Z^{\prime} and Friends

Manuel Pérez-Victoria

University of Granada \& CAFPE

with
Francisco del Aguila and Jorge de Blas

JHEP 1009, 033 (2010)

Outline

- Introduction
- General Extra Vector Bosons
- Constraints
- Interplay (Higgs, several new vectors)
- Conclusions

New Physics @ LHC

- BSM: many models + unexpected
- At any rate, new particles!

Present constraints on masses and couplings: Flavour, Tevatron, EW Precision Tests

Searches \nVdash

Restrict parameter space

Check consistency

General Extensions of the SM

Impose Symmetries!
 - Classify particles
 - Restrict interactions

Lorentz Invariance

SU(3)xSU(2)xU(I) Gauge Invariance

\Rightarrow

 EW singletssHypercharged Coloured

General Extra Vector Bosons

- Spin 1 particles
- GUT, Xdims, Technicolor, Little Higgs, ...
- Candidates for early discovery at LHC
- Contribute to EWPT via mixing with SM gauge bosons and four fermion operators

Four fermion

Oblique

All Types of Extra Vectors

Vector	\mathcal{B}_{μ}	\mathcal{B}_{μ}^{1}	\mathcal{W}_{μ}	\mathcal{W}_{μ}^{1}	\mathcal{G}_{μ}	\mathcal{G}_{μ}^{1}	\mathcal{H}_{μ}	\mathcal{L}_{μ}
Irrep	$(1,1)_{0}$	$(1,1)_{1}$	$(1, \operatorname{Adj})_{0}$	$(1, \operatorname{Adj})_{1}$	$(\operatorname{Adj}, 1)_{0}$	$(\operatorname{Adj}, 1)_{1}$	$(\operatorname{Adj}, \operatorname{Adj})_{0}$	$(1,2)_{-\frac{3}{2}}$
Vector	\mathcal{U}_{μ}^{2}	\mathcal{U}_{μ}^{5}	\mathcal{Q}_{μ}^{1}	\mathcal{Q}_{μ}^{5}	\mathcal{X}_{μ}	\mathcal{Y}_{μ}^{1}	\mathcal{Y}_{μ}^{5}	
Irrep	$(3,1)_{\frac{2}{3}}$	$(3,1)_{\frac{5}{3}}$	$(3,2)_{\frac{1}{6}}$	$(3,2)_{-\frac{5}{6}}$	$(3, \operatorname{Adj})_{\frac{2}{3}}$	$(\overline{6}, 2)_{\frac{1}{6}}$	$(\overline{6}, 2)_{-\frac{5}{6}}$	

Electroweak breaking:
$\mathcal{B}^{1} \Rightarrow$ Pair of Charged vectors $\mathcal{W} \leadsto\left\{\begin{array}{c}\text { One neutral vector }+ \\ \text { Pair of Charged vectors }\end{array}\right.$

All Types of Extra Vectors

All Types of Extra Vectors

Color octets
Fermiophobic

Vector	\mathcal{B}_{μ}	\mathcal{B}_{μ}^{1}	\mathcal{W}_{μ}	\mathcal{W}_{μ}^{1}		\mathcal{G}_{μ}^{1}	\mathcal{H}_{μ}	\mathcal{L}_{μ}
Irrep	$(1,1)_{0}$	$(1,1)_{1}$	$(1, A d j){ }_{0}$	$(1, \mathrm{Adj})_{1}$	$(\mathrm{Adj}, 1)_{0}$	$(\mathrm{Adj}, 1)_{1}$	$(\mathrm{Adj}, \mathrm{Adj})_{0}$	$(1,2)-\frac{3}{2}$
							-	\bigcirc
Vector	\mathcal{U}_{μ}^{2}	\mathcal{U}_{μ}^{5}	\mathcal{Q}_{μ}^{1}	\mathcal{Q}^{5}	\mathcal{X}_{μ}	\mathcal{Y}_{μ}^{1}	\mathcal{Y}_{μ}^{5}	
Irrep	$(3,1) \frac{2}{3}$	$(3,1) \frac{5}{3}$	$(3,2) \frac{1}{6}$	$(3,2)-\frac{5}{6}$	$(3, A d j) \frac{2}{3}$	$(\overline{6}, 2)_{\frac{1}{6}}$	$(\overline{6}, 2)-\frac{5}{6}$	

