

Sensitivity of MSSM Higgs masses to Majorana neutrinos

A.M. Rodriguez-Sanchez

Departament of Theoretical Physics UAM

November 2010

S.Heinemeyer, M. J. Herrero, Siannah Peñaranda, arXiv:1007.5512v2 [hep-ph]

Outline

Introduction

- Motivations
- MSSM-seesaw framework for one generation neutrinos/sneutrinos
- Higgs boson sector
- Renormalization prescription

2 Results: One Loop
$$\nu/\tilde{\nu}$$
 corrections to m_h
• $\Delta m_h^{m\overline{DR}} = M_h^{\nu/\tilde{\nu}} - M_h$

3 Conclusions

Relevance of Higgs mass corrections

- $\bullet\,$ One of the main goal of the LHC $\rightarrow\,$ Higgs boson like particle
- The Higgs mass will be a precision observable
- Expected experimental accuracy in the meaurement of the SM-like Higgs mass
 - LHC: $\Delta m_h \approx 0.2 \text{ GeV}$
 - ILC: ∆m_h ~ 0.05 GeV
- In the MSSM, higher order corrections are crucial
 - Contrary to the SM, *m_h* is not a free parameter
 - MSSM tree-level bound:

 $m_{h,\text{tree}} < M_Z$, excluded by LEP Higgs searches

- Large radiative corrections $\rightarrow \Delta m_{h_1-looo}^2 \sim G_{\mu} m_t^4 \log \frac{m_{t_1} m_{t_2}}{m_t^2}$
- Higgs boson mass have been computed with very good precision at one, two loop level...→ m_h < 135 GeV
- Our work: How can the massive neutrinos affect m_h in an MSSM-seesaw framework?

Neutrino physics/ Seesaw type I

- neutrino oscillations \Rightarrow at least two massive neutrinos
- tritium beta decay exp. $\Rightarrow m_{\nu_e} < 2.3 \text{ eV} (95\% \text{C.L.})$
- New physics beyond the SM to explain the smallness of neutrino masses
- seesaw type I \rightarrow introduction of 3 ν_R singlets
 - Dirac $m_D \overline{\nu_L} \nu_R$ + Majorana $m_M \overline{\nu_R^c} \nu_R$ terms allowed
 - L is violated \rightarrow posible explanation of BAU via leptogenesis
 - large Y_{ν} couplings allowed Dirac $\Rightarrow Y_{\nu} \sim O(10^{-12})$ Majorana \Rightarrow up to $Y_{\nu} \sim O(1)$

• Present work:

For simplicity we restrict to the one generation neutrinos/sneutrinos case (three generations work in progress)

A (10) A (10)

Seesaw model for one generation neutrinos

$$-\mathcal{L}_{\nu} = \frac{1}{2} \left(\begin{array}{cc} \overline{\nu_L} & \overline{\nu_R^c} \end{array} \right) \left(\begin{array}{cc} 0 & m_D \\ m_D & m_M \end{array} \right) \left(\begin{array}{cc} \nu_L^c \\ \nu_R \end{array} \right) . \qquad m_D = Y_{\nu} v_2$$

$$\nu = \nu^{c} = \cos \theta (\nu_{L} + (\nu_{L})^{c}) - \sin \theta (\nu_{R} + (\nu_{R})^{c}) ,$$

$$N = N^{c} = \sin \theta (\nu_{L} + (\nu_{L})^{c}) + \cos \theta (\nu_{R} + (\nu_{R})^{c})$$

$$m_{\nu,N} = \frac{1}{2} \left(m_M \mp \sqrt{m_M^2 + 4m_D^2} \right) \xrightarrow{m_D < m_M} \begin{cases} m_\nu \sim -\frac{m_D^2}{m_M} \text{ (light)} \\ m_N \sim m_M \text{ (heavy)} \end{cases}$$

If $m_M \sim 10^{14}$ GeV one can get $m_\nu \sim 0.1$ eV with $Y_\nu \simeq \mathcal{O}(1)$

Ana (FT-UAM/IFT)

