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Application Areas

. 

In your old TV set: Cathode Tube
Material Physics

Photons from Electrons, 
Synchrotron Light
Material Surface Science

Medicine
X-rays, Synchrotron Radiation
Protons and Ions  

Food treatment
Physics
Etc.
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Accelerators and LHC experiments at CERN

Energies:

Linac   50 MeV

PSB    1.4  GeV

PS      28  GeV

SPS  450 GeV

LHC      7 TeV

Units?
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Units: Electronvolt

Electronvolt, unit for energy denoted by eV, is used for small 
energies  

1 eV is defined as the energy needed to move one electron, with 
charge e (around 1.602·10-19 C) in an electric field with the 
strength 1 V/m a distance of 1 meter:

1 eV = 1.602·10-19 joule.

In particle physics the unit eV is also used as a unit for mass 
since mass and energy are closely coupled through the 
relationship:
E = mc2,  m=γ*m0
m is the particle mass and c the speed of light in vacuum.
The mass of one electron, having a speed of v << c is around 
0.5 MeV.

Acceleration

Total energy

From Wikipedia
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Relativity

Total Energy Rest Mass

When particles are accelerated to velocities (v) coming 
close to the velocity of light (c): 

then we must consider relativistic effects
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Particle Sources and Acceleration

Natural Radioactivity: alfa particles and electrons. Alfa particles 
have an energy of around 5 MeV (corresponds to a speed of 
~15,000 km/s). 

Production of particles: Particle sources

Electrostatic fields are used for the first acceleration step after 
the source

Linear accelerators accelerate the particles  using Radio Frquency
(RF) Fields

Circular accelerators use RF and electromagnetic fieds. Protons 
are today (2007+) accelerated to an energy of 7 TeV

The particles need to circulate in vacuum (tubes  or tanks) not to 
collide with other particles disturbing their trajectories.
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Particle Sources 1

Duoplasmatron for proton production
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Particle Sources 2

Cathode

Gas in

Anode

Plasma

Ions out

Duoplasmatron from CERNs Linac-Homepage
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Particle Sources 2

Cathode

Iris

Voltage

Electron beam

protons

p

p

Collection of antiprotons

Target
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Time Varying Electrical Fields

Linear Acceleration 

Circular 
accelerator 
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Linear Accelerators

- V +Simplified Linac

The particles are grouped together to 
make sure that the field has the correct 
direction at the time the particle group 
passes the gap.

The speed of the particles increases and 
the length of the modules change so 
that the particle’s arrival in the gap is 
synchronized with the field direction in 
the gap

Alvarez: Resonance tank Linac
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The Cyclotron

Centripetal force=-Centrifugal force:

Reorganizing:

The frequency does not depend on the radius, if 
the mass is contant. When the particles become 
relativistic this is not valid any more. The 
frequency must change with the particle velocity: 
synchrcyclotron. The field can also change with  
the radius: isochronous cyclotron

Continuous particle flux
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Synchrotrons at CERN
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The Synchrotron

Groups of particles are circulating 
synchronously with the RF field in 
the accelerating cavities

Each particle is circulating around 
an ideal (theoretical) orbit: for 
this to work out, acceleration and 
magnet fields must obey stability 
criteria!!
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Forces on the particles

Changes the direction of 
the particle

Accelerates the particles
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The Dipole

Dipole Magnet, bends the 
particle trajectory in the 
horizontal plane  (vertical 
field). Exception: 
correctors...
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Focusing: The Quadrupole 1

The particles nead to be focussed to stay in the accelerator. 
Similar principle as in optical systems.

Quadrupol

Positiv particle 
moving towards 
us: 
Defocussing in the 
horizontal 
plane,focussing 
the the vertical 
plane. 
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Kvadrupolen 2

y (vertikalt)

x (horisontellt)

The force is proportional 
to x and to y:

Particles far from the 
center of the magnet 
are bent more, they get 
a more important 
corection.
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The Focussing System 

”Alternate gradient focusing” gives an overall focusing 
effect (compare for example optical systems in 
cameras)

The beam takes up less space in the vacuum chamber, 
the amplitudes are smaller and for the same magnet 
aperture the field quality is better (cost optimization)

Synchrotron design: The 
magnets are of alternating 
field (focusing-defocusing)

F

DB
B

B

FO
CU

SS
IN

G



Introduction to Accelerators, 24 November 2006, Elena Wildner 21

The oscillating particles

The following kind of differential 
equations can be derived, compare 
the simple pendulum:
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Oscillating movement with varying amplitude!
The number of oscillations the particle makes in one turn is 
called the ”tune” and is denoted Q. The Q-value is slightly 
different in two planes (the horizontal and the vertical 
planes). L is the circumference of the ring.
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The Beta Function
All particle excursions are 
confined by a function: the 
bsqare root of the the beta 
function and the 
emmittance.
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The emmittance,a measure 
of the beam size and the 
particle divirgences, cannot 
be smaller than after 
injection into the 
accelerator (normalized)
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Closed orbit, and field errors

Theoretically the particles oscillate around a nominal, calculated 
orbit. 

The magnets are not perfect, in addition they cannot be 
perfectly aligned.

