What can radiative decays tell us about the anomalous magnetic moment of the τ ?

Lorenzo Mercolli

INFN Sezione di Padova

HEPTOOLS Final Meeting 2010

In collaboration with S. Eidelman, M. Fael, C. Ng and M. Passera.

Outline

2 Measurement of a_{τ}

Properties of elementary particles

How to we characterize SM particles?

The PDG tells us something about:

- Mass
- Spin
- Anomalous magnetic moment
- Electric dipole moment
- Decay channels and branching fractions
- ...

Anomalous magnetic moment

Magnetic moment of a particle with spin \vec{S} : $\vec{\mu} = g \frac{e}{2m} \vec{S}$

$$a \doteq \frac{g-2}{2}$$

Anomalous magnetic moment

Magnetic moment of a particle with spin \vec{S} : $\vec{\mu} = g \frac{e}{2m} \vec{S}$ $a \doteq \frac{g-2}{2}$ $\Gamma^{\mu} = F_1 \gamma^{\mu} + F_2 \frac{i\sigma^{\mu\nu} q_{\nu}}{2m_{\ell}} + \dots$ $a_{\ell} = F_2 \Big|_{\text{on-shell}}$

Why is a_{ℓ} important?

• a_e : precise multi-loop calculations yield measurement of α .

[D. Hanneke et al. '08, T. Kinoshita & collaborators] Test of QED: take α from atomic interferometry and compare with a_e (10⁻⁸). [Cladé et al. '06]

Why is a_{ℓ} important?

• a_e : precise multi-loop calculations yield measurement of α .

[D. Hanneke et al. '08, T. Kinoshita & collaborators] Test of QED: take α from atomic interferometry and compare with a_e (10⁻⁸). [Cladé et al. '06]

• a_{μ} : sign of physics beyond the SM? [F. Jegerlehner & A. Nyffeler '09]

Why is a_{ℓ} important?

• a_e : precise multi-loop calculations yield measurement of α .

[D. Hanneke et al. '08, T. Kinoshita & collaborators] Test of QED: take α from atomic interferometry and compare with a_e (10⁻⁸). [Cladé et al. '06]

- a_{μ} : sign of physics beyond the SM? [F. Jegerlehner & A. Nyffeler '09]
- a_{τ} : there is a SM prediction but what about measurements?

[S. Eidelman & M. Passera '07]

Measurement of a_{τ}

The limits on a_{τ} quoted by the PDG are:

 $-0.052 \leq a_{ au} \leq 0.013$

[DELPHI Collaboration '04]

This is not even a test of the leading contribution!

$$a_{ au} = rac{lpha}{2\pi} + \mathcal{O}(lpha^2) pprox 0.00116$$

[J. Schwinger '48]

Measurement of a_{τ}

The limits on a_{τ} quoted by the PDG are:

 $-0.052 \leq a_{ au} \leq 0.013$

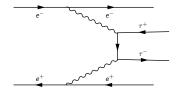
[DELPHI Collaboration '04]

This is not even a test of the leading contribution!

$$a_{ au} = rac{lpha}{2\pi} + \mathcal{O}(lpha^2) pprox 0.00116$$

[J. Schwinger '48]

Is it possible to do better?



Mean lifetime of the τ is $\sim 10^7$ times smaller than for the μ . \implies impossible to put τ in a storage ring to measure a_{τ} !

Mean lifetime of the τ is $\sim 10^7$ times smaller than for the μ . \implies impossible to put τ in a storage ring to measure a_{τ} !

DELPHI Collaboration: $e^+e^-
ightarrow e^+e^- au^+ au^-$

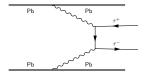
$\sigma_{\rm exp} = \sigma_{\rm t}$	$\sigma_{a}+\sigma_{a}$
-------------------------------------	-------------------------

[F. Cornet & J. Illana '96]

$e^+e^- \to \tau^+\tau^-$ analysis of LEP1/2 & SLD data using effective operators:

 $-0.007 \le a_{ au} \le 0.003$

[G. A. González-Sprinberg et al. '00]



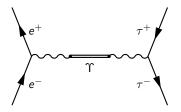
 $e^+e^- \to \tau^+\tau^-$ analysis of LEP1/2 & SLD data using effective operators:

$$-0.007 \le a_{ au} \le 0.003$$

[G. A. González-Sprinberg et al. '00]

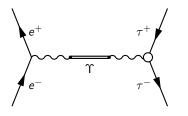
LHC: Pb Pb \rightarrow Pb Pb $\tau^+\tau^-$

Advantage: Pb Pb $\gamma\gamma pprox$ on-shell


 $\Rightarrow q^2 \approx 0$

Expected sensitivity is $\sim~10^{-5}$

[F. del Aguila et al. '91]



Where are τ mostly produced? \Longrightarrow B-factories!

