point Arithmetic
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IEEE 754-2008

■ It’s the most widely-used standard for floating-point computation

■ It is followed by most modern hardware and software
implementations

■ Some software assumes IEEE 754 compliance

■ Replaces earlier standards such as IEEE 74-1985



IEEE 754-2008
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The standard defines

■ Arithmetic formats

◆ finite numbers, infinities, NANs

■ Interchange formats

◆ encodings as bit strings

◆ binary formats

■ Rounding algorithms

■ Operations

■ Exception handling



What is a Floating-Point Number?
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value x = (−1)sβe ×m

where

sign s ∈ {0, 1}
radix β ∈ {2, 10}
exponent e ∈ {emin, emax}

significand m =

p−1∑

i=0

diβ
−i

digits di ∈ [0, β − 1], d0 6= 0 generally



What is a Floating-Point Number?
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Some examples for β = 2:

4.0 = (−1)0 × 22 × 1.0 · · · 0
−0.1 = (−1)1 × 2−4 × 1.1001 · · ·
0.01 = (−1)0 × 2−7 × 1.01000111101011100001 · · ·



Special Floating-Point Values
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■ ±0

◆ Yes, there is a −0

◆ +0 == −0 but 1.0/± 0.0 ⇒ ±∞

■ ±∞

■ NaN

◆ Not a number. E.g.,
√
−1

■ Denormals

◆ |x| < βemin

◆ 0 < m < 1 (d0 = 0)



Common Floating-Point Formats
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β p emin emax Size
float 2 24 -126 +127 32 bits

double 2 53 -1022 +1023 64 bits
extended 2 64 -16382 +16383 80 bits

quad 2 113 -16382 +16383 128 bits

■ extended is found in x87-style hardware

■ on Itanium, extended is 82 bits

■ quad is typically emulated in software



x87 Floating-Point Hardware
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■ Introduced with the Intel 8087 floating-point co-processor

■ 8 floating-point registers implemented as a stack

■ Supports single, double and extended formats

■ Rounding precision only controls the size of the significand, not the
exponent range

■ Potential exists for “double rounding” problems

Consider 1848874847.0⊗ 19954562207.0:

The result is 36893488147419103232 using x87

but 36893488147419111424 using SSE

36893488147419107329 is exact



SSE Floating-Point Hardware
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■ Supports float and double formats

■ The number of SSE registers and their sizes vary by processor but
the format of float and double remain the same

■ Permits better reproducibility because all results are either float or
double; no extended significand or increased exponent range as with
x87 hardware

■ Supported by both SISD and SIMD instructions



Rounding Modes
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There are four rounding modes

■ Round to nearest even

◆ round to the nearest floating-point number

◆ if midway between numbers, round to the floating-point
number with the even significand

◆ this is the default

■ Round toward +∞

■ Round toward −∞

■ Round toward 0

◆ also called chopping or truncation



Rounding Modes
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■ Many math libraries and other software make assumptions about
the current rounding mode of a process

■ Don’t change the default unless you really know what you’re doing

■ And if you know what you’re doing, you probably won’t change it



Errors
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■ ulp ⇒ units in the last place

for x ∈ [βe, βe+1], ulp(x) = βe−p+1

■ Fundamental operations produce correctly rounded results

they have an absolute error ≤ 0.5 ulp provided no exceptions occur

■ Compilers and math libraries may trade accuracy for performance

◆ “fast” math libraries

◆ reduced accuracy math libraries

◆ rearrangements such as x/y ⇒ x ∗ (1.0/y)



Floating-Point Numbers are not Real!
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■ In each interval [βe, βe+1), there are βp−1 floating-point numbers

but there are many more real numbers in that interval

■ Even if a and b are floating-point numbers, a+ b may not be a
floating-point number

■ Floating-point operations may not associate

(a⊕ b)⊕ c may not equal a⊕ (b⊕ c)

■ Floating-point operations may not distribute

a⊗ (b⊕ c) may not equal (a⊗ b)⊕ (a⊗ c)



Floating-Point Numbers are not Real!
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For example, if

a = 10+30

b = −a

c = 1.0

then

(a⊕ b)⊕ c = 1.0

a⊕ (b⊕ c) = 0.0



Techniques for Improving Accuracy
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■ Accurate summation

◆ adding values while avoiding

■ loss of precision

■ catastrophic cancellation

■ Accurate multiplication

■ Accurate interchange of data



Accurate Summation Techniques
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■ Use double precision

■ Sort the values before adding

◆ sort by value or absolute value

◆ sort by increasing or decreasing

■ Process positive and negative values separately

■ Dekker’s extended-precision addition algorithm



Dekker’s Extended-Precision Addition

Algorithm
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Compute s and t such that s = a⊕ b and a+ b = s+ t

void Dekker(const double a, const double b,

double* s, double* t) {

if (abs(b) > abs(a)) {

double temp = a;

a = b;

b = temp;

}

// Don’t allow value-unsafe optimizations

*s = a + b;

double z = *s - a;

*t = b - z;

return;

}



Kahan’s Summation Algorithm
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Sum a series of numbers accurately

double Kahan(const double a[], const int n) {

double s = a[0];

double t = 0;

for(int i = 1; i < n; i++) {

double y = a[ i ] - t;

double z = s + y;

t = ( z - s ) - y;

s = z;

}

return s;

