Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector The collaboration
- Precision measurement of |V_{cb}| The frame work Reconstruction Results
- World average Basic ideas Algorithms PDG2010

Summary

Precision measurements of the CKM mechanism at Belle

Wolfgang Dungel

Institute for high energy physics Austrian Academy of Sciences

"Physics in progress", April 29, 2010

HEPHY

Institut für Hochenergiephysik

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism

The Belle experiment The accelerator The detector The collaboration Belle-II

Precision measurement of |V_{cb}| The frame work Reconstruction Results

World average Basic ideas Algorithms

Summary

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector The collaboration Belle-II

Precision measurement of |V_{cb}| The frame work Reconstruction Besults

- World average Basic ideas Algorithms
- PDG2010
- Summary

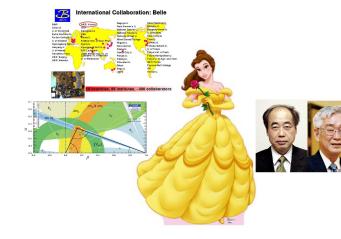
A short overview

Tokya Merrapolitan U. Tokya U. al Agri. and Tech. MFN Toning

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

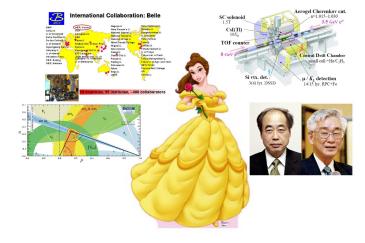
- The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector The collaboration
- Precision measurement of |V_{cb}| The frame work Reconstruction
- Results
- World average Basic ideas Algorithms
- PDG2010
- Summary



Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

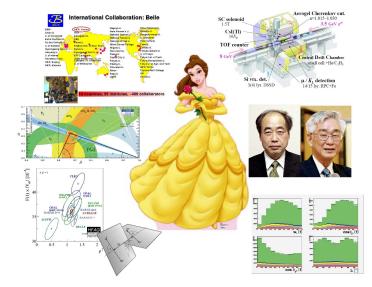
- The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector The collaboration
- Belle-II
- Precision measurement of |V_{cb}| The frame work Reconstruction Besults
- World average Basic ideas Algorithms
- PDG2010
- Summary


Belle Wolfgang Dungel, dungel (at)

hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector The collaboration
- Belle-II
- Precision measurement of |V_{cb}| The frame work Reconstruction
- World average Basic ideas Algorithms
- PDG2010
- Summary



Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector The collaboration
- Belle-II
- Precision measurement of |V_{Cb}| The frame work Reconstruction Results
- World average Basic ideas Algorithms
- Summarv

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism

The Belle experiment The accelerator The detector The collaboration Belle-II

Precision measurement of |V_{cb}| The frame work Reconstruction Results

World average Basic ideas Algorithms

_

Geography

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism

The Belle experiment The accelerator The detector The collaboration Belle-II

Precision measurement of |V_{cb}| The frame work Reconstruction Results

World average Basic ideas Algorithms

Summary

Geography

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism

The Belle experiment The accelerator The detector The collaboration Belle-II

Precision measurement of |V_{cb}| The frame work Reconstruction Results

World average Basic ideas Algorithms PDG2010

Summary

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism

The Belle experiment The accelerator The detector The collaboration Belle-II

Precision measurement of |V_{cb}| The frame work Reconstruction Results

World average Basic ideas Algorithms PDG2010

Summary

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle

CP Violation

The Kobayashi-Maskawa mechanism

The Belle experiment

The accelerator

The collaboration

Belle-II

Precision measurement of |V_{cb}| The frame work Reconstruction Results

World average Basic ideas Algorithms

Summary

CP Violation and the CKM matrix

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle

The Kobayashi-Maskawa mechanism

The Belle experimen The accelerator The detector The collaboration

Precision measurement of |V_{cb}| The frame work Reconstruction Results

World average Basic ideas Algorithms PDG2010

Summary

What does "symmetry" mean?

- Investigate properties of a system
- Change system in some way, "transformation"
- Do physical quantities change?

f not:

• System is symmetric

f they do:

Symmetries

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle

The Kobayashi-Maskawa mechanism

The Belle experimen The accelerator The detector The collaboration

Precision measurement of |V_{cb}| The frame work Reconstruction Results

World average Basic ideas Algorithms PDG2010

Summary

What does "symmetry" mean?

- Investigate properties of a system
- Change system in some way, "transformation"
- Do physical quantities change?

f not:

• System is symmetric

f they do:

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle

The Kobayashi-Maskawa mechanism

The Belle experiment The accelerator The detector The collaboration

Precision measurement of |V_{cb}| The frame work Reconstruction Results

World average Basic ideas Algorithms PDG2010

Summary

What does "symmetry" mean?

- Investigate properties of a system
- Change system in some way, "transformation"
- Do physical quantities change?

If not:

• System is symmetric

f they do:

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle

The Kobayashi-Maskawa mechanism

The Belle experiment The accelerator The detector The collaboration Belle II

Precision measurement of |V_{cb}| The frame work Reconstruction Results

World average Basic ideas Algorithms PDG2010

Summary

What does "symmetry" mean?

- Investigate properties of a system
- Change system in some way, "transformation"
- Do physical quantities change?

If not:

• System is symmetric

If they do:

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation

The Kobayashi-Maskawa mechanism

The Belle experiment The accelerator The detector

The collaboration

Belle-II

Precision measurement of |V_{cb}| The frame work

Reconstruction

World avera

Basic ideas

PDG2010

Summary

The big puzzle

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation The Kobayashi-Maskawa

The Belle experiment The accelerator The detector The collaboration Belle-II

Precision measurement of |V_{cb}| The frame work Reconstruction Results

World average Basic ideas Algorithms PDG2010

Summary

The big puzzle - Cosmology

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation

The Kobayashi-Maskawa mechanism

The Belle experiment The accelerator

The detector

The collaborati

Belle-II

Precision measurement of |V_{cb}| The frame work Reconstruction

Results

World average Basic ideas Algorithms

PDG2010

Summary

The big puzzle - Cosmology

Lets assume ...

• "Big bang" is accurate

• Processes can only produce matter and anti-matter in equal parts

• Where did the anti-matter go?

Observations

• There is no evidence for anti-matter galaxies etc.

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation

The Kobayashi-Maskawa mechanism

The Belle experiment

The detector

The collaboration

Belle-II

Precision measurement of |V_{cb}| The frame work Reconstruction

Results

World average Basic ideas Algorithms

PDG2010

Summary

The big puzzle - Cosmology

Lets assume ...

• "Big bang" is accurate

Processes can only produce matter and anti-matter in equal parts

Where did the anti-matter go?

Observations

• There is no evidence for anti-matter galaxies etc.

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation

The Kobayashi-Maskawa mechanism

The Belle experiment The accelerator

The collaboration

Belle-II

Precision measurement of |V_{cb}| The frame work Reconstruction Results

World average Basic ideas Algorithms

_

The big puzzle - Cosmology

Lets assume ...

- "Big bang" is accurate
- Processes can only produce matter and anti-matter in equal parts

• Where did the anti-matter go?

Observations

• There is no evidence for anti-matter galaxies etc.

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation

The Kobayashi-Maskawa mechanism

The Belle experiment

The detector

The collaboration

Belle-II

Precision measurement of |V_{CD}| The frame work Reconstruction Results

World average Basic ideas Algorithms

The big puzzle - Cosmology

Lets assume ...

- "Big bang" is accurate
- Processes can only produce matter and anti-matter in equal parts

• Where did the anti-matter go?

Observations

• There is no evidence for anti-matter galaxies etc.

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation

The Kobayashi-Maskawa mechanism

The Belle experiment The accelerator The detector

The collaboration

Belle-II

Precision measurement of |V_{cb}| The frame work Beconstruction

Results

World average Basic ideas Algorithms

PDG2010

Summary

The big puzzle - Cosmology

Lets assume ...

- "Big bang" is accurate
- Processes can only produce matter and anti-matter in equal parts

• Where did the anti-matter go?

Observations

• There is no evidence for anti-matter galaxies etc.

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation

The Kobayashi-Maskawa mechanism

The Belle experiment The accelerator The detector

The collaborati

Belle-II

Precision measurement of |V_{cb}| The frame work Beconstruction

Results

World average Basic ideas Algorithms

PDG2010

Summary

The big puzzle - Cosmology

Lets assume ...

- "Big bang" is accurate
- Processes can only produce matter and anti-matter in equal parts

• Where did the anti-matter go?

Observations

• There is no evidence for anti-matter galaxies etc.

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation

The Kobayashi-Maskawa mechanism

The Belle experiment The accelerator The detector

The collaboration

Precision measurement of |V_{cb}|

The frame work

Reconstruction

Results

Belle-II

World average

Alexandra

PDG2010

Summary

... how can we exist?

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation The Kobayashi-Maskawa

The Belle experiment The accelerator The detector The collaboration Belle-II

Precision measurement of |V_{cb}| The frame work Reconstruction Results

World average Basic ideas Algorithms PDG2010

Summary

... how can we exist?

Copyright: www.venganza.org

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation

The Kobayashi-Maskawa mechanism

The Belle experiment The accelerator The detector

Belle-II

Precision measurement of |V_{cb}| The frame work Reconstruction Results

World average Basic ideas Algorithms

PDG2010

Summary

Of course ...

That's the wrong question!

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation

The Kobayashi-Maskawa mechanism

The Belle experiment The accelerator The detector

Precision measurement of |V_{cb}|

Reconstruction

Results

World average Basic ideas Algorithms

PDG2010

Summary

The actual question

Are our current theories wrong?

Perhaps - would be exciting of course!
... but not necessarily.

One necessary ingredient for explanation

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation
- The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator
- The detector
- The collabora
- Belle-II
- Precision measurement of |V_{cb}|
- The frame work
- Reconstruction
- World average Basic ideas
- Algorithms
- PDG2010
- Summary

The actual question

Are our current theories wrong?

Perhaps - would be exciting of course!
... but not necessarily.

One necessary ingredient for explanation

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation
- The Kobayashi-Maskawa mechanism
- The Belle experiment
- The detector
- The collaborati
- Belle-II
- Precision measurement of |V_{cb}|
- The frame work
- Reculte
- World average Basic ideas Algorithms
- PDG2010
- Summary

The actual question

Are our current theories wrong?