Where are τ mostly produced? \Longrightarrow B-factories!

 $\implies \text{bounds on } F_2(q^2 = M_{\Upsilon}^2)$ Remember: $a_{\tau} \doteq F_2(q^2 = 0)$

Expected sensitivity for $F_2(q^2 = M_\Upsilon^2)$ at Super B: $\sim 10^{-6}$

What about $\tau^- \rightarrow \ell^- \nu_\tau \bar{\nu}_\ell \gamma$?

[M. L. Laursen et al. '84]

What about $\tau^- \rightarrow \ell^- \nu_\tau \bar{\nu}_\ell \gamma$?

[M. L. Laursen et al. '84]

Our aim is to

• revisit radiative τ decays at B-factories (BELLE).

What about $\tau^- \rightarrow \ell^- \nu_\tau \bar{\nu}_\ell \gamma$?

[M. L. Laursen et al. '84]

Our aim is to

- revisit radiative τ decays at B-factories (BELLE).
- probe $a_{ au}$ at $\mathcal{O}(10^{-3})$ with minimal assumptions.

What about $\tau^- \rightarrow \ell^- \nu_\tau \bar{\nu}_\ell \gamma$?

[M. L. Laursen et al. '84]

Our aim is to

- revisit radiative τ decays at B-factories (BELLE).
- probe a_{τ} at $\mathcal{O}(10^{-3})$ with minimal assumptions.
- provide an alternative determination of a_{τ} .

What about $\tau^- \rightarrow \ell^- \nu_\tau \bar{\nu}_\ell \gamma$?

[M. L. Laursen et al. '84]

Our aim is to

- revisit radiative τ decays at B-factories (BELLE).
- probe $a_{ au}$ at $\mathcal{O}(10^{-3})$ with minimal assumptions.
- provide an alternative determination of a_{τ} .

No search for BSM physics!

Discrepancy of
$$a_\mu$$
 scaled as $rac{m_{ au}^2}{m_\mu^2}$: $\sim 10^{-6}$ needed.

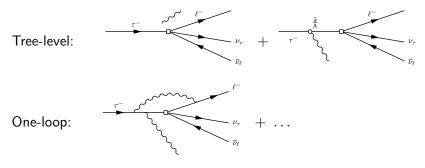
Effective Lagrangian:

$$\mathcal{L}_{eff} = \mathcal{L}_{\text{QED}} + \mathcal{L}_{\text{Fermi}} + e rac{ ilde{a}}{4\Lambda} \, ar{ au} \sigma_{\mu
u} au F^{\mu
u}$$

 $\Rightarrow a_{ au} = a_{ au}^{ ext{QED}} + ilde{a} \, rac{m_{ au}}{\Lambda}$

From \mathcal{L}_{eff} we calculate the decay rate of the tau:

$$d\Gamma(au^- o \ell^-
u_ au ar
u_\ell \, \gamma) \; = \; d\Gamma_{ ext{QED}} + rac{ ilde a}{\Lambda} d\Gamma_{ ext{a}}$$


To probe a_{τ} at $\mathcal{O}(10^{-3})$, we need $d\Gamma_{\text{QED}}$ at $\mathcal{O}(\alpha^2)$.

[A. Fischer et al. '94]

[A. B. Arbuzov & E.S. Scherbakova '04]

Nevertheless, we are do the calculation again (in progress).

Additionally: double Bremsstrahlung.

What are the problems we encounter?

Phase space integration kills $d\Gamma_a$:

 $d\Gamma_{\text{QED}}$ has phase space singularities (E_{γ} and collinear photon)

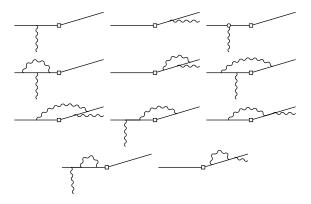
$$\Gamma(au^- o \ell^-
u_ au ar
u_\ell \, \gamma) \; = \; \int d\Pi \, d\Gamma_{ ext{QED}} + rac{ ilde{a}}{\Lambda} \int d\Pi \, d\Gamma_a$$

 \Rightarrow a full phase space analysis is needed!

