





# Properties of the minimal $U(1)_{B-L}$ extension of the SM

### Lorenzo Basso (UoS and RAL) In collaboration with: S. Moretti, A. Belyaev, G.M. Pruna, C.H. Shepherd-Themistocleous

## Outline

### 1) The B - L model

- Motivations
- Particle content

### 2) Gauge sector: Z' boson

- · Decays and width
- Discovery potential for the LHC @  $\sqrt{s} = 7$  TeV (Tevatron comparison)

### 3) Fermion sector: Heavy neutrinos

- · Decays and width
- Tri-lepton signature

### 4) Scalar Sector: two Higgs bosons

- Theoretical bounds
- Prod. cross sections and BRs
- Selected signatures

### 5) Conclusions

# A triply minimal extension

### Motivations

- $\triangleright \nu_R$  naturally included
- $\triangleright U(1)_{B-L}$  (accidental) global symmetry in the SM
- interesting phenomenology
- part of a bigger picture (GUT, baryogenesis)
- Gauge sector

 $SU(3)_C imes SU(2)_L imes U(1)_Y imes U(1)_{B-L}$ 

#### Fermion sector

One extra fermion per generation:  $\nu_R$ 

(Required by anomaly cancellation)

Scalar sector

One extra SM-singlet scalar:  $\chi$ 

 $(U(1)_{B-L}$  symmetry breaking)

(4月) トイヨト イヨト

## The model: triply-minimal extension

A U(1) extension of the SM  $SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_{B-L}$ 

New states:

- A scalar ( $\chi$ , SM-singlet)  $V = \dots + \lambda_1 (H^{\dagger}H)^2 + \lambda_2 |\chi|^4 + \lambda_3 H^{\dagger}H |\chi|^2$
- 3 RH neutrinos:  $\nu_R \xrightarrow{\text{see-saw}} \nu_h (\mathcal{O}(100) \text{ GeV})$ (anomaly cancellation)  $\mathscr{L}_Y = \cdots - y^{\nu} \overline{l_L} \nu_R \widetilde{H} - y^M \overline{(\nu_R)^c} \nu_R \chi + \text{H.c.}$

In certain regions of the parameter space, they both can be *long-lived* particles

| $\psi$  | $SU(3)_C$ | $SU(2)_L$ | Y              | B-L           |
|---------|-----------|-----------|----------------|---------------|
| $q_L$   | 3         | 2         | $\frac{1}{6}$  | $\frac{1}{3}$ |
| $u_R$   | 3         | 1         | $\frac{2}{3}$  | $\frac{1}{3}$ |
| $d_R$   | 3         | 1         | $-\frac{1}{3}$ | $\frac{1}{3}$ |
| $l_L$   | 1         | 2         | $-\frac{1}{2}$ | -1            |
| $e_R$   | 1         | 1         | $^{-1}$        | -1            |
| $ u_R $ | 1         | 1         | 0              | -1            |
| 1/2     | $SU(3)_C$ | $SU(2)_T$ | Y              | B-L           |
| ф<br>Н  | 1         | 2         | 1              | 0             |

 $\chi$  1 1 0 2

### Interactions and spectrum

Covariant derivative (in a suitable basis):

$$D_{\mu}\Psi_{i} = \partial_{\mu}\Psi_{i} + i\left[g_{1}Y_{i}B_{\mu} + (\underline{Y_{i}\widetilde{g}} + (B - L)_{i}g_{1}')B_{\mu}'\right]\Psi_{i}$$