All Types of Extra Vectors

Vector	\mathcal{B}_{μ}	${ }_{B_{\mu}^{1}}^{1}$	w_{μ}	w_{μ}^{1}	g_{μ}	g_{μ}^{1}	\mathcal{H}_{μ}	c_{μ}
${ }_{\text {lree }}$	${ }_{(1,1)}$	${ }_{(1,1)_{1}}$	$\left.{ }_{(1, A d)}\right)_{0}$	${ }_{(1, A d)}{ }_{1}$	$(\mathrm{Adj}, 1)_{0}$	$(\mathrm{Adj}, 1)_{1}$	(Adj, Adj)	${ }_{(1,2)}$
vector u_{μ}^{2}		u_{1}^{5}	Q_{μ}^{1}	Q_{μ}^{5}	χ_{μ}	疝	ν_{1}^{5}	
	${ }^{(3,1) \frac{1}{3}}$		${ }^{(3,2) \frac{1}{6}}$	${ }^{(3,2)}$ - $\frac{5}{6}$	${ }^{(3, A d j)}{ }_{\frac{2}{3}}$	${ }^{(\overline{0}, 2) \frac{1}{6}}$	${ }^{(\overline{0}, 2)-\frac{5}{6}}$	

All Types of Extra Vectors

Vector	\mathcal{B}_{μ}	\mathcal{B}_{μ}^{1}	\mathcal{W}_{μ}	\mathcal{W}_{μ}^{1}	\mathcal{G}_{μ}	\mathcal{G}_{μ}^{1}	\mathcal{H}_{μ}	\mathcal{L}_{μ}
Irrep	$(1,1)_{0}$	$(1,1)_{1}$	$(1, \operatorname{Adj})_{0}$	$(1, \operatorname{Adj})_{1}$	$(\operatorname{Adj}, 1)_{0}$	$(\operatorname{Adj}, 1)_{1}$	$(\operatorname{Adj}, \operatorname{Adj})_{0}$	$(1,2)_{-\frac{3}{2}}$
Vector	\mathcal{U}_{μ}^{2}	\mathcal{U}_{μ}^{5}	\mathcal{Q}_{μ}^{1}	\mathcal{Q}_{μ}^{5}	\mathcal{X}_{μ}	\mathcal{Y}_{μ}^{1}	\mathcal{Y}_{μ}^{5}	
Irrep	$(3,1)_{\frac{2}{3}}$	$(3,1)_{\frac{5}{3}}$	$(3,2)_{\frac{1}{6}}$	$(3,2)_{-\frac{5}{6}}$	$(3, \operatorname{Adj})_{\frac{2}{3}}$	$(\overline{6}, 2)_{\frac{1}{6}}$	$(\overline{6}, 2)_{-\frac{5}{6}}$	

Quantum numbers determine possible couplings. For instance,

$$
\mathcal{L} \supset \mathcal{B}_{\mu}^{1}\left[\left(g_{\mathcal{B}^{1}}^{d u}\right)_{i j} \overline{d_{R}^{i}} \gamma^{\mu} u_{R}^{j}+g_{\mathcal{B}^{1}}^{\phi} i D^{\mu} \phi^{T} i \sigma_{2} \phi\right]
$$

