MadGraph5

Olivier Mattelaer UCL

Johan Alwall FermiLab

Fabio Maltoni UCL Michel Herquet NIKHEF*

> Tim Stelzer UIUC

What do We need?

Exp-TH NLO Very exotic communication models Multi-jet samples Effective theories Exotic models Decay chains Advanced Matrix analysis Elements techniques **Real corrections Decay Packages** Cluster/Grid Merging ME/PS computing User friendliness Testing/robustness

What do We need?

Madgraph5

jeudi 25 novembre 2010

Madgraph5

jeudi 25 novembre 2010

jeudi 25 novembre 2010

3

Madgraph5

Delphes

Detector events

PLAN

- What do we want to improve
- U HFO and ALOHA
- □ Present status of MadGraph5
- Long term development of MadGraph5

□ True effective theory

diagram 1

- □ True effective theory
- New color structure (6, epsílon)

- □ True effective theory
- New color structure (6, epsílon)
- Automatic Helas Routine

- True effective theory
- New color structure (6, epsílon)
- Automatic Helas Routine
- □ Efficient decay chains

diagram 1

diagram 2

- □ True effective theory
- New color structure (6, epsílon)
- Automatic Helas Routine
- Efficient decay chains
- \Box C(++) output

- □ True effective theory
- New color structure (6, epsílon)
- Automatic Helas Routine
- Efficient decay chains
- \Box C(++) output

Why not MadGraph4.5?

jeudi 25 novembre 2010

- □ True effective theory
- New color structure (6, epsílon)
- Automatic Helas Routine
- Efficient decay chains
- \Box C(++) output
 - Why not MadGraph4.5?
- □ Code written in fortran 77

- True effective theory
- New color structure (6, epsílon)
- Automatic Helas Routine
- Efficient decay chains
- \Box C(++) output
 - Why not MadGraph4.5?
- □ Code written in fortran 77
 - □ (memory íssue / not object oriented / ...)

- True effective theory
- New color structure (6, epsílon)
- Automatic Helas Routine
- Efficient decay chains
- \Box C(++) output
 - Why not MadGraph4.5?
- Code written in fortran 77
 (memory issue / not object oriented / ...)
- Old code

- True effective theory
- New color structure (6, epsílon)
- Automatic Helas Routine
- Efficient decay chains
- \Box C(++) output
 - Why not MadGraph4.5?
- □ Code written in fortran 77
 - □ (memory íssue / not object oriented / ...)
- Old code
 - No place for fast and efficient improvment

Time for a New Start

- intuitive interface
- **D** BETTER:
 - For Any Model
- **D** FASTER:
 - For díagram generation
 - □ For generating events
- STRONGER:
 - extreme programming

UFO and ALOHA

UFO

[Duhr et al]

NFO = Universal Feynrules Output

- joint format for
 - MadGraph5
 - 🗆 Golem
 - Herwig++
- includes color
- 🗆 íncludes lorentz
- Model in Python
- Object oriented

[P. De Aquíno, W. Línk, O.M]

ALOHA = Automatic Language-independent Output of Helicity Amplitudes.

$$\Box \text{ Lorentz} \rightarrow \text{HELAS}$$

$$\gamma^{\mu} \rightarrow -i W_f(e^-) \gamma^{\mu} W_f(e^+) A_{\mu} \qquad (10)$$

$$\rightarrow W_f(e^-) \gamma^{\mu} W_f(e^+) \frac{-i \eta_{\mu\nu}}{p_A^2} \qquad (10)$$

Madgraph5

jeudi 25 novembre 2010

[P. De Aquíno, W. Línk, O.M]

ALOHA = Automatic Language-independent Output of Helicity Amplitude.

$$\Box \text{ Lorentz} \rightarrow \text{HELAS}$$

$$\gamma^{\mu} \rightarrow -i W_f(e^-) \gamma^{\mu} W_f(e^+) A_{\mu} \qquad (10)$$

$$\rightarrow W_f(e^-) \gamma^{\mu} W_f(e^+) \frac{-i \eta_{\mu\nu}}{p_A^2} \qquad (10)$$