Z - Z' mixing:

$$\begin{pmatrix} B^{\mu} \\ W_{3}{}^{\mu} \\ B'^{\mu} \end{pmatrix} = \begin{pmatrix} \cos\vartheta_{w} & -\sin\vartheta_{w}\cos\vartheta' & \sin\vartheta_{w}\sin\vartheta' \\ \frac{\sin\vartheta_{w} & \cos\vartheta_{w}\cos\vartheta' & -\cos\vartheta_{w}\sin\vartheta'}{0 & \sin\vartheta' & \cos\vartheta'} \end{pmatrix} \begin{pmatrix} A^{\mu} \\ Z^{\mu} \\ Z^{'\mu} \\ Z^{'\mu} \\ B_{-L} \end{pmatrix}$$

$$\widetilde{g} = 0 \longrightarrow \vartheta' = 0$$

No Z - Z' mixing in the pure B - L model

Differences wrt the other more common Z' models:

- no axial coupling:  $(B L)^R = (B L)^L$  hence  $g_{Z'}^A = \frac{g_{Z'}^R g_{Z'}^L}{2} = 0$ ,
- free value of the coupling  $g'_1$ ,
- new coupled matter  $(\nu_h) \rightarrow$  not-fixed BRs.

イロト イヨト イヨト イヨト



$$\begin{split} \sum_{k} BR\left(Z_{B-L}^{\prime} \rightarrow l_{k}\overline{l_{k}}\right) &\sim \frac{3}{4} \\ \sum_{k} BR\left(Z_{B-L}^{\prime} \rightarrow q_{k}\overline{q_{k}}\right) &\sim \frac{1}{4} \end{split}$$

- Dominantly coupled to *leptons*
- $Z' \rightarrow \nu_h \nu_h$  up to  $\sim 20\%$

- $g_1' < 0.5$  from RGE analysis
- $\Gamma$  up to hundreds of GeV

Depending on  $m_{\nu h}$  and  $M_{Z'}$ :

$$Z' \to \ell^+ \ell^- \simeq 12.5\% \div 15.5\%$$
$$Z' \to q\overline{q} \simeq 4\% \div 5\%$$

In this work:  $m_{\nu h} = 200 \text{ GeV}$ 

### Analysis details

The B - L model is not a usual benchmark for data analyses nor colliders reach studies  $\longrightarrow$  *systematic parton level analysis, with k-factors.* (no ISR, photon conversions, fakes, muon reconstuctions,...)

Analysis with CalcHEP, model implemented via LanHEP.

We have assumed standard acceptance cuts at LHC and Tevatron (the same for electrons and muons):

LHC:  $p_T > 10 \text{ GeV}, \quad |\eta| < 2.5,$ Tevatron:  $p_T > 18 \text{ GeV}, \quad |\eta| < 1,$ 

and a cut on the invariant mass (early vs improved scenario):

$$e^{\pm} \text{ (B) LHC: } \frac{|M_{ee} - M_{Z'}|}{\text{GeV}} < \max\left(\frac{\Gamma_{Z'}}{2}, \begin{pmatrix} 0.02\\ 0.005 \end{pmatrix} \frac{M_{Z'}}{\text{GeV}} \right),$$

$$e^{\pm} \text{ (D) Tevatron: } \frac{|M_{ee} - M_{Z'}|}{\text{GeV}} < \max\left(\frac{\Gamma_{Z'}}{2}, \begin{pmatrix} 0.135\sqrt{\frac{M_{Z'}}{\text{GeV}}} + 0.02\frac{M_{Z'}}{\text{GeV}} \end{pmatrix} \right).$$

# Z' Discovery potentials for $\sqrt{s} = 7$ TeV

Significance contour levels and required luminosity for electrons (Similar plots for muons in the final state)



# $\nu_h$ phenomenology



- $\Gamma = \Gamma(m_{\nu l}/m_{\nu h})$
- $\nu_h$  can be a long-lived particle
- DISPLACED VERTICES (e.g., from a high energetic and isolated lepton)