Sneutrino sector

$$W_{MSSM+\nu\tilde{\nu}} = \epsilon_{ij} \left[\mu H_1^i H_2^j + Y_{\nu} \hat{H}_2^j \hat{L}^j \hat{N} \right] + \frac{1}{2} \hat{N} m_M \hat{N}$$
$$\hat{N} = (\tilde{\nu}_R^*, (\nu_R)^c)$$

$$V_{\rm soft}^{\tilde{\nu}} = m_{\tilde{L}}^2 \tilde{\nu}_L^* \tilde{\nu}_L + m_{\tilde{R}}^2 \tilde{\nu}_R^* \tilde{\nu}_R + (Y_\nu A_\nu H_2^2 \tilde{\nu}_L \tilde{\nu}_R^* + m_M B_\nu \tilde{\nu}_R \tilde{\nu}_R + {\rm h.c.}) .$$

$$\mathcal{L}_{\tilde{\nu}\,H} = \begin{cases} -\frac{gm_{D}m_{M}}{2M_{W}\sin\beta} \left[(\tilde{\nu}_{L}\tilde{\nu}_{R} + \tilde{\nu}_{L}^{*}\tilde{\nu}_{R}^{*})(H\sin\alpha + h\cos\alpha) \right] \\ -i\frac{gm_{D}m_{M}}{2M_{W}\sin\beta} \left[(\tilde{\nu}_{L}\tilde{\nu}_{R} - \tilde{\nu}_{L}^{*}\tilde{\nu}_{R}^{*})A\cos\beta \right] \\ +\text{usual int. terms }\tilde{f}\tilde{f}h_{i}, \;\tilde{f}fh_{i}h_{i} \end{cases}$$

æ

$$\tilde{M}_{\pm}^{2} = \begin{pmatrix} m_{\tilde{L}}^{2} + m_{D}^{2} + \frac{1}{2}M_{Z}^{2}\cos 2\beta & m_{D}(A_{\nu} - \mu \cot \beta \pm m_{M}) \\ m_{D}(A_{\nu} - \mu \cot \beta \pm m_{M}) & m_{\tilde{R}}^{2} + m_{D}^{2} + m_{M}^{2} \pm 2B_{\nu}m_{M} \end{pmatrix}$$

4 mass eigenstates $\left\{ \begin{array}{l} \tilde{\nu}_+,\tilde{N}_+ \rightarrow \mathsf{CP} \text{ even} \\ \tilde{\nu}_-,\tilde{N}_- \rightarrow \mathsf{CP} \text{ odd} \end{array} \right.$

seesaw limit: $m_M >>$ all the other scales involved

$$\begin{split} m_{\tilde{\nu}_{+},\tilde{\nu}_{-}}^{2} &= m_{\tilde{L}}^{2} + \frac{1}{2}M_{Z}^{2}\cos 2\beta \mp 2m_{D}^{2}(A_{\nu} - \mu\cot\beta - B_{\nu})/m_{M} ,\\ m_{\tilde{N}_{+},\tilde{N}_{-}}^{2} &= m_{M}^{2} \pm 2B_{\nu}m_{M} + m_{\tilde{R}}^{2} + 2m_{D}^{2} . \end{split}$$

 $\theta_{\pm} \propto m_D/m_M
ightarrow 0 \Rightarrow \tilde{
u}_+, \tilde{
u}_- \propto \tilde{
u}_L, \tilde{
u}_L^* \text{ and } \tilde{N}_+, \tilde{N}_- \propto \tilde{
u}_R, \tilde{
u}_R^*$

.

Higgs Boson Sector

The Higgs sector content in the MSSM-seesaw is as in the MSSM

3 neutral bosons : h, H (CP = +1), A (CP = -1) 2 charged bosons : H^+, H^-

two ind parameters $\rightarrow \tan \beta = v_2/v_1$ and $M_A^2 = -m_{12}^2(\tan \beta + \cot \beta)$ $m_{H,h \text{ tree}}^2 = \frac{1}{2} \left[M_A^2 + M_Z^2 \pm \sqrt{(M_A^2 + M_Z^2)^2 - 4M_Z^2 M_A^2 \cos^2 2\beta} \right]$ $m_{h \text{ tree}}^2 \leq M_Z |\cos 2\beta| \leq M_Z$ $m_{h_{SM}}^2 = \frac{1}{2}\lambda v^2$

Higher-order corrections to m_h

 $M_h, M_H \rightarrow$ poles of the propagator matrix \rightarrow solution of the eq:

$$\left[p^2 - m_{h \text{ tree}}^2 + \hat{\Sigma}_{hh}(p^2)\right] \left[p^2 - m_{H \text{ tree}}^2 + \hat{\Sigma}_{HH}(p^2)\right] - \left[\hat{\Sigma}_{hH}(p^2)\right]^2 = 0$$

$$\hat{\Sigma}_{hh}(p^2) = \Sigma_{hh}(p^2) + \delta Z_{hh}(p^2 - m_{h,\text{tree}}^2) - \delta m_{h}^2$$

$$\delta m_h^2 = f(\delta M_A^2, \delta M_Z^2, \delta T_H, \delta T_h, \delta \tan \beta)$$
And (FT-UAM/IFT)