FFV1 = Lorentz(name = 'FFV1', spins = [2, 2, 3], structure = 'Gamma(3,2,1)') VERTEX = C*((F2(1)*((F1(3)*((0, -1)*V3(1)+(0, 1)*V3(4)))) +(F1(4)*((0, 1)*V3(2)+V3(3))))+((F2(2)*((F1(3)*((0, 1))))) +((F2(3)*((F1(1)*((0, -1)*V3(1)+(0, -1)*V3(4)))))) +((F2(3)*((F1(1)*((0, -1)*V3(1)+(0, -1)*V3(4))))+(F1(2))) +((0, -1)*V3(2)-V3(3))))+(F2(4)*((F1(1)*((0, -1)*V3(2))))))+(V3(3)))+(F1(2)*((0, -1)*V3(1)+(0, 1)*V3(4))))))))

[P. De Aquíno, W. Línk, O.M]

[P. De Aquíno, W. Línk, O.M]

□ ALOHA is 100% in Python

[P. De Aquíno, W. Línk, O.M]

- □ ALOHA is 100% in Python
- □ validate for SM/MSSM/HEFT/TOPBSM
[P. De Aquíno, W. Línk, O.M]

- □ ALOHA is 100% in Python
- □ validate for SM/MSSM/HEFT/TOPBSM
- □ Output in F77/C/Python

[P. De Aquíno, W. Línk, O.M]

- □ ALOHA is 100% in Python
- validate for SM / MSSM / HEFT / TOPBSM
- □ Output in F77/C/Python
- Only Fermion / Scalar / Vector

[P. De Aquíno, W. Línk, O.M]

- □ ALOHA is 100% in Python
- validate for SM / MSSM / HEFT / TOPBSM
- □ Output in F77/C/Python
- Only Fermion / Scalar / Vector
- □ Spín 2 in progress (3/2 planned)

jeudi 25 novembre 2010

[P. De Aquíno, W. Línk, O.M]

- □ ALOHA is 100% in Python
- validate for SM / MSSM / HEFT / TOPBSM
- □ Output in F77/C/Python
- Only Fermion / Scalar / Vector
- □ Spín 2 in progress (3/2 planned)
- The Helas routine for BSM without the pain to write it.

[P. De Aquíno, W. Línk, O.M]

- □ ALOHA is 100% in Python
- validate for SM / MSSM / HEFT / TOPBSM
- □ Output in F77/C/Python
- Only Fermion / Scalar / Vector
- □ Spín 2 ín progress (3/2 planned)
- The Helas routine for BSM without the pain to write it.
- Module install in MadGraph5 (not restricted to MG5)

MADGRAPH 5

- Completely new diagram generation algorithm
 - Makes Optimal use of Model information
 - Improves Helas call optimization by up to 90%

Completely new diagram generation algorithm

Makes Optimal use of Model information

Improves Helas call optimization by up to 90%

			<u> </u>
process	MG4	MG5-HELAS	MG5-ALOHA
u u~ > d d~ g g	0.42 ms	0.34 MS	0.24 ms
u u~ > d d~ d d~	0.12 ms	0.11ms	0.12 ms
u u~ > d d~ d d~ g g	141 MS	34.4 MS	19.6 MS

Completely new diagram generation algorithm

Makes Optimal use of Model information

Improves Helas call optimization by up to 90%

process	MG4	MG5-HELAS	MG5-ALOHA
u u~ > d d~ g g	0.42 ms	0.34 MS	0.24 ms
u u~ > d d~ d d~	0.12 ms	0.11ms	0.12 ms
u u~ > d d~ d d~ g g	141 MS	34.4 MS	19.6 MS

Efficient Multiprocess (keep track of discarded process crossing)

Completely new díagram generation algorithm

Makes Optimal use of Model information

Improves Helas call optimization by up to 90%

process	MG4	MG5-HELAS	MG5-ALOHA
u u~ > d d~ g g	0.42 ms	0.34 MS	0.24 ms
u u~ > d d~ d d~	0.12 ms	0.11MS	0.12 ms
u u~ > d d~ d d~ g g	141 MS	34.4 MS	19.6 MS