• Perhaps - would be exciting of course!

• ... but not necessarily.

One necessary ingredient for explanation

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation
- The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator
- The collaboration
- Belle-II
- Precision measurement of |V_{cb}| The frame work
- Reconstruction
- Results
- World average Basic ideas Algorithms
- 0

Are our current theories wrong?

- Perhaps would be exciting of course!
- ... but not necessarily.

The actual question

One necessary ingredient for explanation

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation
- The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector
- Belle-II
- Precision measurement of $|V_{cb}|$
- Reconstruction
- Results
- World average Basic ideas Algorithms
- PDG2010
- Summary

The actual question

Are our current theories wrong?

- Perhaps would be exciting of course!
- ... but not necessarily.

One necessary ingredient for explanation

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation
- The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector
- The collaborati
- Belle-II
- Precision measurement of |V_{cb}|
- The frame work
- Reconstruction
- World averag Basic ideas Algorithms
- PDG2010
- Summary

The actual guestion

Are our current theories wrong?

- Perhaps would be exciting of course!
- ... but not necessarily.

One necessary ingredient for explanation

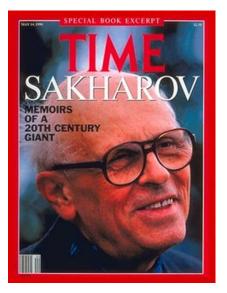
- Development of an excess of baryons over anti-baryons
- "Baryogenesis"

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation

The Kobayashi-Maskawa mechanism


The Belle experiment The accelerator The detector The collaboration

Precision measurement of |V_{cb}| The frame work Reconstruction Results

World average Basic ideas Algorithms PDG2010

Summary

The quest giver - Andrei Sakharov

Sakharov conditions

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation

The Kobayashi-Maskawa mechanism

The Belle experiment

The accelerat

The celleboreti

Precision measurement of |*V_{cb}*| The frame work Reconstruction

Results

World average Basic ideas Algorithms

PDG2010

Summary

The three conditions for Baryogenesis by Andrei Sakharov

- Universe out of equilibrium Ok(?)
 - Expanding universe (?)
- Violation of baryon number conservation Ok(?)
 e.g. grand unification in early universe no conservation

• Some processes not the same for matter and antimatter

- CP violation
- First experimental observation in K⁰ decays
- Nobelprize 1980: Val Fitch and Jim Cronin

• First order Phase Transition in early universe

Sakharov conditions

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation
- The Kobayashi-Maskawa mechanism
- The Belle experiment
- The accelerate
- The detector
- i ne collaboratio
- Precision
- measurement of $|V_{cb}|$
- The frame work
- Reconstruction
- Results
- World average Basic ideas Algorithms
- PDG2010
- Summary

The three conditions for Baryogenesis by Andrei Sakharov

- Universe out of equilibrium Ok@
 - Expanding universe (?)
- Violation of baryon number conservation Ok(2)
 e.g. grand unification in early universe no conservation

• Some processes not the same for matter and antimatter

- CP violation
- First experimental observation in K⁰ decays
- Nobelprize 1980: Val Fitch and Jim Cronin

• First order Phase Transition in early universe

Sakharov conditions

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation

The Kobayashi-Maskawa mechanism

The Belle experiment The accelerator

The detector

The collaboratio

Belle-II

Precision neasurement of |V_{cb}| The frame work

Reconstruction

Results

World average Basic ideas

Algorithms

PDG2010

Summary

The three conditions for Baryogenesis by Andrei Sakharov

- Universe out of equilibrium Ok(?)
 - Expanding universe (?)
- Violation of baryon number conservation Ok(?)
 - e.g. grand unification in early universe no conservation

• Some processes not the same for matter and antimatter

- CP violation
- First experimental observation in K⁰ decays
- Nobelprize 1980: Val Fitch and Jim Cronin

• First order Phase Transition in early universe

Sakharov conditions

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation
- The Kobayashi-Maskawa mechanism
- The Belle experiment
- The detector
- The collaboratio
- Rollo-II
- Precision measurement of |V_{cb}
- The frame work
- Reconstruction
- Results
- World average Basic ideas
- Algorithms
- PDG2010
- Summary

The three conditions for Baryogenesis by Andrei Sakharov

- Universe out of equilibrium Ok@
 - Expanding universe (?)
- Violation of baryon number conservation Ok(2)
 e.g. grand unification in early universe no conservation
- Some processes not the same for matter and antimatter
 - CP violation
 - First experimental observation in K⁰ decays
 - Nobelprize 1980: Val Fitch and Jim Cronin

• First order Phase Transition in early universe

Sakharov conditions

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation
- The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator
- The detector
- The collaboratio
- Belle-II
- Precision measurement of |V_{cb} The frame work
- Reconstruction
- Results
- World average Basic ideas Algorithms
- PDG2010
- Summary

The three conditions for Baryogenesis by Andrei Sakharov

- Universe out of equilibrium Ok@
 - Expanding universe (?)
- Violation of baryon number conservation Ok(2)
 e.g. grand unification in early universe no conservation
- Some processes not the same for matter and antimatter
 - CP violation
 - First experimental observation in K⁰ decays
 - Nobelprize 1980: Val Fitch and Jim Cronin

• First order Phase Transition in early universe

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation

The Kobayashi-Maskawa mechanism

The Belle experiment

The accelerate

The celleborati

Precision measurement of |*V_c*

The frame work

Reconstruction

Results

World average Basic ideas Algorithms

PDG2010

Summary

- 1964: Christensen, Cronin[†], Fitch[†] and Turlay observe CP violation in neutral kaon decays (Nobelprize 1980)
- 1966: Andrei Sakharov emphasizes the cosmological importance of CP violation (baryon density of the universe)
- 1973: Kobayashi and Maskawa propose their explanation of CP violation using three generations of quarks
- 2001-present: Belle and BaBar are able to probe the KM mechanism in detail

• 2008: !!!!!

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation

The Kobayashi-Maskawa mechanism

The Belle experiment The accelerator

The detector

The collaboratio

Precision

measurement of |V_{cb}|

The frame work

Reconstruction

Results

World average Basic ideas Algorithms

PDG2010

Summary

- 1964: Christensen, Cronin[†], Fitch[†] and Turlay observe CP violation in neutral kaon decays (Nobelprize 1980)
- 1966: Andrei Sakharov emphasizes the cosmological importance of CP violation (baryon density of the universe)
- 1973: Kobayashi and Maskawa propose their explanation of CP violation using three generations of quarks
- 2001-present: Belle and BaBar are able to probe the KM mechanism in detail

• 2008: !!!!!

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation

The Kobayashi-Maskawa mechanism

The Belle experiment The accelerator

The detector

The collaboratio

Delle-II

neasurement of $|V_{cb}|$

The frame work

Reconstruction

Results

World average Basic ideas Algorithms

PDG2010

Summary

- 1964: Christensen, Cronin[†], Fitch[†] and Turlay observe CP violation in neutral kaon decays (Nobelprize 1980)
- 1966: Andrei Sakharov emphasizes the cosmological importance of CP violation (baryon density of the universe)
- 1973: Kobayashi and Maskawa propose their explanation of CP violation using three generations of quarks
- 2001-present: Belle and BaBar are able to probe the KM mechanism in detail

• 2008: !!!!!

Wolfgang Dungel. dungel (at) hephy.oeaw.ac.at

CP Violation

- 1964: Christensen, Cronin[†], Fitch[†] and Turlay observe CP violation in neutral kaon decays (Nobelprize 1980)
- 1966: Andrei Sakharov emphasizes the cosmological importance of CP violation (baryon density of the universe)
- 1973: Kobayashi and Maskawa propose their explanation of CP violation using three generations of guarks
- 2001-present: Belle and BaBar are able to probe the KM mechanism in detail
- 2008: !!!!!

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation
- The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector The collaboration
- Precision measurement of |V_{cb}
- The frame work
- Reconstruction
- Results
- World average Basic ideas Algorithms
- PDG2010
- Summary

Charged current interaction in SM

$$-\mathcal{L}_{W^{\pm}}=rac{g}{\sqrt{2}}\,ar{u}_{Li}\,m{V}_{ij}\,m{d}_{Rj}\,m{W}_{\mu}^{+}+h.c$$

[Kobayashi, Maskawa, Prog. Theor. Phys. 49,652 (1973)]

CKM matrix

$$V = \left(\begin{array}{ccc} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{array}\right)$$

- Cabbibo-Kobayashi-Maskawa matrix
- V_{CKM} is a unitary 3 × 3 matrix of coupling constants of weak transitions
- Parametrized by four indepentend parameters (three angles, one phase)
- KM phase is responsible for all CP violating phenomena observed so far!

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation
- The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector The collaboration Belle-II
- Precision measurement of |V_{cb}| The frame work Reconstruction
- Results
- World average Basic ideas Algorithms
- PDG2010
- Summary

Charged current interaction in SM

$$-\mathcal{L}_{W^{\pm}}=rac{g}{\sqrt{2}}\,ar{u}_{Li}\,m{V}_{ij}\,m{d}_{Rj}\,m{W}_{\mu}^{+}+h.c$$

[Kobayashi, Maskawa, Prog. Theor. Phys. 49,652 (1973)]

CKM matrix

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

- Cabbibo-Kobayashi-Maskawa matrix
- V_{CKM} is a unitary 3 × 3 matrix of coupling constants of weak transitions
- Parametrized by four indepentend parameters (three angles, one phase)
- KM phase is responsible for all CP violating phenomena observed so far!

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation
- The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector The collaboration Belle-II
- Precision measurement of |V_{cb}| The frame work
- Reconstructi
- World average Basic ideas Algorithms
- PDG2010
- Summary

Charged current interaction in SM

$$-\mathcal{L}_{W^{\pm}}=rac{g}{\sqrt{2}}\,ar{u}_{Li}\,m{V}_{ij}\,m{d}_{Rj}\,m{W}_{\mu}^{+}+h.c$$

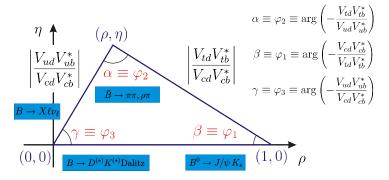
[Kobayashi, Maskawa, Prog. Theor. Phys. 49,652 (1973)]

CKM matrix

$$V = \left(\begin{array}{ccc} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{array}\right)$$

- Cabbibo-Kobayashi-Maskawa matrix
- V_{CKM} is a unitary 3 × 3 matrix of coupling constants of weak transitions
- Parametrized by four indepentend parameters (three angles, one phase)
- KM phase is responsible for all CP violating phenomena observed so far!