November 2010 8 / 25

- OS conditions for the mass counterterms $\Rightarrow \delta m_{ii} = \operatorname{Re} \Sigma_{ii}(m_{ii}^2)$
- Different schemes adopted for field and $\tan \beta$ renormalization

OS

• DR

• m
$$\overline{\mathbf{DR}} \rightarrow []^{\mathrm{div}}$$
 terms $\propto \Delta_m \equiv \Delta - \log(m_M^2/\mu_{\overline{\mathrm{DR}}}^2) \rightarrow \mu_{\overline{\mathrm{DR}}} = m_M.$

 mDR →best scheme to minimize higher order corrections → the large logarithms of the heavy scale are avoided

Present work: One Loop Calculation to *m_h*

S.Heinemeyer, M. J. Herrero, S.P., A.M. Rodriguez-Sanchez, arXiv:1007.5512v2 [hep-ph]

- One-loop $\nu/\tilde{\nu}$ corrections to $\hat{\Sigma}_{hh}^{\nu/\tilde{\nu}}$, $\hat{\Sigma}_{HH}^{\nu/\tilde{\nu}}$ and $\hat{\Sigma}_{hH}^{\nu/\tilde{\nu}}$ with Feynarts and FormCalc
- New Feynman rules neu/sneu sector in an available model file
- Cancellation of divergences in OS, DR, mDR
- Yukawa and gauge contributions

$$\hat{\Sigma}(\boldsymbol{
ho}^2)|_{ ext{full}} = \hat{\Sigma}(\boldsymbol{
ho}^2)|_{ ext{gauge}} + \hat{\Sigma}(\boldsymbol{
ho}^2)|_{ ext{Yukawa}}$$
; $\hat{\Sigma}(\boldsymbol{
ho}^2)|_{ ext{gauge}} = \hat{\Sigma}(\boldsymbol{
ho}^2)|_{ ext{MSSM}}$

- Study seesaw limit $m_D << m_M$ and Dirac limit $m_M = 0$
- Calculation of the new Higgs corrections Δm_h^{mDR} coming from the $\nu/\tilde{\nu}$ sector:

$$\Delta m_h^{\mathrm{m}\overline{\mathrm{DR}}} = M_h^{
u/ ilde{
u}} - M_h$$

Calculation of M_h and M_H in MSSM without $\nu/\tilde{\nu}$ with FeynHiggs

One Loop Calculation tomh

• Set of one-loop Feynman diagrams:

• Parameters of the MSSM-Seesaw: m_M , $\tan \beta$, M_A , μ , A_{ν} , $m_{\tilde{L}}$, $m_{\tilde{R}}$, m_{ν} , B_{ν} and p

Ana (FT-UAM/IFT)

Results: Dependence of $\hat{\Sigma}_{hh}$ **on** m_M

- For $10^4 < m_M < 10^{12} \text{ GeV} \rightarrow \hat{\Sigma}_{hh}^{m\overline{DR}} = \hat{\Sigma}_{hh}^{m\overline{DR}}|_{\text{gauge}} \rightarrow \text{no sensitivity to } m_M$
- For $m_M > 10^{12} \text{ GeV} \rightarrow \hat{\Sigma}_{hh}^{m\overline{\text{DR}}}$ grow with m_M
- $\hat{\Sigma}_{HH}^{m}$ and $\hat{\Sigma}_{hH}^{m}$ show a similar dependence with m_M

• expansion of $\hat{\Sigma}_{hh}^{m\overline{\text{DR}}}$ in powers of the seesaw parameter $\xi = \frac{m_D}{m_M}$

$$\hat{\Sigma}(\boldsymbol{p}^2) = \underbrace{\left(\hat{\Sigma}(\boldsymbol{p}^2)\right)_{m_D^0}}_{\text{gauge-MSSM}} + \underbrace{\left(\hat{\Sigma}(\boldsymbol{p}^2)\right)_{m_D^2} + \left(\hat{\Sigma}(\boldsymbol{p}^2)\right)_{m_D^4} + \dots}_{\text{Yukawa}}$$

- $A_{\nu} = \mu = B_{\nu} = 0$ and universal SOFT SUSY masses $m_{\tilde{L}} = m_{\tilde{R}} = m_{SUSY}$
- expand in powers of $\frac{M_Z}{m_M}$, $\frac{M_A}{m_M}$, $\frac{p}{m_M}$ and $\frac{m_{\rm SUSY}}{m_M}$
- The relevant Yukawa contributions come from the $\mathcal{O}(m_D^2)$ term