Notice:  $\nu_h \rightarrow \nu_l h_1$  (more later)

$$\nu_h \textcircled{O} LHC: BR(Z' \to 3\ell + 2j + \not\!\!P_T (1\nu), \ell = e, \mu) \text{ up to } 2.5\%$$
$$m_T^2 = \left(\sqrt{M_{vis}^2 + P_{T,vis}^2} + |\not\!\!P_T|\right)^2 - \left(\vec{P_{Tvis}} + \not\!\!P_T\right)^2 \overset{\text{V. Barger at all,}}{Phys. Rev. D 36 295 (1987)}$$



$$M_{Z'} = 1.5 \text{ TeV}, g'_1 = 0.2: \sigma(pp \to Z') = 0.3 \text{ pb}$$
  
 $M_{\nu_h} = 200 \text{ GeV}, \mathscr{L} = 100 \text{ fb}^{-1}, \text{bin} = 20 \text{ GeV}$ 

#### Backgrounds:

 $WZ_{jj}$  associated production ( $\sigma_{3l} = 246.7$  fb,  $l = e, \mu, \tau, w$ . cuts)  $t\bar{t}$  pair production ( $\sigma_{2l} = 29.6$  pb,  $l = e, \mu$ ) ( $3^{rd}$  lep. from b-quark)  $t\bar{t}l\nu$  associated production ( $\sigma_{3l} = 8.6$  fb,  $l = e, \mu, \tau$ )

#### Cuts:

Kinematics, angular acceptance and isolation W rec. from jets:  $|M_{jj} - 80 \text{ GeV}| < 20 \text{ GeV}$ Z' rec.:  $\left|M_{3l,2j}^T - 1500 \text{ GeV}\right| < 250 \text{ GeV}$ 



### The scalar sector

Scalar Lagrangian

$$\mathscr{L}_{s} = (D^{\mu}H)^{\dagger} D_{\mu}H + (D^{\mu}\chi)^{\dagger} D_{\mu}\chi - V(H,\chi)$$

$$V(H,\chi) = m^{2}H^{\dagger}H + \mu^{2} |\chi|^{2} + \lambda_{1}(H^{\dagger}H)^{2} + \lambda_{2} |\chi|^{4} + \lambda_{3}H^{\dagger}H |\chi|^{2}$$

$$V(H,\chi) \text{ is bounded from} \qquad \lambda_{1}, \lambda_{2} > 0$$

$$below \text{ if} \qquad 4\lambda_{1}\lambda_{2} - \lambda_{3}^{2} > 0$$

$$SU(2) \times U(1) \times U(1) \longrightarrow U(1)_{e.m.} \qquad H \equiv \begin{pmatrix} 0 \\ \frac{h+v}{\sqrt{2}} \end{pmatrix} \chi \equiv \frac{h'+x}{\sqrt{2}}$$

Scalar spectrum:

$$\left(\begin{array}{c} h_1\\ h_2 \end{array}\right) = \left(\begin{array}{c} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{array}\right) \left(\begin{array}{c} h\\ h' \end{array}\right)$$

Properties:

- $\bullet \ m_{h_1}^2 \leq m_{h_2}^2 \qquad \text{and} \qquad \alpha \in \big[0, \tfrac{\pi}{2}\big],$
- $\lambda_3 \neq 0$ , so  $h_2 \rightarrow h_1 h_1$  is possible ( $\lambda_3 = 0$  for  $\alpha = 0, \pi/2$  or for  $m_{h_1} = m_{h_2}$ ),
- $h_1(h_2)$  couples to SM[new] fields prop. to  $\cos \alpha(\sin \alpha)$  [and vice-versa].