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at



Introduction

- The main goal of Belle CP Violation
- The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector The collaboration Belle-II
- Precision measurement of |V_{cb}| The frame work Reconstruction Results
- World average Basic ideas Algorithms
- Summary

$\sum_{i} V_{ij} V_{ik}^* = \delta_{jk} \implies V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0$

Unitary triangle

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

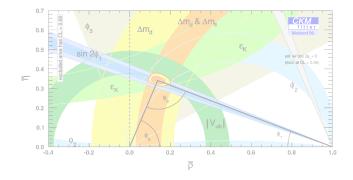
The main goal of Belle CP Violation

The Kobayashi-Maskawa mechanism

The Belle experiment The accelerator The detector The collaboration

Precision measurement of |V_{CD}| The frame work

Reconstruction


World average Basic ideas

PDG2010

Summary

Unitarity and the experiment

 In a way, expectation was that B-factories would find large deviations from KM mechanism ...

Current status

Precision measurements confirm KM mechanism!
Deviations of \$\mathcal{O}(5 - 10\%)\$ are possible

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

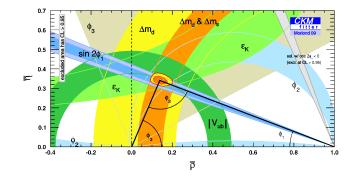
The main goal of Belle CP Violation

The Kobayashi-Maskawa mechanism

The Belle experiment The accelerator The detector The collaboration

Precision measurement of | V The frame work Reconstruction

Results


World average Basic ideas Algorithms

FDG2010

Summary

Unitarity and the experiment

 In a way, expectation was that B-factories would find large deviations from KM mechanism ...

Current status

Precision measurements confirm KM mechanism!
Deviations of \$\mathcal{O}(5 - 10\%)\$ are possible

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation

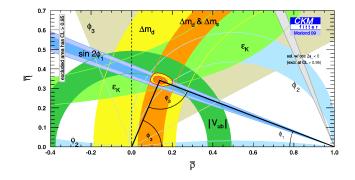
The Kobayashi-Maskawa mechanism

The Belle experiment The accelerator The detector The collaboration

Precision measurement of |1 The frame work

Results

World average Basic ideas


Algorithms

PDG2010

Summary

Unitarity and the experiment

 In a way, expectation was that B-factories would find large deviations from KM mechanism ...

Current status

Precision measurements confirm KM mechanism!

• Deviations of $\mathcal{O}(5-10\%)$ are possible

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation
- The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector The collaboration Belle-II
- Precision measurement of |V_{cb}| The frame work Reconstruction Results
- World average Basic ideas Algorithms PDG2010

Summary

The Nobel Prize in Physics 2008

 "for the discovery of the mechanism of spontaneous broken symmetry in subatomic physics"

"for the discovery of the origin of the broken symmetry which predicts the existence of at least three families of quarks in nature"

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation
- The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector The collaboration Belle-II
- Precision measurement of |V_{cb}| The frame work Reconstruction Results
- World average Basic ideas Algorithms PDG2010
- Summary

The Nobel Prize in Physics 2008

Nambu Yoichiro

Kobayashi Makoto

Maskawa Toshihide

"for the discovery of the mechanism of spontaneous broken symmetry in subatomic physics" "for the discovery of the origin of the broken symmetry which predicts the existence of at least three families of quarks in nature"

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation

The Kobayashi-Maskawa mechanism

The Belle experiment The accelerator The detector The collaboration Belle-II

Precision measurement of |V_{cb}| The frame work Reconstruction Results

World average Basic ideas Algorithms PDG2010

Summary

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism

The Belle experiment

The accelerator The detector The collaboration

Belle-II Procision

measurement of |V_{cb}|

Reconstruction

Results

World average Basic ideas

Algorithms

PDG2010

Summary

The Belle experiment

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism

The Belle experiment

The accelerator The detector The collaboration Belle-II

Precision measurement of |V_{cb}| The frame work Reconstruction

Results

World average Basic ideas Algorithms

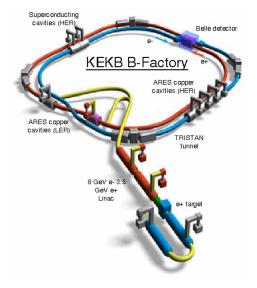
Summary

Geography

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism


The Belle experimer The accelerator The detector The collaboration Belle-II

Precision measurement of |V_{cb}| The frame work Reconstruction Results

World average Basic ideas Algorithms PDG2010

Summary

KEK-B

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator
- The collaboration
- Belle-II
- Precision measurement of |V_{cb}
- Reconstruction
- Results
- World average Basic ideas Algorithms
- PDG2010
- Summary

Setup

- 8.0 GeV $e^- \times 3.5$ GeV e^+ collider
- $E_{c.m.} = 10.58 \text{ GeV}, \text{``} \Upsilon(4S)$ ''

- KEK-B *E_{c.m.}*: first production resonance for real *B* mesons
 If *BB* pair created: nearly in rest in c.m. system
- Asymmetric collider: $\Lambda_{lab,c.m.} \neq \mathbb{I}$
- Time dilation! *B* flight length can be resolved!

Due to the momentum in z direction:
 Measurement of z position of decays
 time stamps

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator
- The collaborati
- Belle-I
- Precision measurement of |V_{cb}| The frame work
- Reconstruction
- Results
- World average Basic ideas Algorithms
- Summary

Some technical details

Setup

- 8.0 GeV $e^- \times 3.5$ GeV e^+ collider
- $E_{c.m.} = 10.58 \text{ GeV}, \text{``} \Upsilon(4S)$ ''

- KEK-B *E_{c.m.}*: first production resonance for real *B* mesons
- If BB pair created: nearly in rest in c.m. system
- Asymmetric collider: $\Lambda_{lab,c.m.} \neq \mathbb{I}$
- Time dilation! *B* flight length can be resolved!

Due to the momentum in z direction:
 Measurement of z position of decays
 time stamps

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

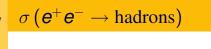
Introduction

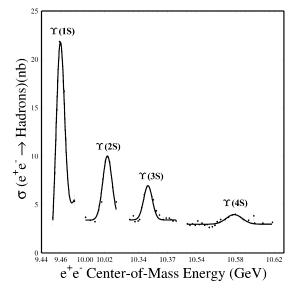
- The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator
- The collaborati
- Belle-I
- Precision measurement of |V_{cb}| The frame work
- Reconstruction
- Results
- World average Basic ideas Algorithms
- Summary

Some technical details

Setup

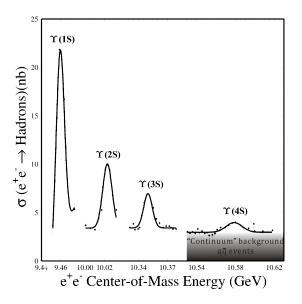
- 8.0 GeV $e^- \times 3.5$ GeV e^+ collider
- $E_{c.m.} = 10.58 \text{ GeV}, \text{``} \Upsilon(4S)$ ''


- KEK-B *E_{c.m.}*: first production resonance for real *B* mesons
- If BB pair created: nearly in rest in c.m. system
- Asymmetric collider: $\Lambda_{lab,c.m.} \neq \mathbb{I}$
- Time dilation! *B* flight length can be resolved!
- Due to the momentum in *z* direction:
 - Measurement of *z* position of decays \Leftrightarrow time stamps


Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at



Introduction

Summary

Luminosity

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

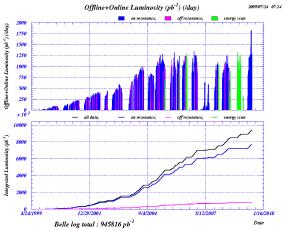
The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism

The Belle experiment The accelerator The detector The collaboration

Belle-II

Precision measurement of |V_{cb} The frame work

Reconstruction


Results

World average Basic ideas

Algorithms

Summary

- Record: $\mathcal{L}_{peak} \approx 2.1 \times 10^{34} cm^{-2} s^{-1}$
- That's more than twice the design value!
- $\int dt \ \mathcal{L} \approx 1000 \mathrm{fb}^{-1}, \approx 900 \times 10^6 \ B\bar{B}$ events

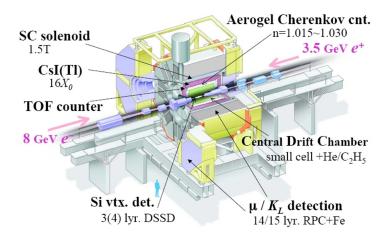
Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism

The Belle experiment The accelerator

The detector


The collaboratic Belle-II

Precision measurement of |V_{cb}| The frame work Reconstruction Results

World average Basic ideas Algorithms PDG2010

Summary

Schematic view of Belle

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism

The Belle experiment The accelerator The detector The collaboration

.....

measurement of |V_{cb}| The frame work Reconstruction Results

World average Basic ideas Algorithms PDG2010

Summary

The Collaboration

16 countries, 60 institutes, ~370 collaborators

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector

Belle-II

- Precision measurement of |V_{cb}| The frame work Reconstruction Results
- World average Basic ideas Algorithms PDG2010

Summary

Where Belle excels in ...

- Publication of first observation is (often) not enough
- Aim is to actually understand effects in terms of a theoretical picture
- Precision is nescessary to test any given theory

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism

The	Belle experiment
The	accelerator
The	detector

The collaboration

Precision measurement of |V_{cb}| The frame work Reconstruction Results

World average Basic ideas Algorithms PDG2010

Summary

Where Belle excels in ...

- Publication of first observation is (often) not enough
- Aim is to actually understand effects in terms of a theoretical picture
- Precision is nescessary to test any given theory

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector
- The collaboration
- Belle-II
- Precision measurement of |V_{cb}| The frame work
- Reconstruction
- Results
- World average Basic ideas Algorithms
- Summary

Where Belle excels in ...

- Publication of first observation is (often) not enough
- Aim is to actually understand effects in terms of a theoretical picture
- Precision is nescessary to test any given theory

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector

Belle-II

Precision measurement of |V_{cb}| The frame work Reconstruction

- World average Basic ideas Algorithms

Where Belle excels in ...