O(*m*²_{*D*}**) relevant term**

$$\left(\hat{\Sigma}_{hh}^{\overline{\mathrm{DR}}}(p^2)\right)_{m_D^2} = \left(\frac{g^2 m_D^2}{64\pi^2 M_W^2 \sin^2 \beta}\right) \left[1 - \log\left(\frac{m_M^2}{\mu_{\overline{\mathrm{DR}}}^2}\right)\right] \left[-2M_A^2 \cos^2(\alpha - \beta)\cos^2 \beta + 2p^2 \cos^2 \alpha - M_Z^2 \sin \beta \sin(\alpha + \beta) \left(2\left(1 + \cos^2 \beta\right)\cos \alpha - \sin 2\beta \sin \alpha\right)\right] \right]$$

• growing of $\hat{\Sigma}_{hh}^{m\overline{DR}}(p^2)$ with m_M ONLY due to Y_{ν} dependence on $m_M \to Y_{\nu} \propto \sqrt{m_M}$

Ana (FT-UAM/IFT)

EXACT versus SEESAW LIMIT mDR

- seesaw limit OK with exact results for $m_M > M_{EW}$, m_{SUSY}
- O(m_D^2) dominates the Yukawa contribution $ightarrow m_D \propto \sqrt{m_M}$
- relevant size for $m_M \ge 10^{14} \text{ GeV}$
- O(m_D^4) completely negliglible, suppressed by $\frac{1}{m_{\pi^2}^2}$

Dependence of $\hat{\Sigma}_{hh}^{\overline{mDR}}(p^2)$ on p

- Strong dependence of $\hat{\Sigma}_{hh}$ with the external momentum \rightarrow usual p=0 aprrox not valid
- The gauge part is quasi insensitive to $p
 ightarrow \hat{\Sigma}_{hh}^{gauge} \sim p^2 M_Z^2/m_{
 m SUSY}^2$
- The yukawa part increases with $p \rightarrow \left(\hat{\Sigma}_{hh}^{\overline{DR}}(p^2)\right)_{m_{D}^2} \sim Y_{\nu}^2 p^2$

Dependence of $\hat{\Sigma}_{hh}^{\overline{mDR}}(p^2)$ on $m_{\nu} \rightarrow$ Majorana versus Dirac

• In both cases $\hat{\Sigma}_{hh}$ grow with the neutrino mass, due to the Y_{ν} dependence on m_{ν}

- Dirac case $\rightarrow Y_{\nu} = m_{\nu}/v_2 \rightarrow O(10^{-12})$
- Majorana case ightarrow Y $_{
 u}=m_D/v_2\sim\sqrt{|m_{
 u}|m_M}/v_2$

Ana (FT-UAM/IFT)

< 3

 Δm_h^{mDR} dependence on m_M for different $m_{\tilde{R}}$

Results for $\Delta m_h^{m\overline{DR}} = M_h^{\nu/\tilde{\nu}} - M_h$

- For $m_M \le 5 * 10^{13}$ GeV tiny positive corrections, $\Delta m_h^{\text{mDR}} < 0.1$ GeV
- For $m_M \ge 5 * 10^{13} \text{ GeV} \Rightarrow \text{negative}$ Higgs mass corrections, they increase with m_M up to a few GeV.
- The corrections are independent of $m_{\tilde{R}}$ when $m_{\tilde{R}} < 10^{13}$ GeV
- For $m_{\tilde{R}} \ge 10^{13} \text{ GeV} \Rightarrow \Delta m_h^{\text{mDR}}$ can be very big reaching its maximum at $m_{\tilde{R}} = m_M$

Ana (FT-UAM/IFT)

Contourplot of Δm_h^{mDR} as a function of $\overline{m_N}$ and $|m_\nu|$

 $A_{\nu} = B_{\nu} = m_{\tilde{L}} = m_{\tilde{R}} = 10^3 \text{ GeV}, \tan \beta = 5, M_A = \mu = 200 \text{ GeV}$

- $\Delta m_h^{\text{mDR}} < 0.1 \text{GeV}$ if $10^{13} \text{ GeV} < m_M < 10^{14} \text{ GeV}$ and $0.1 \text{ eV} < |m_\nu| < 1 \text{ eV}$
- Δm_h^{mDR} change to negative sign and grow in size for larger m_M and/or $|m_\nu|$ values (up to ~ -5 GeV for $m_M = 10^{15}$ GeV and $|m_\nu| = 1$ eV)