• It is desirable to get a more precise measurement of anomalous magnetic moment of the *τ*.

- It is desirable to get a more precise measurement of anomalous magnetic moment of the *τ*.
- There are proposals to improve the PDG value, e.g. through radiative decays.

- It is desirable to get a more precise measurement of anomalous magnetic moment of the *τ*.
- There are proposals to improve the PDG value, e.g. through radiative decays.
- A careful theoretical & experimental analysis has to be done to probe a_{τ} at $\mathcal{O}(10^{-3})$ (in progress).



- It is desirable to get a more precise measurement of anomalous magnetic moment of the *τ*.
- There are proposals to improve the PDG value, e.g. through radiative decays.
- A careful theoretical & experimental analysis has to be done to probe a_{τ} at $\mathcal{O}(10^{-3})$ (in progress).
- Outlook: polarizations, electric dipole moments, maybe even NP

Diagrams to calculate

PDG

au

$$J = \frac{1}{2}$$

$$\begin{split} & \text{Mass } m = 1776.82 \pm 0.16 \text{ MeV} \\ & (m_{\tau^+} - m_{\tau^-})/m_{\text{average}} \ < \ 2.8 \times 10^{-4}, \ \text{CL} = 90\% \\ & \text{Mean life } \tau = (290.6 \pm 1.0) \times 10^{-15} \text{ s} \\ & c\tau = 87.11 \ \mu\text{m} \\ & \text{Magnetic moment anomaly} > -0.052 \text{ and} < 0.013, \ \text{CL} = 95\% \\ & \text{Re}(d_{\tau}) = -0.22 \text{ to} \ 0.45 \times 10^{-16} \ e\,\text{cm}, \ \text{CL} = 95\% \\ & \text{Im}(d_{\tau}) = -0.25 \text{ to} \ 0.008 \times 10^{-16} \ e\,\text{cm}, \ \text{CL} = 95\% \end{split}$$

[K. Nakamura et al. (PDG) '10]

VALUE (%)	EVTS	DOCUMENT ID		TECN	COMMENT
$0.361 \pm 0.016 \pm 0.035$		¹ BERGFELD	00	CLEO	$E_{\rm cm}^{ee} = 10.6 {\rm GeV}$
• • • We do not use th	ne followin	g data for averages	s, fits,	limits, e	tc. • • •
$\begin{array}{cccc} 0.30 \ \pm 0.04 \ \pm 0.05 \\ 0.23 \ \pm 0.10 \end{array}$	116 10	² ALEXANDER ³ WU			1991–1994 LEP runs <i>E^{ee}</i> = 29 GeV
energy cutoff $E_\gamma^* >$	10 MeV. I	For E_{γ}^{*} $>$ 20 MeV, 1	they c	uote (3.	onding to a $ au$ -rest-frame 04 \pm 0.14 \pm 0.30) $ imes$ 10 $^{-3}$.
2 ALEXANDER 965 in energy cutoff $E_\gamma >$	mpose rec 20 MeV.	uirements on detec	ted γ	's corres	bonding to a $ au$ -rest-frame
3 WU 90 reports $\Gamma(\mu$	$u^- \overline{\nu}_\mu \nu_\tau \gamma$	$()/\Gamma(\mu^-\overline{\nu}_\mu\nu_\tau) =$	0.013	± 0.00	6, which is converted to
	Jusing F	$(\mu^{-}\overline{\nu}_{\mu}\nu_{\pi}\gamma)/\Gamma_{\rm tota}$	1 = 1	7.35%.	Requirements on detected

$\Gamma(e^-\overline{ u}_e u_ au \gamma) / \Gamma_{ m total}$					Г ₆ /Г
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
$1.75 {\pm} 0.06 {\pm} 0.17$	¹ BERGFELD	00	CLEO	$E_{\rm cm}^{ee} = 10.6 {\rm GeV}$	

 $^1\,{\rm BERGFELD}$ 00 impose requirements on detected $\gamma{\rm 's}$ corresponding to a $\tau{\rm -rest-frame}$ energy cutoff $E_\gamma^*>$ 10 MeV.

[K. Nakamura et al. (PDG) '10]