Precision measurements

- Publication of first observation is (often) not enough
- Aim is to actually understand effects in terms of a theoretical picture

Precision is nescessary to test any given theory

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

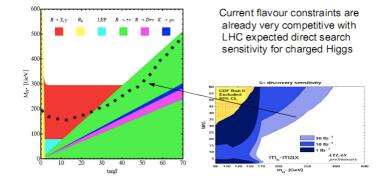
- The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector

Belle-II

- Precision measurement of |V_{cb}| The frame work Reconstruction
- Results
- World average Basic ideas Algorithms PDG2010
- Summary

Where Belle excels in ...

- Publication of first observation is (often) not enough
- Aim is to actually understand effects in terms of a theoretical picture
- Precision is nescessary to test any given theory


Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

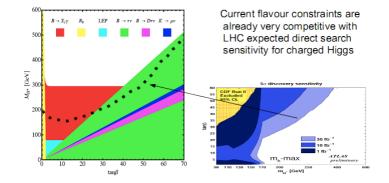
Introduction

- The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector The collaboration
- Precision measurement of |V_{cb}| The frame work Reconstruction Results
- World average Basic ideas Algorithms
- Summary

Current constraints for charged Higgs

U. Haisch, hep-ph/0805.2141ATLAS curve added by Steve Robertson

• Of course there is some propaganda in here ...


Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

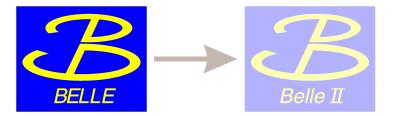
- The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector The collaboration
- Precision measurement of |V_{cb}| The frame work Reconstruction Results
- World average Basic ideas Algorithms
- Summary

Current constraints for charged Higgs

U. Haisch, hep-ph/0805.2141ATLAS curve added by Steve Robertson

Of course there is some propaganda in here ... [©]

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at



Introduction

- The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector The collaboration
- Belle-II
- Precision measurement of |V_{cb}| The frame work Reconstruction Results
- World average Basic ideas Algorithms PDG2010
- Summary

Belle-II: Change ... and continuity

Many important Belle analyses are still limited by statistics Simply adding more data will improve results!

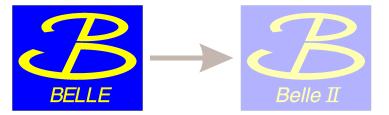
Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism

The Belle experiment The accelerator The detector The collaboration

Belle-II


Precision measurement of |V_{cb}| The frame work Reconstruction Results

World average Basic ideas Algorithms PDG2010

Summary

Belle-II: Change ... and continuity

Many important Belle analyses are still limited by statisticsSimply adding more data will improve results!

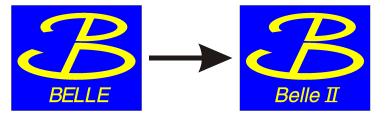
Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism

The Belle experiment The accelerator The detector The collaboration

Belle-II


Precision measurement of |V_{cb}| The frame work Reconstruction Results

World average Basic ideas Algorithms PDG2010

Summary

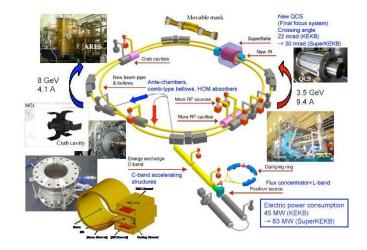
Belle-II: Change ... and continuity

Many important Belle analyses are still limited by statisticsSimply adding more data will improve results!

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism


The Belle experiment The accelerator The detector The collaboration Belle-II

Precision measurement of |V_{cb}| The frame work Reconstruction Results

Basic ideas Algorithms PDG2010

Summary

From KEKB to SuperKEKB

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation The Kobayashi-Maskawa

mechanism

The Belle experiment The accelerator The detector

Belle-II

Precision measurement of |V_{CD}| The frame work Reconstruction Results

World average Basic ideas Algorithms PDG2010

Summary

SuperKEKB versus SuperB

• Two concepts to reach peak luminosity $O(10^{36} cm^{-2} s^{-1})$

High current scheme

- "Increase number of particles"
- Currents of both beams are increased
- High power consumption (and thus costs)

• High beam background

Favored by KEK

n the end ..

The best of both worlds will be usedProbably: There will be only one SuperB factory

Nano beams

- "Increase particle density"
- Emittance of beams is reduced
- Lower power consumption
- Lower beam background
- But untried ...
- Favored by italian SuperB proposal

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation

mechanism

The Belle experiment The accelerator The detector

Belle-II

Precision measurement of |V_{cb}| The frame work Reconstruction Results

World average Basic ideas Algorithms PDG2010

Summary

SuperKEKB versus SuperB

• Two concepts to reach peak luminosity $O(10^{36} cm^{-2} s^{-1})$

High current scheme

- "Increase number of particles"
- Currents of both beams are increased
- High power consumption (and thus costs)

• High beam background

Favored by KEK

n the end ..

The best of both worlds will be usedProbably: There will be only one SuperB factory

Nano beams

- "Increase particle density"
- Emittance of beams is reduced
- Lower power consumption
- Lower beam background
- But untried ...
- Favored by italian SuperB proposal

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation
- The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector
- Belle-II
- Precision measurement of |V_{cb}| The frame work Reconstruction Results
- World average Basic ideas Algorithms PDG2010

Summary

SuperKEKB versus SuperB

• Two concepts to reach peak luminosity $O(10^{36} cm^{-2} s^{-1})$

High current scheme

- "Increase number of particles"
- Currents of both beams are increased
- High power consumption (and thus costs)
- High beam background

Favored by KEK

n the end ...

The best of both worlds will be usedProbably: There will be only one SuperB factory

Nano beams

- "Increase particle density"
- Emittance of beams is reduced
- Lower power consumption
- Lower beam background
- But untried ...
- Favored by italian SuperB proposal

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation
- The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector The collaboration
- Belle-II
- Precision measurement of |V_{cb}| The frame work Reconstruction Results
- World average Basic ideas Algorithms PDG2010
- Summary

SuperKEKB versus SuperB

• Two concepts to reach peak luminosity $O(10^{36} cm^{-2} s^{-1})$

High current scheme

- "Increase number of particles"
- Currents of both beams are increased
- High power consumption (and thus costs)
- High beam background

Favored by KEK

Nano beams

- "Increase particle density"
- Emittance of beams is reduced
- Lower power consumption
- Lower beam background
- But untried ...
- Favored by italian SuperB proposal

In the end ..

The best of both worlds will be usedProbably: There will be only one SuperB factory

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation
- The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector The collaboration
- Belle-II
- Precision measurement of |V_{cb}| The frame work Reconstruction Results
- World average Basic ideas Algorithms PDG2010
- Summary

SuperKEKB versus SuperB

• Two concepts to reach peak luminosity $O(10^{36} cm^{-2} s^{-1})$

High current scheme

- "Increase number of particles"
- Currents of both beams are increased
- High power consumption (and thus costs)
- High beam background

Favored by KEK

Nano beams

- "Increase particle density"
- Emittance of beams is reduced
- Lower power consumption
- Lower beam background
- But untried ...
- Favored by italian SuperB proposal

In the end ..

The best of both worlds will be usedProbably: There will be only one SuperB factory

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation
- The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector
- Belle-II
- Precision measurement of |V_{cb}| The frame work Reconstruction Results
- World average Basic ideas Algorithms PDG2010
- Summary

SuperKEKB versus SuperB

• Two concepts to reach peak luminosity $O(10^{36} cm^{-2} s^{-1})$

High current scheme

- "Increase number of particles"
- Currents of both beams are increased
- High power consumption (and thus costs)
- High beam background

Favored by KEK

Nano beams

- "Increase particle density"
- Emittance of beams is reduced
- Lower power consumption
- Lower beam background
- But untried ...
- Favored by italian SuperB proposal

In the end ..

- The best of both worlds will be used
- Probably: There will be only one SuperB factory

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation
- The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector The collaboration
- Belle-II
- Precision measurement of |V_{cb}| The frame work Reconstruction Results
- World average Basic ideas Algorithms PDG2010

Summary

SuperKEKB versus SuperB

• Two concepts to reach peak luminosity $O(10^{36} cm^{-2} s^{-1})$

High current scheme

- "Increase number of particles"
- Currents of both beams are increased
- High power consumption (and thus costs)
- High beam background

Favored by KEK

Nano beams

- "Increase particle density"
- Emittance of beams is reduced
- Lower power consumption
- Lower beam background
- But untried ...
- Favored by italian SuperB proposal

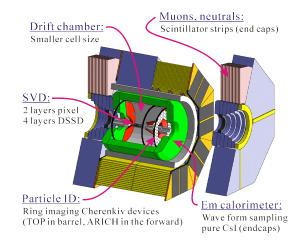
In the end ...

- The best of both worlds will be used
- Probably: There will be only one SuperB factory

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism


The Belle experiment The accelerator The detector The collaboration

Belle-II

Precision measurement of |V_{cb}| The frame work Reconstruction Results

World average Basic ideas Algorithms

Schematic design of the detector

Construction of Belle: essentially supervised by KEKBelle Upgrade: high responsibility of collaborators

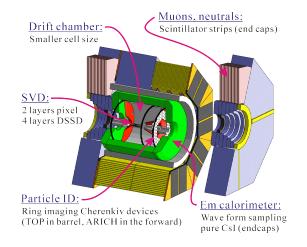
Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism

The Belle experiment The accelerator The detector The collaboration

Belle-II


Precision neasurement of |V_{cb}| The frame work Reconstruction Results

World average Basic ideas Algorithms

PDG2010

Summary

Schematic design of the detector

• Construction of Belle: essentially supervised by KEK

Belle Upgrade: high responsibility of collaborators

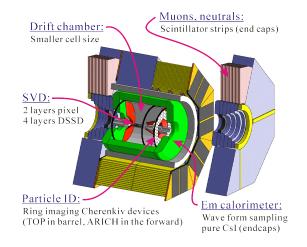
Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism

The Belle experiment The accelerator The detector The collaboration

Belle-II


Precision measurement of |V_{Cb}| The frame work Reconstruction Results

Basic ideas Algorithms

PDG2010

Summary

Schematic design of the detector

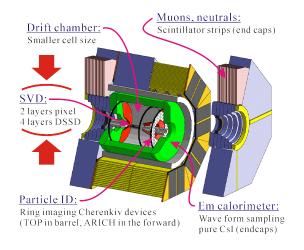
Construction of Belle: essentially supervised by KEKBelle Upgrade: high responsibility of collaborators

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism

The Belle experiment The accelerator The detector The collaboration


Belle-II

Precision measurement of |*V_{cb}*| The frame work Reconstruction Results

Basic ideas Algorithms

.