### Scalar sector: theoretical Bounds for $\alpha = 0.1$

Unitarity [Phys. Rev. D 81 095018 (2010)] Triviality + Vacuum Stability

[Phys. Rev. D 82 055018 (2010)]



Heptools: Final meeting (Granad

### Scalar sector: phenomenology

[arXiv:1011.2612]

 $h_1$ : Prod. Cross Sections ( $\alpha = \frac{\pi}{5}$ )

 $h_2$ : Prod. Cross Sections ( $\alpha = \frac{\pi}{5}$ )



LHC @  $\sqrt{s} = 7$  TeV

Scalar sector: BRs  $h_1$  BRs  $(\alpha = \frac{2\pi}{5})$ 



$$m_{\nu_h} = 50 \text{ GeV}$$

$$h_2$$
 BRs ( $\alpha = \frac{3\pi}{20}$ )



・ロト ・回ト ・ヨト ・ヨト

Scalar sector: total widths  $\Gamma(h_1)$ 

 $\Gamma(h_2)$ 



For instance,  $\frac{\Gamma(h_2)}{M_{h_2}} < 10\%$  when  $M_{h_2} = 1$  TeV for  $\alpha = \frac{\pi}{10}$  (blue line)

Lorenzo Basso (NExT Institute, UK)

### Scalar sector: selected final states



 $m_{h_1} = 120 \text{ GeV}$ 

# Scalar sector: Higgs @ LC (In progress)

Two new channels for producing  $h_1$  via Z'



Strengths: Z' dominantly coupled to leptons and tunable LC CM energy

### Conclusions

- √ Simple SM extension at TeV scale, RH-neutrinos
- $\sqrt{}$  motivated by high-scale physics

 $\sqrt{}$  pure B - L model, no Z - Z' mixing, only vectorial coupling

- Z' discovery power limited by existing experimental constraints
- Interesting new signatures in the gauge and scalar sectors
- Striking signatures (multi leptons, displaced vertices, ...)

<u>Novel</u> and <u>observable</u> tri-lepton signature from  $h_1 \rightarrow \nu_h \nu_h$  ( $\sqrt{s} = 7$  TeV) for  $M_h$  in the 115-160 GeV range

Good prospects at the LHC, both at  $\sqrt{s} = 7$  and 14 TeV

Scope to probe the model at future LCs

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

### **Backup slides**

・ロト ・回 ト ・ ヨト ・ ヨ

# Z' experimental limit

LEP bound:

G. Cacciapaglia et all, Phys. Rev. D 74 (2006) 033011



Tevatron (comparing our prediction to experimental data): Muons T. Aaltonen *et al.* [CDF], Phys. Rev. Lett. **102**, 091805 (2009):



| $p\overline{p} \rightarrow \mu^+\mu^-$ |                |  |
|----------------------------------------|----------------|--|
| $g'_1$                                 | $M_{Z'}$ (GeV) |  |
| 0.06                                   | 600            |  |
| 0.1                                    | 750            |  |
| 0.123                                  | 800            |  |
| 0.2                                    | 900            |  |
| 0.3                                    | 1000           |  |
| 0.5                                    | 1195           |  |

# Z' experimental limit: continue

Tevatron (comparing our prediction to experimental data): Electrons T. Aaltonen *et al.* [CDF], Phys. Rev. Lett. **102**, 031801 (2009):



| $p\overline{p} \rightarrow e^+e^-$ |                |  |  |
|------------------------------------|----------------|--|--|
| $g'_1$                             | $M_{Z'}$ (GeV) |  |  |
| 0.042                              | 600            |  |  |
| 0.086                              | 700            |  |  |
| 0.115                              | 800            |  |  |
| 0.19                               | 900            |  |  |
| 0.3                                | 1000           |  |  |

### Z' Discovery potentials for $\sqrt{s} = 14$ TeV Significance contour levels and required luminosity for electrons

(Similar plots for muons in the final state)



# Higgs experimental limit:

R. Barate et al. [LEP Working Group for Higgs boson searches], Phys. Lett. B 565 (2003) 61.



### Scalar sector Theoretical Bounds for $\alpha = \frac{\pi}{4}$

m<sub>h1</sub> (GeV) 0001 800  $\alpha = \pi/4$  $zz \rightarrow zz$ 600 400 200 0 200 400 600 800 1000 0 m<sub>h2</sub> (GeV)

Unitarity

Triviality + Vacuum Stability