Efficient Multiprocess (keep track of discarded process crossing)

very efficient decay chain package

Completely new díagram generation algorithm

Makes Optimal use of Model information

Improves Helas call optimization by up to 90%

process	MG4	MG5-HELAS	MG5-ALOHA
u u~ > d d~ g g	0.42 ms	0.34 MS	0.24 ms
u u~ > d d~ d d~	0.12 ms	0.11ms	0.12 ms
u u~ > d d~ d d~ g g	141 MS	34.4 MS	19.6 MS

- Efficient Multiprocess (keep track of discarded process crossing)
- very efficient decay chain package
- Generic new color calculation library

Beta 0.5.0

Beta 0.5.0

Leading order Matrix Element	No Limitation (but time)
generation	W + 5 jets realistic

Beta 0.5.0

Leading order Matrix Element	No Limitation (but time)
generation	W + 5 jets realistic
Effective Theory	YES

Beta 0.5.0

Leading order Matrix Element generation	No Límítatíon (but tíme) W + 5 jets realístic
Effective Theory	YES
Color structures	YES

jeudi 25 novembre 2010

Beta 0.5.0

Leading order Matrix Element	No Limitation (but time)
generation	W + 5 jets realistic
Effective Theory	YES
Color structures	YES
extended color (6, epsílon)	BETA 0.6.0

jeudi 25 novembre 2010

Leading order Matrix Element	No Limitation (but time)
generation	W + 5 jets realistic
Effective Theory	YES
Color structures	YES
extended color (6, epsílon)	BETA 0.6.0
Automatic Helas	YES

Leading order Matrix Element generation	No Límítatíon (but tíme) W + 5 jets realístic
Effective Theory	YES
Color structures	YES
extended color (6, epsílon)	BETA 0.6.0
Automatic Helas	YES
Majorana treatment	YES

Leading order Matrix Element generation	No Límítatíon (but tíme) W + 5 jets realístic
Effective Theory	YES
Color structures	YES
extended color (6, epsílon)	BETA 0.6.0
Automatic Helas	YES
Majorana treatment	YES
four fermíon	<i>∨5.0.0</i> ?

Leading order Matrix Element	No Limitation (but time)
generation	W + 5 jets realistic
Effective Theory	YES
Color structures	YES
extended color (6, epsílon)	BETA 0.6.0
Automatic Helas	YES
Majorana treatment	YES
four fermíon	v5.0.0 ?
MG4 retro-compatibility	100%

Leading order Matrix Element generation	No Límítatíon (but tíme) W + 5 jets realístic		
Effective Theory	YES		
Color structures	YES		
extended color (6, epsílon)	BETA 0.6.0		
Automatic Helas	YES		
Majorana treatment	YES		
four fermíon	<i>∨5.0.0</i> ?		
MG4 retro-compatibility	100%		
Output Language	Fortran/C++		

Leading order Matrix Element generation	No Límítatíon (but tíme) W + 5 jets realístic		
Effective Theory	YES		
Color structures	YES		
extended color (6, epsílon)	BETA 0.6.0		
Automatic Helas	YES		
Majorana treatment	YES		
four fermíon	√5.0.0 ?		
MG4 retro-compatibility	100%		
Output Language	Fortran/C++		
interactive mode	YES (with tutorial/help)		

Beta 0.5.0

Beta 0.5.0

Output for PYTHIA

Beta 0.5.0

Output for PYTHIA	YES	
MadGraph StandAlone C++	BETA 0.6.0	

Output for PYTHIA	YES		
MadGraph StandAlone C++	BETA 0.6.0		
Optimised Multi-Channel	√5.0.0		

Beta 0.5.0

Output for PYTHIA	YES	
MadGraph StandAlone C++	BETA 0.6.0	
Optimised Multi-Channel	v5.0.0	
Fast Díagram Drawer	YES	