Schematic design of the detector

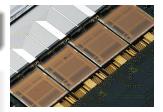
Construction of Belle: essentially supervised by KEKBelle Upgrade: high responsibility of collaborators

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism
- The Belle experiment
- The detector
- The collaboratio
- Belle-II
- Precision measurement of |V_{cb}| The frame work Reconstruction Results
- World average Basic ideas Algorithms PDG2010
- Summary

Silicon strip detector


- Will be built by HEPHY
- Modules, electronics, mechanics

Read out

- Front-end chip: APV25
- 6 consecutive time samples for hit time reconstruction

Chip-on-sensor concept

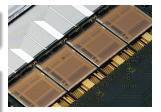
- In outer layers, integrate read-out into module
- "Origami"

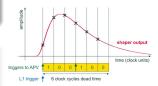
Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation The Kobayashi-Maskawa
- mechanism
- The Belle experiment The accelerator The detector
- Belle-II
- Precision measurement of |V_{cb}| The frame work Reconstruction Results
- World average Basic ideas Algorithms PDG2010
- Summary

Silicon strip detector


- Will be built by HEPHY
- Modules, electronics, mechanics


Read out

- Front-end chip: APV25
- 6 consecutive time samples for hit time reconstruction

Chip-on-sensor concept

- In outer layers, integrate read-out into module
- "Origami"

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

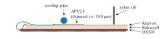
Introduction

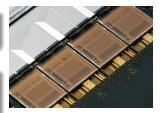
- The main goal of Belle CP Violation The Kobayashi-Maskawa
- The Belle experiment
- The accelerato
- The collaboration
- Belle-II

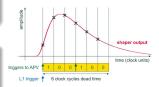
Precision measurement of |V_{cb}| The frame work Reconstruction Results

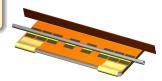
- World average Basic ideas Algorithms PDG2010
- Summary

Silicon strip detector


- Will be built by HEPHY
- Modules, electronics, mechanics


Read out


- Front-end chip: APV25
- 6 consecutive time samples for hit time reconstruction

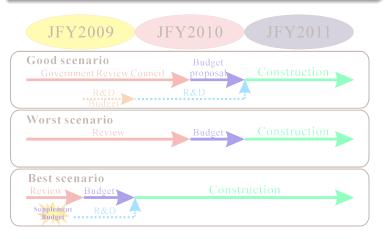

Chip-on-sensor concept

- In outer layers, integrate read-out into module
- Origami"

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector
- The collaboratio


Belle-II

Precision measurement of |V_{Cb} The frame work Reconstruction

- Results
- World average
- A lassitieses
- PDG2010
- Summary

Timeline - as seen in 2009

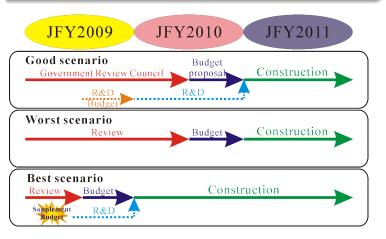
• KEK Director general, A.Suzuki, Feb. 9, 2009

• Quote: "Probability for SuperKEKB is larger 3σ "

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector
- The collaborat


Belle-II

- Precision measurement of |V_{cb}| The frame work Reconstruction
- World avor
- Basic ideas
- Algorithms
- PDG2010

Summary

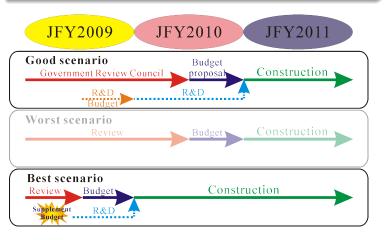
Timeline - as seen in 2009

• KEK Director general, A.Suzuki, Feb. 9, 2009

• Quote: "Probability for SuperKEKB is larger 3σ "

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction


- The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector
- The collaboratio

Belle-II

- Precision measurement of |V_{cb}| The frame work Reconstruction
- Results
- World average
- Algorithmo
- Algorithms
- C.....

Timeline - as seen in 2009

• KEK Director general, A.Suzuki, Feb. 9, 2009

• Quote: "Probability for SuperKEKB is larger 3σ"

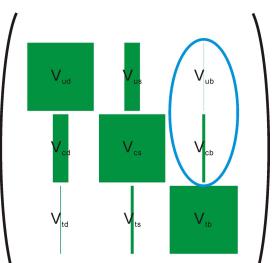
Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism

The Belle experiment The accelerator The detector The collaboration Belle-II

Precision measurement of |V_{cb}|


The frame work Reconstruction Results

World average Basic ideas

PDG2010

Summary

The CKM matrix

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector The collaboration Belle-II

Precision measurement of |V_{ch}|

The frame work Reconstruction Results

World average Basic ideas Algorithms

Summary

Measurement of the form factors of the decay $B^0 \rightarrow D^{*-} \ell^+ \nu$ and determination of the CKM matrix element $|V_{cb}|$

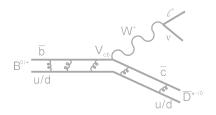
Measurement of the form factors of the decay $B^+ \rightarrow \bar{D}^{*0} \ell^+ \nu$ and determination of the CKM matrix element $|V_{cb}|$

dungel(at)hephy.oeaw.ac.at schwanda(at)hephy.oeaw.ac.at

In a nutshell

- Two similar analyses
- Systematic uncertainty not identical

• Preliminary results shown at ICHEP08 and EPS09

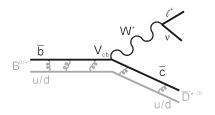

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector
- The collaboration
- Precision measurement of | V_{cb}
- The frame work
- Reconstructior Results
- World average Basic ideas
- Algorithms
- PDG2010
- Summary

How to determine $|V_{cb}|$?

Fundamental process: b → cW⁻
Contributions from tree diagram dominate
But: There are no free quarks, only composite particles!
Quantum chromodynamics plays an important role!


Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector The collaboration Belle.II
- Precision measurement of |V_{cb}|
- The frame work
- Reconstructior Results
- World average Basic ideas Algorithms
- PDG2010
- Summary

How to determine $|V_{cb}|$?

- Fundamental process: $b \rightarrow cW^-$
- Contributions from tree diagram dominate
 - But: There are no free quarks, only composite particles!
- Quantum chromodynamics plays an important role!

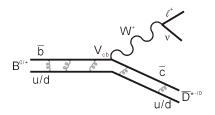
Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism

The Belle experiment The accelerator The detector The collaboration Belle-II

Precision measurement of |V_{cb}|


The frame work

Reconstruction Results

World average Basic ideas Algorithms

PDG2010

Summary

- Fundamental process: $b \rightarrow cW^-$
- Contributions from tree diagram dominate
- But: There are no free quarks, only composite particles!

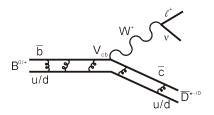
• Quantum chromodynamics plays an important role!

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism

The Belle experiment The accelerator The detector The collaboration Belle-II


Precision measurement of |*V_{cb}*|

The frame work

Reconstructior Results

World average Basic ideas Algorithms

Summary

- Fundamental process: $b \rightarrow cW^-$
- Contributions from tree diagram dominate
- But: There are no free quarks, only composite particles!
- Quantum chromodynamics plays an important role!

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism

The Belle experiment

The collaboratio

Belle-II

Precision measurement of |V_{cb}|

The frame work

Reconstruction Results

World average

Algorithms

PDG2010

Summary

Differential decay width

Kinematic variables

•
$$w = \frac{p_B^{\mu} \cdot p_{D^*,\mu}}{m_{B^0} m_{D^*}} = a + b q^2$$

• $\cos \theta_{\ell}, \cos \theta_{V}, \chi$

Differential decay width

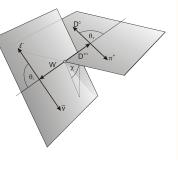
$$\begin{split} \frac{\mathrm{d}^4\Gamma(B \to D^*\,\ell^+\,\nu_\ell)}{\mathrm{vd}(\cos\,\theta_\ell)\mathrm{d}(\cos\,\theta_V)\mathrm{d}\chi} \\ &= \frac{6m_Bm_{D^*}^2}{8(4\pi)^4}\sqrt{w^2-1}(1-2wr+r^2)G_F^2\left|V_{cb}\right|^2 \\ &\times \left\{(1-\cos\,\theta_\ell)^2\sin^2\theta_V H_+^2(w)\right. \\ &+ (1+\cos\,\theta_\ell)^2\sin^2\theta_V H_-^2(w) \\ &+ 4\sin^2\theta_\ell\cos^2\theta_V H_0^2(w) \\ &- 2\sin^2\theta_\ell\sin^2\theta_V\cos 2\chi H_+(w)H_-(w) \\ &- 4\sin\,\theta_\ell(1-\cos\,\theta_\ell) \\ &\sin\,\theta_V\cos\chi H_+(w)H_0(w) \\ &+ 4\sin\,\theta_\ell(1+\cos\,\theta_\ell) \end{split}$$

 $\sin \theta_V \cos \theta_V \cos \chi_{H_{-}}(w)_{H_{0}(w)}$

• Aside from masses etc. identical for B^0 and B^+

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction


- The main goal of Belle CP Violation The Kobayashi-Maskawa
- The Belle experiment The accelerator
- The collaboratio
- Belle-II
- Precision measurement of |V_{cb}|
- The frame work
- Reconstruction Results
- World average
- Algorithms
- PDG2010
- Summary