Examples of Symmetry Breaking Patterns

Vector	Model
\mathcal{B}_{μ}	$U(1)^{\prime}$, Extra Dimensions
\mathcal{B}_{μ}^{1}	$S U(2)_{R} \otimes U(1)_{X} \rightarrow U(1)_{Y}$
\mathcal{W}_{μ}	$S U(2)_{1} \otimes S U(2)_{2} \rightarrow S U(2)_{D} \equiv S U(2)_{L}$, Extra Dimensions
\mathcal{W}_{μ}^{1}	$S U(4) \rightarrow U(1) \otimes(S U(3) \rightarrow S U(2))$
\mathcal{G}_{μ}	$S U(3)_{1} \otimes S U(3)_{2} \rightarrow S U(3)_{D} \equiv S U(3)_{c}$, Extra Dimensions
\mathcal{G}_{μ}^{1}	$S O(12) \rightarrow(S O(8) \rightarrow S U(3)) \otimes\left(S U(2) \otimes S U(2) \rightarrow S U(2)_{D} \rightarrow U(1)_{Y}\right)$
\mathcal{H}_{μ}	$S U(6) \rightarrow S U(3) \otimes S U(2)$
\mathcal{L}_{μ}	$G_{2} \rightarrow S U(2) \otimes\left(S U(2) \rightarrow U(1)_{Y}\right)$
$\mathcal{U}_{\mu}^{2}, \mathcal{U}_{\mu}^{5}$	$S U(4) \rightarrow S U(3) \otimes U(1)$
$\mathcal{Q}_{\mu}^{1}, \mathcal{Q}_{\mu}^{5}$	$S U(5) \rightarrow S U(3)_{c} \otimes S U(2)_{L} \otimes U(1)_{Y}$
\mathcal{X}_{μ}	$S U(6) \rightarrow U(1) \otimes S U(3) \otimes(S U(3) \rightarrow S U(2))$
$\mathcal{Y}_{\mu}^{1}, \mathcal{Y}_{\mu}^{5}$	$F_{4} \rightarrow S U(3) \otimes(S U(3) \rightarrow S U(2) \otimes U(1))$

Impact on EW precision tests

Vector	Z pole $e^{+} e^{-} \rightarrow \bar{f} f$	M_{W}	CKM	ν-N DIS	NC $\nu e \rightarrow \nu e$	APV	PV in $e^{-} e^{-} \rightarrow e^{-} e^{-}$	LEP 2 $e^{+} e^{-} \rightarrow \bar{f} f$
\mathcal{B}_{μ}	\checkmark							
\mathcal{W}_{μ}	\checkmark							
\mathcal{G}_{μ}								
\mathcal{H}_{μ}								
\mathcal{B}_{μ}^{1}	\checkmark							
\mathcal{W}_{μ}^{1}	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
\mathcal{G}_{μ}^{1}								
\mathcal{L}_{μ}					\checkmark			\checkmark
\mathcal{U}_{μ}^{2}			\checkmark	\checkmark		\checkmark		\checkmark
\mathcal{U}_{μ}^{5}						\checkmark		\checkmark
\mathcal{Q}_{μ}^{1}			\checkmark		\checkmark		\checkmark	
\mathcal{Q}_{μ}^{5}			\checkmark		\checkmark		\checkmark	
\mathcal{X}_{μ}			\checkmark	\checkmark		\checkmark		\checkmark
\mathcal{Y}_{μ}^{1}								
\mathcal{Y}_{μ}^{5}								

Limits on General Extra Vectors $\quad G \sim \frac{g}{M}$

Limits on General Extra Vectors $\quad G \sim \frac{g}{M}$

Z^{\prime} Bosons: New Singlets \mathcal{B}

Popular Z' Models

Model	95\% C.L. Electroweak Limits on					
	$\underline{\sin } \theta_{Z Z^{\prime}}\left[\times 10^{-4}\right]$		All Data	$M_{Z^{\prime}}[\mathrm{TeV}]$		All Data
	$\begin{gathered} \text { EWPD } \\ \text { (no LEP 2) } \end{gathered}$	LEP 2		$\begin{gathered} \text { EWPD } \\ \text { (no LEP 2) } \end{gathered}$	LEP 2	
Z_{χ}^{\prime}	$[-10,7]$	[- 80, 118]	$[-11,7]$	1.123	0.772	1.022
Z_{ψ}^{\prime}	$[-19,7]$	[-196, 262]	$[-19,7]$	0.151	0.455	0.476
Z_{η}^{\prime}	[-22, 25]	[-150, 164]	$[-23,27]$	0.422	0.460	0.488
Z_{I}^{\prime}	$[-5,9]$	$[-144,96]$	$[-5,10]$	1.207	0.652	1.105
Z_{N}^{\prime}	$[-14,6]$	[-165, 223]	$[-14,6]$	0.635	0.421	0.699
Z_{S}^{\prime}	$[-9,5]$	[- 85, 129]	$[-10,5]$	1.249	0.728	1.130
Z_{R}^{\prime}	$[-17,7]$	$[-166,177]$	$[-15,5]$	0.439	0.724	1.130
$Z_{L R}^{\prime}$	$[-13,5]$	[-147, 189]	$[-12,4]$	0.999	0.667	1.162