For the quadrupoles for example this means that the 
force that the particles feel is either too large or too 
small with respect to the theoretically calculated force. 
Effect: the whole beam is deviated.ST
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Correctors

Beam Position Monitors are used to measure the center of the 
beam near a quadrupole, the beam should be in the center at 
this position.
Small dipole magnets are used to correct possible beam 
position errors.

Other types of magnets are used to correct other types 
of errors for example non perfect magnetic fields.
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Possible errors 1

The Q-value gives the number of oscillations the particles 
make in one turn. If this value in an integer, the beam 
”sees” the same magnet-error over and over again and we 
may have a resonance phenomenon. Therfore the Q-value 
is not an integer.

The magnets have to be good enough so that resonace 
phenomena do not occur. Non wanted magnetic field 
components (sextupolar, octupolar etc.) are comparable to  
10-4 relative to the main component of a magnet (dipole in 
a bending magnet, quadrupole in a focussing magnet etc.). 
This is valid for LHC
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Possible errors 2

Types of effects that may influence the accelerator 
performance and has to be taken into account:

Movement of the surface of the earth
Trains
The moon
The seasons
Construction work
...

Calibration of the magnets is important
Current regulation in the magnets
...

The energy of the particles must correspond to the field in the 
magnets, to permit the particle to stay in their orbits. Control
of the acceleration!
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Electrical Fields for Acceleration

Resonance circuit
Cavity for acceleration
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The Synchrotron: Acceleration 0

“Bucket”: Energy/phase condition for stability

RF phase

Momentum – Referensmomentum

Group of Particles (“bunch”)

Accelerating gap with
the RF voltage

This corresponds to the 
elecrtical field the reference 
particle sees

An early particle gets less energy 
increase 
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Experiment 
Targets:

Bombarding material with a beam directed out of the 
accelerator.
Bubbel-chamber

Available energy is calculated in the center of mass of the 
system (colliding objects)

To collide particle more 
interesting

1960: electron/positron 
collider

1970: proton antiproton 
collider

2000: ions, gold
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Colliders

All particles do not collide at the same time -> long time is 
needed

Two beams are needed

Antiparticles are difficult (expensive) to produce (~1 
antiproton/10^6 protons)

The beams affect each other: the beams have to be separated 
when not colliding
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Leptoner/Hadroner
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The LHC
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Luminosity

FfnNL revbb

∗
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2

Number of particles per 
bunch (two beams)

Number of bunches per beam

Revolution frequency

Formfactor from the crossing 
angle 

Optical beta function 
Emmittence
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Synchrotron light

Particle trajectorySynchrotron light cone

Electromagnetic waves

Accelerated charged particles emit photons

Radio signals and x-ray
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Vacuum

“Blow up” of the beam

Particle losses

Non wanted collisions in the experiments

Limits the Luminosity
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Superconducting Technology 1

Why superconducting magnets?

Small radius, less number of particles in the machine, smaller 
machine

Energy saving, BUT infrastructure very complex
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The Superconducting Dipole for LHC
LHC dipole (1232 + reserves) built in 3 firms (Germany France 

and Italy, very large high tech project)
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The LHC Dipole

“Two in one”
construction

Working 
temperature

1.9 K !
Coldest spot i the 
universe...
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Physics Motivation 2

. 

The Standard Model, “three 
generations”

Generation 1 (ordinary matter) 

Fermion (Left-handed) Symbol Electric charge Mas 

Electron e ? 1 0.511 MeV 

Electron neutrino νe 0 < 50 eV 

Positron ec +1 0.511 MeV 

Electron antineutrino  0 < 50 eV 

Up quark u +2/3 ~5 MeV 

Down quark d ? 1/3 ~10 MeV  

Anti-up antiquark uc ? 2/3 ~5 MeV  

Anti-down antiquark dc +1/3 ~10 MeV 

Generation 2 

Fermion (Left-handed) Symbol Electric charge Mass 

Muon μ ? 1 105.6 MeV 

Muon neutrino νμ 0 < 0.5 MeV 

Anti-Muon μc +1 105.6 MeV 

Muon antineutrino  0 < 0.5 MeV 

Charm quark c +2/3 ~1.5 GeV 

Strange quark s ? 1/3 ~100 MeV 

Anti-charm antiquark cc ? 2/3 ~1.5 GeV 

Anti-strange antiquark sc +1/3 ~100 MeV 

Generation 3 

Fermion (Left-handed) Symbol Electric charge Mass 

Tau lepton τ ? 1 1.784 GeV 

Tau neutrino ντ 0 < 70 MeV 

Anti-Tau τc +1 1.784 GeV 

Tau antineutrino  0 < 70 MeV 

Top quark t +2/3 173 GeV 

Bottom quark b ? 1/3 ~4.7 GeV 

Anti-top antiquark tc ? 2/3 173 GeV 

Anti-bottom antiquark bc +1/3 ~4.7 GeV 

 

Ordinary matter 

What happens in 
our universe

How was created 
our universe
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The CERN Laboratory 

. 

Users contribute to the present large research project, the 
LHC, with in-kind services and equipment or directly with 
funding 
ALICE “A Large Ion Collider Experiment” will observe protons 
and lead ion collisions (strongly interacting matter, quark gluon 
plasma)
ATLAS “A Toroidal LHC Apparatus” looks for Higgs bosons
CMS “Compact Muon Solenoid” looks for Higgs bosons
LHC-B, LHC Beauty experiment precise measurement on CP 
violation
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