Differential decay width

Kinematic variables

•
$$W = \frac{p_B^{\mu} \cdot \rho_{D^*,\mu}}{m_{P^0} m_{D^*}} = a + b q^2$$

•
$$\cos \theta_{\ell}, \cos \theta_{V}, \chi$$

Differential decay width

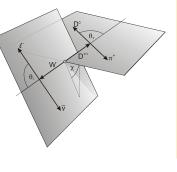
$$\begin{split} & \mathrm{d}^{\mathrm{d}}\Gamma(\mathcal{B}\longrightarrow D^{*}\,\ell^{+}\,\nu_{\ell})\\ & \mathrm{wd}(\cos\,\theta_{\ell})\mathrm{d}(\cos\,\theta_{V})\mathrm{d}_{\chi}\\ &= \frac{6m_{B}m_{D^{*}}^{2}}{8(4\pi)^{4}}\,\sqrt{w^{2}-1}(1-2wr+r^{2})G_{F}^{2}\,|V_{cb}|^{2}\\ & \times\,\left\{(1-\cos\,\theta_{\ell})^{2}\,\sin^{2}\,\theta_{V}H_{+}^{2}(w)\right.\\ & +\left(1+\cos\,\theta_{\ell}\right)^{2}\,\sin^{2}\,\theta_{V}H_{-}^{2}(w)\right.\\ & +\left(1+\cos\,\theta_{\ell}\right)^{2}\,\sin^{2}\,\theta_{V}H_{-}^{2}(w)\\ & +4\sin^{2}\,\theta_{\ell}\cos^{2}\,\theta_{V}H_{0}^{2}(w)\\ & -2\sin^{2}\,\theta_{\ell}\,\sin^{2}\,\theta_{V}\cos\,2\chi H_{+}(w)H_{-}(w)\\ & -4\sin\,\theta_{\ell}(1-\cos\,\theta_{\ell})\\ & \sin\,\theta_{\ell}(1+\cos\,\theta_{\ell}) \end{split}$$

 $\sin \theta_V \cos \theta_V \cos \chi_{H_{-}}(w) H_0(w)$

• Aside from masses etc. identical for B^0 and B^+

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction


- The main goal of Belle CP Violation The Kobayashi-Maskawa
- The Belle experiment The accelerator
- The detector
- The collaboratio
- Procision
- measurement of $|V_{cb}|$
- The frame work
- Reconstruction Results
- World average Basic ideas
- Algorithms
- PDG2010
- Summary

Differential decay width

Kinematic variables

•
$$W = \frac{p_B^{\mu} \cdot p_{D^*,\mu}}{m_{B^0} m_{D^*}} = a + b q^2$$

•
$$\cos \theta_{\ell}, \cos \theta_{V}, \chi$$

Differential decay width

$$\begin{split} \frac{\mathrm{d}^4\Gamma(B\to D^*\,\ell^+\nu_\ell)}{\mathrm{d}w\mathrm{d}(\cos\,\theta_\ell)\mathrm{d}(\cos\,\theta_V)\mathrm{d}\chi} \\ &= \frac{6m_Bm_{D^*}^2}{8(4\pi)^4}\,\sqrt{w^2-1}(1-2wr+r^2)G_F^2\,|V_{cb}|^2 \\ &\times \left\{(1-\cos\,\theta_\ell)^2\,\sin^2\,\theta_V H_+^2(w)\right. \\ &+ (1+\cos\,\theta_\ell)^2\,\sin^2\,\theta_V H_-^2(w) \\ &+ 4\sin^2\,\theta_\ell\,\cos^2\,\theta_V H_0^2(w) \\ &- 2\sin^2\,\theta_\ell\,\sin^2\,\theta_V\cos\,2\chi H_+(w)H_-(w) \\ &- 4\sin\,\theta_\ell(1-\cos\,\theta_\ell) \\ &\sin\,\theta_V\cos\,\varphi_V\cos\,\chi H_+(w)H_0(w) \\ &+ 4\sin\,\theta_\ell(1+\cos\,\theta_\ell) \\ &\sin\,\theta_V\cos\,\varphi_V\cos\,\chi H_-(w)H_0(w) \right\} \end{split}$$

Aside from masses etc. identical for B⁰ and B⁺

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation The Kobayashi-Maskawa

The Belle experiment

- The accelerat
- The detector
- The collaboratio

Precision measurement of |V_{cb}|

The frame work

Reconstructio Results

World average Basic ideas

PDG2010

Summary

Results to be obtained

\$\mathcal{F}(1)|V_{cb}|\$
Form factor parameters

Considered final states

• Only signal is reconstructed • $\bar{B} \rightarrow D^* \ell^- \bar{\nu}_\ell$, • $D^* \rightarrow D^0 \pi_s$

•
$$D^0 \rightarrow K^- \pi^+$$

•
$$D^0 \rightarrow K^- \pi^+ \pi^- \pi^+$$

 $B^0
ightarrow D^{*-} \ell^+
u$

• Shown at ICHEP08

• $N_{sig} = 69,345 \pm 377$

$B^+ ightarrow ar{D}^{*0} \ell^+ u$

- Shown at EPS09
- $N_{sig} = 27,106 \pm 367$

• B^0 signal purity and background fractions

▶ B⁺ signal purity and background fractions

Systematics

 B⁰ and B⁺ show different π_s systematic uncertainty

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation The Kobayashi-Maskawa

The Belle experiment

- The accelerat
- The detector
- The collaboration

Belle-I

Precision measurement of |V_{cb}|

The frame work

Reconstructio Results

World average Basic ideas

PDG2010

Summary

Results to be obtained

F(1)|*V*_{cb}|
Form factor parameters

Considered final states

• Only signal is reconstructed • $\bar{B} \rightarrow D^* \ell^- \bar{\nu}_\ell$,

•
$$D^* \to D^0 \pi_s$$

• $D^0 \to K^- \pi$

• B^0 and B^+ show different π_s

 $B^0 \to D^{*-} \ell^+ \nu$

- Shown at ICHEP08
- $N_{sig} = 69,345 \pm 377$

$B^+ ightarrow ar{D}^{*0} \ell^+ u$

- Shown at EPS09
- $N_{sig} = 27,106 \pm 367$

B⁰ signal purity and background fractions

▶ B⁺ signal purity and background fractions

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation The Kobayashi-Maskawa

mechanism

The Belle experiment

- The accelerat
- The detector
- The collaboration

Belle-II

Precision measurement of |V_{cb}|

The frame work

Reconstructio Results

World average Basic ideas Algorithms

PDG2010

Summary

Results to be obtained

• $\mathcal{F}(1)|V_{cb}|$

Systematics

• Form factor parameters

Considered final states

Only signal is reconstructed *B*→ *D*^{*}ℓ⁻*v*_ℓ.

•
$$D^* \rightarrow D^0 \pi_s$$

•
$$D^0 \rightarrow K^- \pi^+$$

 B⁰ and B⁺ show different π_s systematic uncertainty

•
$$D^0 \rightarrow K^- \pi^+ \pi^- \pi^+$$

 $B^0
ightarrow D^{*-} \ell^+
u$

• Shown at ICHEP08

• $N_{sig} = 69,345 \pm 377$

$B^+ ightarrow ar{D}^{*0} \ell^+ u$

- Shown at EPS09
- $N_{sig} = 27,106 \pm 367$

• B^0 signal purity and background fractions

• B^+ signal purity and background fractions

1.38

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation The Kobayashi-Maskawa

mechanism

- The Belle experiment
- The accelerat
- The detector
- The collaboration

Belle-II

Precision measurement of |V_{cb}|

The frame work

Reconstructio Results

World average Basic ideas Algorithms

PDG2010

Summary

Results to be obtained

● *F*(1)|*V*_{cb}|

• Form factor parameters

Considered final states

Only signal is reconstructed

 R → *D*^{*} ℓ⁻ *v*

$$D \rightarrow D \ell \ \nu_{\ell},$$

•
$$D^* \to D^* \pi_s$$

•
$$D^0 \rightarrow K^- \pi^+$$

•
$$D^0 \rightarrow K^- \pi^+ \pi^- \pi^+$$

 $B^0 \rightarrow D^{*-} \ell^+ \nu$

• Shown at ICHEP08

•
$$N_{sig} = 69,345 \pm 377$$

$$B^+
ightarrow ar{D}^{*0} \ell^+
u$$

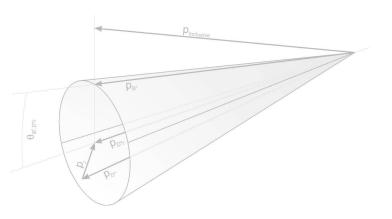
•
$$N_{sig} = 27,106 \pm 367$$

• B^0 signal purity and background fractions

Systematics

B⁰ and B⁺ show different π_s systematic uncertainty

• B^+ signal purity and background fractions

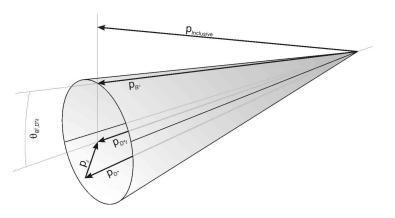

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector The collaboration Belle-II
- Precision measurement of |V_{cb}|
- Reconstruction
- Results
- World average Basic ideas Algorithms
- PDG2010
- Summary

Reconstruction of the *B* **rest frame**

*D***l* reconstruction yields 1D space of *B* candidates
Combined with inclusive sum of remaining event: "best *B*"


Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector The collaboration Belle-II
- Precision measurement of |V_{cb}|
- Reconstruction
- Results
- World average Basic ideas
- Algorithms
- _

Reconstruction of the *B* **rest frame**

- $D^*\ell$ reconstruction yields 1D space of *B* candidates
- Combined with inclusive sum of remaining event: "best B"

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation The Kobayashi-Maskawa

mechanism

The Belle experiment

The accelerat

The conaboratio

Precision measurement of | V_{cl}

The frame work

Reconstruction

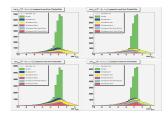
Results

World average Basic ideas Algorithms

PDG2010

Summary

Investigated using MC


Background

- $B \rightarrow D^{**}\ell\nu, B \rightarrow D^*X\ell\nu$
- Signal correlated
- Uncorrelated
- Fake Lepton

• ...