}



Accurate Multiplication
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■ Veltkamp splitting

split x ⇒ xh + xl where the number of non-zero digits in each
significand is ≈ p/2

this can be done exactly using normal floating-point operations

■ Dekker’s multiplication scheme

z = x ∗ y ⇒ zh + zl

again, this can be done exactly using normal floating-point
operations



Veltkamp Splitting
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void vSplitting(const double x, const int sp,

double* x_high, double* x_low) {

unsigned long C = ( 1UL << sp ) + 1;

double a = C * x;

double b = x - a;

*x_high = a + b;

*x_low = x - *x_high;

}



Dekker Multiplication
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void dMultiply(double x, double y, double* r_1, double* r_2) {

const int SHIFT_POW = 27; // 53/2 for double precision

double x_high, x_low, y_high, y_low;

double a, b, c;

vSplit(x, SHIFT_POW, &x_high, &x_low);

vSplit(y, SHIFT_POW, &y_high, &y_low);

*r_1 = x * y;

a = x_high * y_high - *r_1;

b = a + x_high * y_low;

c = b + x_low * y_high;

*r_2 = c + x_low * y_low;

}



Accurate Interchange
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■ Use binary files

■ Reading and writing using %f isn’t good enough

internal ⇒ external ⇒ internal may not recover the same value

■ Use %a (or %A) formatting to print floating-point data

◆ the value is formatted as [-]0xh.hhhh. . .p±d

◆ the usual length modifiers apply (e.g., %l or %L)

◆ major limitation: not all linuxes support %a for input

◆ an example where x = 0.1, y = x ∗ x, z = 0.01

x = 0.100000 (0x1.999999999999ap-4)

y = 0.010000 (0x1.47ae147ae147bp-7)

z = 0.010000 (0x1.47ae147ae147cp-7)



Compiler Options
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Compiler Options Control

■ Value safety

■ Expression evaluation

■ Precise exceptions

■ Floating-point contractions

■ “Force to zero”

◆ denormals are forced to 0

◆ may improve performance, especially if hardware doesn’t
support denormals



Value Safety

Jeff Arnold Intel and CERN openlab – 25 / 37

Transformations which may affect results

■ Reassociation

(x+ y) + z ⇒ x+ (y + z)

■ Distribution

x ∗ (y + z) ⇒ x ∗ y + x ∗ z

■ Vectorized loops

■ Reductions

■ OpenMP reductions



Compiler Options – icc
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The -fp-model keyword controls floating-point semantics

■ fast[=1|2]; default is fast=1

allows “value-unsafe” optimizations

■ precise

allows value-safe optimizations only

■ source — double — extended

precision of intermediate results

■ except

strict exception semantics

■ may be specified more than once



Compiler Options – icc
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To improve the reproducibility of results

■ -fp-model precise

value-safe optimizations only

■ -fp-model source

intermediate precisions as written

■ -ftz

no denormals; e.g., abrupt underflows

■ but performance relative to -O3 will be affected



Compiler Options – gcc

Jeff Arnold Intel and CERN openlab – 28 / 37

Same capabilities as with icc but option names are different

■ -funsafe-math-optimizations

allows unsafe optimizations; a “composite” option

■ -fassociative-math

allows reassociations

■ -ffast-math

a “composite” option

■ -freciprocal-math

replace divides by multiplication

■ and many more

very few are enabled by any -O switch



Compiler Options – gcc
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Compared with icc, gcc is more conservative, cautious and strict about
its choice of defaults for floating-point optimizations



Be Aware of Approximation Errors

Jeff Arnold Intel and CERN openlab – 30 / 37

■ Neither 0.1 nor 0.01 can be presented exactly as floating-point
numbers

(0.1)⊗ (0.1) 6= fl(0.01)



Testing for Equality
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■ Testing floating-point numbers for equality can be problematic

◆ especially if the values are computed

roundoff error

◆ even if they are constants

approximation error

◆ beware of never-ending loops

while (a != b) {...}
◆ consider using ≤, ≥ etc depending on the nature of the

algorithm



Testing for Equality
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■ Testing floating-point numbers for equality can be problematic

◆ using absolute errors is usually wrong

if (abs(a-b) < 1.0-8){. . .}
◆ use relative errors

if (abs(a-b)/b < epsilon){. . .}
but avoid dividing by 0!

◆ you may want to use ulp(a) and ulp(b)

◆ consider writing an AlmostEqual routine



Be Aware of Consistency Errors
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Assume an x87 hardware environment

...

x = ...

y = ... // result probably in a floating-point register

if ( x != y ) {

...

// no changes to x or y but y may have been written to memory

...

}

if ( x == y ) { // result may be inconsistent with previous test

...

}



A Recent Example
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Itanium hardware environment with Fused Multiply-Add (FMA)

...

a += b*c - d*e

...

To make better use of FMA, the compiler changed this into

...

a = ( a - d*e ) + b*c

...

and the answer changed and a ROOT stress test failed! Using
-fp-model strict solved the problem.
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1. To write good floating-point code, you must read “What Every
Computer Scientist Should Know About Floating-Point Arithmetic,”
by David Goldberg. ACM Computing Surveys 23, 1, 5-48 (1991)

2. An excellent recent text: “Handbook of Floating-Point Arithmetic,”
by J-M Muller et al. (Birkhäuser, 2010)

3. “Art of Computer Programming, Volume 2: Seminumerical
Algorithms.” Donald Knuth.



Recent Papers from Intel
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1. “Consistency of Floating-Point Results” by Corden and Kreitzer

2. “Floating-Point Calculations and the ANSI C, C++ and Fortran
Standards” by Corden and Kreitzer
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Questions?
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