Contourplot of $\Delta m_h^{\text{m}\overline{\text{DR}}}$ as a function of $m_{\tilde{R}}/m_M$ and $|m_\nu|$

• Very large negative corrections for large m_M and $m_{\tilde{R}}$, of $\mathcal{O}(10^{14})$ GeV, and $|m_{\nu}|$ of $\mathcal{O}(1)$ eV: $\Delta m_h^{\text{mDR}} \sim -30$ GeV for $m_M = 10^{14}$ GeV, $m_{\tilde{R}}/m_M = 0.7$ and $|m_{\nu}| = 0.6$ eV

- The MSSM Higgs sector is sensitive to the heavy Majorana scale
- The radiative corrections to the higgs mass h_0 can be relevant when $m_M > 10^{13}$ GeV, bigger than the anticipated experimental precision (LHC-0.2 GeV, ILC-0.05 MeV) \Rightarrow they should be taken into account
- The corresponding contribution of dirac neutrinos is negligible and completely indistinguisable of the MSSM with no masive neutrinos.
- The generalization to the realistic 3-neutrino-sneutrino case is appealing and could give extra contributions due to the big mixing angles as it happens in some LFV observables.(work in progress)

BACK UP SLIDES

Ana (FT-UAM/IFT)

November 2010 22 / 25

æ

Results for $\Delta m_h^{m\overline{DR}} = M_h^{\nu/\tilde{\nu}} - M_h$

$\Delta m_h^{\mathrm{m}\overline{\mathrm{DR}}}$ dependence on m_M for different B_{ν} and on m_{ν}

•
$$Y_{\nu} \propto \frac{\cos \alpha}{\sin \beta} \Rightarrow \hat{\Sigma}_{hh}^{m\overline{\text{DR}}}(p^2) \downarrow \text{ when } \tan \beta \uparrow.$$

For $\tan \beta > 5 \to \hat{\Sigma}_{hh}^{m\overline{\text{DR}}}(p^2) \sim \text{constant}$

- For $M_A > 150 \text{ GeV} \rightarrow \hat{\Sigma}_{hh}^{m\overline{\text{DR}}}(\rho^2) \sim \text{constant}$
- For $-1000 \text{ GeV} < A_{\nu} < 1000 \text{ GeV}$ $\rightarrow \hat{\Sigma}_{hh}^{m\overline{\text{DR}}}(p^2)$ independent of A_{ν}
- For $-1000 \text{ GeV} < \mu < 1000 \text{ GeV}$ $\rightarrow \hat{\Sigma}_{hh}^{m\overline{\text{DR}}}(p^2)$ independent of μ
- Reference chosen values:
 - $\tan \beta = 5 \text{ GeV}$
 - *M_A* = 200 GeV
 - *A*_{*\nu*} = 1000 GeV
 - μ = 200 GeV

Estimate of $\Delta m_h^{ ext{m}\overline{ ext{DR}}} := M_h^{
u/ ilde{
u}} - M_h^{ ilde{ ext{p}}}$

$$\left[p^2 - m_{h \text{ tree}}^2 + \hat{\Sigma}_{hh}(p^2)\right] \left[p^2 - m_{H \text{ tree}}^2 + \hat{\Sigma}_{HH}(p^2)\right] - \left[\hat{\Sigma}_{hH}(p^2)\right]^2 = 0$$

 $\text{Simplification} \rightarrow$

- 1 step \rightarrow Calculation of M_h and M_H in MSSM without $\nu/\tilde{\nu}$ with FeynHiggs. (T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein '98 '10.
- 2 step \rightarrow Solve the equation

$$\left[\rho^2 - M_h^2 + \hat{\Sigma}_{hh}^{\nu/\tilde{\nu}}(M_h^2)\right] \left[\rho^2 - M_H^2 + \hat{\Sigma}_{HH}^{\nu/\tilde{\nu}}(M_h^2)\right] - \left[\hat{\Sigma}_{hH}^{\nu/\tilde{\nu}}(M_h^2)\right]^2 = 0$$

where, $\hat{\Sigma}_{hh,HH,hH}^{\nu/\tilde{\nu}}$ denote the corrections from $\nu/\tilde{\nu}$ sector The lightest pole $\rightarrow M_h^{\nu/\tilde{\nu}}$

- new correction to the lightest higgs mass $\nu/\tilde{\nu}$ sector $\rightarrow \Delta m_h^{m\overline{DR}} = M_h^{\nu/\tilde{\nu}} - M_h$
- valid approach if $M_h^{\nu/\tilde{\nu}}/M_h$ is small