Off-resonance data

• Continuum: qq decays

HMCMLL, TFractionFitter

Determine norm of MC components from fit to data

Use fit to cos θ_{B⁰,D^{*}ℓ} distribution(B⁰) resp. 2D fit to cos θ_{B⁰,D^{*}ℓ} vs. Δm distribution (B⁺)

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation The Kobayashi-Maskawa

mechanism

The Belle experiment

The accelerat

Precision measurement of | V_{ct}

The frame work

Reconstruction

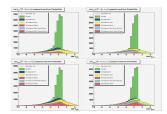
Results

World average Basic ideas

PDG2010

Summary

Investigated using MC


Background

- $B \rightarrow D^{**}\ell\nu, B \rightarrow D^*X\ell\nu$
 - Signal correlated
 - Uncorrelated
 - Fake Lepton

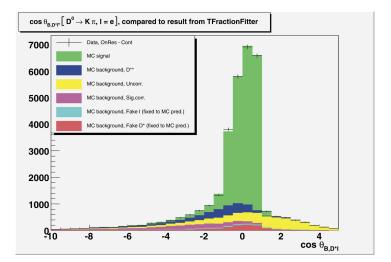
Ο...

Off-resonance data

• Continuum: qq decays

HMCMLL, **TFractionFitter**

- Determine norm of MC components from fit to data
- Use fit to cos θ_{B⁰,D^{*}ℓ} distribution(B⁰) resp. 2D fit to cos θ_{B⁰,D^{*}ℓ} vs. Δm distribution (B⁺)


Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism
- The Belle experiment
- The detector
- The collaboratio
- Precision measurement of |V_{cb}|
- The frame work
- Reconstruction
- Results
- World average Basic ideas Algorithms
- PDG2010
- Summary

One example - $B^0, K\pi, e$

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation The Kobayashi-Maskawa machanism
- The Belle experiment
- The celleboretic
- The conaborate
- Precision measurement of |V_{cb}|
- The frame work
- Reconstruction
- Results
- World average Basic ideas Algorithms
- Summary

Fundamental idea

 χ^2 function

- Binned least squares fit to the four 1D distributions
- Have to take correlation between distributions into account

χ^2 function

$$\mathcal{L}^{2} = \sum_{i} \sum_{j} \left(N_{i}^{rec} - N_{i}^{bkg} - N_{i}^{exp} \right) \left(C^{-1} \right)_{ij} \left(N_{j}^{rec} - N_{i}^{bkg} - N_{j}^{exp} \right)$$

- N^{rec}: reconstructed number of events in bin i
- N^{bkg}: estimated number of background events
- N_i^{exp} : theoretical prediction, considering efficiency and detector response
- C: covariance matrix, correlations \Rightarrow not diagonal

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector The collaboration
- Precision measurement of |V_{cb}|
- The frame work
- Reconstruction
- Results
- World average Basic ideas
- Algorithms
- PDG2010
- Summary

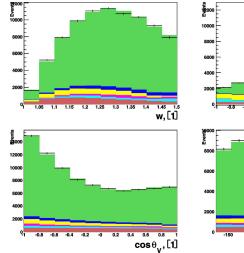
Fundamental idea

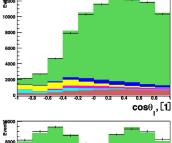
- Binned least squares fit to the four 1D distributions
- Have to take correlation between distributions into account

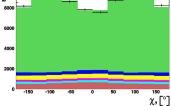
χ^2 function

$$\chi^{2} = \sum_{i} \sum_{j} \left(N_{i}^{rec} - N_{i}^{bkg} - N_{i}^{exp} \right) \left(C^{-1} \right)_{ij} \left(N_{j}^{rec} - N_{i}^{bkg} - N_{j}^{exp} \right)$$

- N^{rec}: reconstructed number of events in bin i
- N_i^{bkg} : estimated number of background events
- N^{exp}: theoretical prediction, considering efficiency and detector response
- C: covariance matrix, correlations \Rightarrow not diagonal

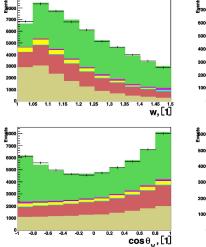

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

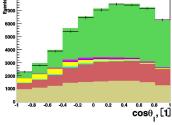


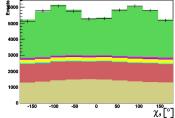

Introduction

- The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector The collaboration Belle-II
- Precision measurement of |V_{cb}| The frame work Reconstruction
- Results
- World average Basic ideas Algorithms PDG2010
- Summary

Plots of preliminary results - B⁰


Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at




Introduction

- The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector The collaboration Belle II
- Precision measurement of |V_{cb}| The frame work Reconstruction
- Results
- World average Basic ideas Algorithms PDG2010
- Summary

Plots of preliminary results - B^+

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism

The Belle experiment The accelerator

The detector

The collaboratio

Belle-II

Precision measurement of $|V_{cb}|$

Beconstruction

Results

World average Basic ideas Algorithms PDG2010

Summary

2	$B^0 ightarrow D^{*-} \ell u$	$B^+ ightarrow ar{D}^{*0} \ell u$		
ρ^2	$1.293 \pm 0.045 \pm 0.029$	$1.376 \pm 0.074 \pm 0.056$		
$R_{1}(1)$	$1.495 \pm 0.050 \pm 0.062$	$1.620 \pm 0.091 \pm 0.092$		
<i>R</i> ₂ (1)	$0.844 \pm 0.034 \pm 0.019$	$0.805 \pm 0.064 \pm 0.036$		
$R_{K3\pi/K\pi}$	2.153 ± 0.011	2.072 ± 0.023		
${\cal B}(B o D^* \ell^+ u_\ell)$	$(4.42 \pm 0.03 \pm 0.25)\%$	$(4.84 \pm 0.04 \pm 0.56)\%$		
$\mathcal{F}(1) \left V_{cb} ight imes 10^3$	$34.4\pm0.2\pm1.0$	$35.0\pm0.4\pm2.2$		
$\chi^2/n.d.f.$	138.8/155	187.8/155		
P_2	82.0%	3.7%		

Systematic error - B⁺

Subsamples - B⁺

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle
CP Violation
The Kobayashi-Maskawa mechanism

The accelerator

Precisio

measurement of |V_{cb}|

The frame work

Reconstruction

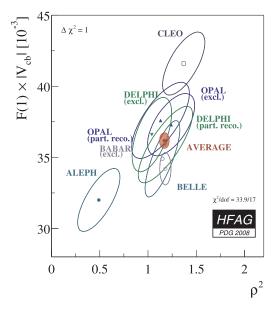
Results

World average Basic ideas Algorithms

Summary

Breakdown of the systematic error components (for B^0)

	ρ^2	$R_{1}(1)$	$R_{2}(1)$	$\mathcal{B}(B^0)$	$\mathcal{F}(1) V_{cb} $
Stat. error	0.050	0.060	0.043	0.030	0.22
D**	0.015	0.038	0.011	0.051	0.25
Uncorr.	0.009	0.028	0.002	0.003	0.04
Sig.corr.	0.003	0.003	0.007	0.028	0.14
Fake <i>l</i>	0.020	0.037	0.009	0.002	0.04
Fake D*	0.012	0.011	0.009	0.034	0.33
Continuum	0.003	0.008	0.000	0.001	0.02
Trk., det.eff.	-	-	-	0.221	0.86
$\mathcal{B}\left(D^{0}\right)$	-	-	-	0.081	0.31
B (D*)	-	-	-	0.033	0.13
B ⁰ life time	-	-	-	0.026	0.10
N _{BB}	-	-	-	0.036	0.14
$f_{+-}/f_{0\bar{0}}$	0.003	0.011	0.005	0.001	0.04
Syst. error	0.029	0.062	0.019	0.251	1.04


Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector The collaboration
- Belle-II Precision
- measurement of |V_{cb}|
- Reconstruction
- Results
- World average Basic ideas
- Algorithms
- PDG2010
- Summary

And finally - the world average

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector The collaboration Belle-II
- Precision measurement of |V_{cb}| The frame work Reconstruction Results
- World average Basic ideas
- Algorithms
- PDG2010

Summary

World average ...

|V_{cb}| has been measured before, with lower accuracy
The aim is to include them all in one fit to determine "truth"
The fundamental idea of having several experiments ...
Cross check the findings!

The aim for $|V_{cb}|$ from exclusive decays

• Do a full four-dimensional average!

- Collaboration of experts in the field
- Many by people from Belle and BaBar ...
- Has been formed in 2002

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector The collaboration Belle-II
- Precision measurement of |V_{cb}| The frame work Reconstruction Results
- World average Basic ideas
- Algorithms
- PDG2010

Summary

World average ...

- $|V_{cb}|$ has been measured before, with lower accuracy
- The aim is to include them all in one fit to determine "truth"
- The fundamental idea of having several experiments ...
- Cross check the findings!

The aim for $|V_{cb}|$ from exclusive decays

• Do a full four-dimensional average!

- Collaboration of experts in the field
- Many by people from Belle and BaBar ...
- Has been formed in 2002

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector The collaboration Belle-II
- Precision measurement of |V_{cb}| The frame work Reconstruction
- World average Basic ideas

Algorithms

PDG2010

Summary

World average ...

- $|V_{cb}|$ has been measured before, with lower accuracy
- The aim is to include them all in one fit to determine "truth"
- The fundamental idea of having several experiments ...
- Cross check the findings!

The aim for $|V_{cb}|$ from exclusive decays

• Do a full four-dimensional average!

- Collaboration of experts in the field
- Many by people from Belle and BaBar ...
- Has been formed in 2002

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector The collaboration Belle-II
- Precision measurement of |V_{cb}| The frame work Reconstruction Besuits
- World average Basic ideas
- Algorithms
- PDG2010

Summary

World average ...

- $|V_{cb}|$ has been measured before, with lower accuracy
- The aim is to include them all in one fit to determine "truth"
- The fundamental idea of having several experiments ...
- Cross check the findings!

The aim for $|V_{cb}|$ from exclusive decays

• Do a full four-dimensional average!

- Collaboration of experts in the field
- Many by people from Belle and BaBar ...
- Has been formed in 2002

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector
- The collaboration
- Belle-II Procision
- Precision measurement of |V_{cb}| The frame work
- Reconstructio
- World average Basic ideas
- Algorithms
- PDG2010

Summary

... and problems

ings to consider for the world average

- Statistical independence is (usually) guaranteed
- But: both statistical and systematic uncertainties important
- Some sources of systematic errors are independent ...
- ... others are not ...

And some devious details ...