Popular Z' Models

New Vectors and the Higgs Mass

Vector singlet
and
fermiophobic
vector triplet

Mixing with Z (and W)
ζ Shift of masses

Positive T parameter

Interplay of several new vectors

Vector triplet:
lepton and

One \mathcal{W}

Higgs
couplings

Two mirror \mathcal{W} s

Solving the $A_{\mathrm{FB}}^{\mathrm{b}}$ anomaly with Extra Vectors

SM with $M_{H}=115 \mathrm{GeV} \rightarrow \operatorname{Pull}\left[A_{\mathrm{FB}}^{b}\right]=-2.6$

SM with extra neutral (and charged) singlet vector bosons coupling to 3rd family:

		\mathcal{B}						$\mathcal{B}+\mathcal{B}^{1}$	
	Free	$G_{\mathcal{B}}^{b} \equiv 1$	$M_{H}=200 \mathrm{GeV}$	$M_{H}=500 \mathrm{GeV}$	Free	$G_{\mathcal{B}}^{b} \equiv 1$			
$-\Delta \chi_{\min }^{2}$	8.2	2.7	14.1	47.7	8.2	8.2			
Pull $\left[A_{F B}^{b}\right]$	-0.5	-2.5	-0.4	-0.4	-0.5	-0.5			
$G_{\mathcal{B}}^{b}\left[\mathrm{TeV}^{-1}\right]$	6.4	1	3.8	2.4	3.2	1			
$G_{\mathcal{B}}^{\phi}\left[\mathrm{TeV}^{-1}\right]$	0.082	0.078	0.13	0.19	0.16	0.53			
$G_{\mathcal{B}^{1}}^{\phi}\left[\mathrm{TeV}^{-1}\right]$	-	-	-	0.20	0.73				

Solving the $A_{F B}^{b}$ anomaly with Extra Vectors

"Custodial" protection of $Z \rightarrow b \bar{b}$

Cancel singlet against triplet contributions:

Conclusions

New particles can be classified into irreps of SM full gauge symmetry

With mild assumptions, explicit general Lagrangians can be written

Direct contact with models and with collider physics

Conclusions

Constraints on New Vector Bosons from Precision Electroweak Data

- EWPT place limits on couplings/masses Different dependence at hadron colliders!
- Leptonic couplings of new vectors small (LEP 2), or large masses
- Hadronic couplings can be large
- Cancellations of the effects of different new vectors can open new regions in parameter space
- Correlations with value of Higgs mass

LHC searches

Drell-Yan dilepton resonance $V \rightarrow / /$ (neutral vectors)

- Only possible for \mathcal{B} and \mathcal{W}
- Requires large enough lepton couplings
- EWPT + Tevatron \rightarrow Little space for discovery at 7 TeV
- Better at $14 \mathrm{TeV}, 100 \mathrm{fb}^{-1}$
$V \rightarrow I \nu$ (charged vectors)
- Only for \mathcal{W} (or \mathcal{B}^{1} if light RH neutrinos)
- Similar considerations
$V \rightarrow j j, V \rightarrow \bar{t} t, V \rightarrow t b, \ldots$
- Required for leptophobic vector bosons
- Plenty of room for discovery

Pair production through gluon couplings

- Leptoquarks (decay via trilinear couplings)
- Exotic vectors without linear interactions

Thanks to

- Roberto \& Paco
- All organizers
- All speakers
- All participants

Thanks to

- Roberto \& Paco
- All organizers
- All speakers
- All participants

Good luck ProTevs !