Beta 0.5.0

Output for PYTHIA	YES		
MadGraph StandAlone C++	BETA 0.6.0		
Optimised Multi-Channel	v5.0.0		
Fast Díagram Drawer	YES		
Test Suíte	YES		

Beta 0.5.0

Output for PYTHIA	YES		
MadGraph StandAlone C++	BETA 0.6.0		
Optimised Multi-Channel	v5.0.0		
Fast Díagram Drawer	YES		
Test Suíte	YES		
Process checks on demand	YES (Gauge/Lorentz/Helas)		

jeudi 25 novembre 2010

Output for PYTHIA	YES		
MadGraph StandAlone C++	BETA 0.6.0		
Optimised Multi-Channel	<i>√5.0.0</i>		
Fast Díagram Drawer	YES		
Test Suíte	YES		
Process checks on demand	YES (Gauge/Lorentz/Helas)		
MadWeight / MadOnia	√5.1.0		

Beta 0.5.0

Output for PYTHIA	YES			
MadGraph StandAlone C++	BETA 0.6.0			
Optimised Multi-Channel	v5.0.0			
Fast Díagram Drawer	YES			
Test Suíte	YES			
Process checks on demand	YES (Gauge/Lorentz/Helas)			
MadWeight / MadOnia	v5.1.0			
More Features	V5.1.0			

Beta 0.5.0

Output for PYTHIA	YES		
MadGraph StandAlone C++	BETA 0.6.0		
Optimised Multi-Channel	√5.0.0		
Fast Díagram Drawer	YES		
Test Suíte	YES		
Process checks on demand	YES (Gauge/Lorentz/Helas)		
MadWeight / MadOnia	V5.1.0		
More Features	V5.1.0		
Your Favorites features	√5.0.X		

SPEED

Time to generate the square matrix-element for MadEvent

Process	MadGraph 4	MadGraph 5	Subprocesses	Diagrams
$pp \rightarrow jjj$	29.0 s	54.4 s	34	307
$pp \rightarrow jjl^+l^-$	341 s	258 s	108	1216
$pp \rightarrow jjje^+e^-$	1151 s	$654 \mathrm{\ s}$	141	9012
$u\bar{u} \to e^+e^-e^+e^-e^+e^-$	772 s	175 s	1	3474
gg ightarrow ggggg	$2788 \mathrm{s}$	1049 s	1	7245
$pp \to jj(W^+ \to l^+\nu_l)$	146 s	70 s	82	304
$pp \rightarrow t\bar{t}$ +full decays	5640 s	22 s	27	45
$pp ightarrow ilde{q}/ ilde{g} \ ilde{q}/ ilde{g}$	222 s	$286 \mathrm{~s}$	313	475
7 particle decay chain	383 s	$5.2 \mathrm{~s}$	1	6
$gg \to (\tilde{g} \to u\bar{u}\tilde{\chi}_1^0)(\tilde{g} \to u\bar{u}\tilde{\chi}_1^0)$	70 s	$5.5 \mathrm{~s}$	1	48
$pp \to (\tilde{g} \to jj\tilde{\chi}_1^0)(\tilde{g} \to jj\tilde{\chi}_1^0)$	$\gg 1$ year	551 s	144	11008

Future of MADGRAPH 5

Plan in MG5

NLO Computations

CutTools: [V. Hírschí, R. Píttau, M. V. Garzíellí, R. Frederíx] MadFKS: [R. Frederíx, S. Fríxíone et al.]
Plan in MG5

- NLO Computations
- Recursive Relations
 - □ For multíjet generation (≥ 4 jets), Feynman diagram formalism expensive (factorial growth)
 - Recursion relations (such as Berhrends-Giele) can reduce run time by orders of magnitude

diagram 1

Conclusion

- MG/ME V4 is a mature, well established and stable code with many features for BSM and QCD physics and numerous peripheral tools
- MG5 is available with important and unprecedented improvements in all directions.
- Still many new features to come in the near future
- <u>https://launchpad.net/madgraph5</u>