- New Belle and BaBar results report all parameters
- Older measurements at LEP determined only $|V_{cb}|$ and ρ^2
- ... but the values depend on R₁ and R₂!
- The combination proceeds via a Taylor expansion of the $|V_{cb}| : \rho^2$ measurements

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator
- The detector
- The collaboratio
- Belle-II
- Precision measurement of |V_{cb}| The frame work
- Reconstruction
- Results
- World average Basic ideas
- Algorithms
- PDG2010
- Summary

... and problems

Things to consider for the world average

- Statistical independence is (usually) guaranteed
- But: both statistical and systematic uncertainties important
- Some sources of systematic errors are independent ...
- ... others are not ...

And some devious details ...

- New Belle and BaBar results report all parameters
- Older measurements at LEP determined only $|V_{cb}|$ and ρ^2
- ... but the values depend on R₁ and R₂!
- The combination proceeds via a Taylor expansion of the $|V_{cb}| : \rho^2$ measurements

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector The collaboration
- Rollo-II
- Precision measurement of |V_{cb}| The frame work
- Besults
- World average Basic ideas
- Algorithms
- PDG2010

Summary

... and problems

Things to consider for the world average

- Statistical independence is (usually) guaranteed
- But: both statistical and systematic uncertainties important
- Some sources of systematic errors are independent ...
- ... others are not ...

And some devious details ...

- New Belle and BaBar results report all parameters
- Older measurements at LEP determined only $|V_{cb}|$ and ρ^2
- ... but the values depend on R₁ and R₂!
- The combination proceeds via a Taylor expansion of the $|V_{cb}| : \rho^2$ measurements

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism

The Belle experiment The accelerator

The detector

The collaboration

Belle-II

Precision measurement of |V_{CD}| The frame work Reconstruction Results

World average Basic ideas

Algorithms

PDG2010

Summary

The algorithms

The findings up until recently

- An algorithm called |vcbCombos| was used
- Written and maintained by colleagues at SLAC

• It considered all important issues ...

• ... and it behaved strangely ...

χ²/n.d.f was implausibly large
 Especially when adding new Belle B⁰ result

The way out

I wrote a new algorithm, from scratch, as a check
To have a fancy name, I called it Meteor

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation The Kobayashi-Maskawa
- The Belle experiment
- The detector
- The collaborati
- Belle-II
- Precision measurement of |V_{cb}| The frame work Reconstruction
- World average Basic ideas
- Algorithms
- PDG2010

Summary

The algorithms

The findings up until recently

- An algorithm called |vcbCombos| was used
- Written and maintained by colleagues at SLAC
- It considered all important issues ...
- ... and it behaved strangely ...
- χ²/n.d.f was implausibly large
 Especially when adding new Belle B⁰ result

The way out

I wrote a new algorithm, from scratch, as a check
To have a fancy name, I called it Meteor

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation The Kobayashi-Maskawa

The Belle experiment The accelerator

The detector

The collaboration

Belle-II

Precision measurement of |V_{cb}| The frame work Reconstruction

World average Basic ideas

Algorithms

PDG2010

Summary

The algorithms

The findings up until recently

- An algorithm called |vcbCombos| was used
- Written and maintained by colleagues at SLAC
- It considered all important issues ...
- ... and it behaved strangely ...

χ²/n.d.f was implausibly large
Especially when adding new Belle B⁰ result

The way out

I wrote a new algorithm, from scratch, as a check
To have a fancy name, I called it Meteor

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation The Kobayashi-Maskawa

The Belle experiment The accelerator

The collaborati

Belle-II

Precision measurement of |V_{cb}| The frame work Reconstruction

Results

World average Basic ideas

Algorithms

PDG2010

Summary

The algorithms

The findings up until recently

- An algorithm called |vcbCombos| was used
- Written and maintained by colleagues at SLAC
- It considered all important issues ...
- ... and it behaved strangely ...
- $\chi^2/n.d.f$ was implausibly large
- Especially when adding new Belle B⁰ result

The way out

• I wrote a new algorithm, from scratch, as a check

• To have a fancy name, I called it Meteor

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism

The Belle experiment The accelerator The detector

The collaboration

Belle-II

Precision measurement of |V_{cb}| The frame work Reconstruction

World average Basic ideas

Algorithms

PDG2010

Summary

The algorithms

The findings up until recently

- An algorithm called |vcbCombos| was used
- Written and maintained by colleagues at SLAC
- It considered all important issues ...
- ... and it behaved strangely ...
- $\chi^2/n.d.f$ was implausibly large
- Especially when adding new Belle B⁰ result

The way out

- I wrote a new algorithm, from scratch, as a check
- To have a fancy name, I called it Meteor ©

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism

The Belle experiment The accelerator The detector

The collaboration

Belle-II

Precision measurement of |V_{cb}| The frame work Reconstruction

World average Basic ideas

Algorithms

PDG2010

Summary

The algorithms

The findings up until recently

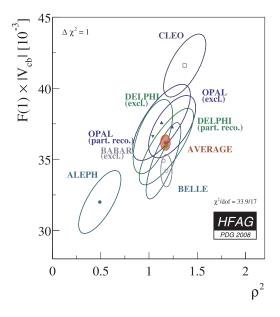
- An algorithm called |vcbCombos| was used
- Written and maintained by colleagues at SLAC
- It considered all important issues ...
- ... and it behaved strangely ...
- $\chi^2/n.d.f$ was implausibly large
- Especially when adding new Belle B⁰ result

The way out

- I wrote a new algorithm, from scratch, as a check
- To have a fancy name, I called it Meteor ©

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction


- The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector The collaboration
- Precision measurement of |V_{cb}|
- The frame work
- Reconstruction
- Results
- World average Basic ideas

Algorithms

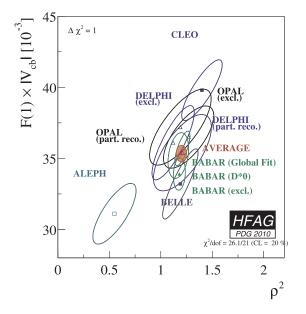
PDG2010

Summary

Using the previous algorithm ...

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

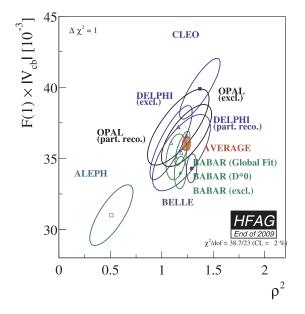

- The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector
- Belle-II
- Precision measurement of |V_{cb}| The frame work
- Reconstruction
- Results
- World average Basic ideas

Algorithms

PDG2010

Summary

... and the new one


Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

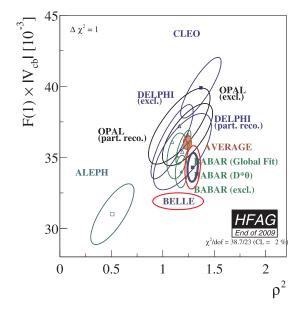
Introduction

- The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism
- The Belle experimen The accelerator The detector
- Belle-II Precision
- measurement of | V_{cb}
- Reconstruction
- Results
- World average Basic ideas
- Algorithms
- PDG2010
- Summary

And trusting the new Belle result:

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction


- The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism
- The Belle experimen The accelerator The detector
- Belle-II Precision
- measurement of | V_{cb}
- Perconstruction
- Results
- World average Basic ideas

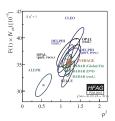
Algorithms

PDG2010

Summary

And trusting the new Belle result:

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at


Introduction

- The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector The collaboration
- Precision measurement of |V_{cb}| The frame work Reconstruction Results
- World average Basic ideas Algorithms
- PDG2010

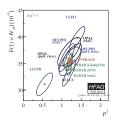
Summary

The numbers in PDG2010 update

The Particle Data Group uses only final, published resultsi.e. the old Belle result is still being used here for now

 $\begin{aligned} \mathcal{F}(1)|V_{cb}| &= (35.33 \pm 0.59) \times 10^{-3} \\ \rho^2 &= 1.20 \pm 0.05 \\ R_1(1) &= 1.43 \pm 0.06 \\ R_2(1) &= 0.82 \pm 0.04 \\ \\ \chi^2/\text{ndf.} &= 26.1 / 21 \\ P_{\chi^2} &= 20 \% \end{aligned}$

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at


Introduction

- The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector The collaboration
- Precision measurement of |V_{cb}| The frame work Reconstruction Results
- World average Basic ideas Algorithms
- PDG2010

Summary

The numbers in PDG2010 update

The Particle Data Group uses only final, published resultsi.e. the old Belle result is still being used here for now

$$\begin{split} |V_{cb}| \text{ from } B &\to D^* \ell \nu \text{ decays} \\ \mathcal{F}(1)|V_{cb}| = (35.33 \pm 0.59) \times 10^{-3} \\ \rho^2 &= 1.20 \pm 0.05 \\ R_1(1) &= 1.43 \pm 0.06 \\ R_2(1) &= 0.82 \pm 0.04 \\ \\ \chi^2/\text{ndf.} &= 26.1/21 \\ P_{\chi^2} &= 20 \% \end{split}$$

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation The Kobayashi-Maskawa

The Belle experimen The accelerator The detector

The collaboration Belle-II

Precision measurement of |V_{cb}| The frame work

Results

World average Basic ideas

Algorithms

PDG2010

Summary

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism

The Belle experiment The accelerator The detector The collaboration Belle-II

Precision measurement of |V_{CD}| The frame work Reconstruction Results

World average Basic ideas Algorithms

Summary

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism

The Belle experimen The accelerator The detector The collaboration

Precision measurement of |V_{cb}|

Reconstruction

Results

World average Basic ideas Algorithms PDG2010

Summary

Summary

• CP Violation and the KM mechanism

Belle, KEKB and Belle-II

• Analysis of exclusive $B^0 \rightarrow D^{*-} \ell^+ \nu_{\ell}$ decays

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism

The Belle experiment The accelerator The detector

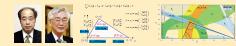
The collaboration

Precision

measurement of |V_{cb}|

5:

rieconstructio


World avera Basic ideas

Algorithms

PDG2010

Summary

• CP Violation and the KM mechanism

• Belle, KEKB and Belle-II

Summary

• Analysis of exclusive $B^0
ightarrow D^{*-} \ell^+
u_\ell$ decays

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism

The Belle experiment The accelerator

The detector

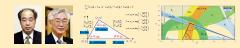
The collaboration

Belle-II

Precision measurement of |V_{cb}|

The frame work

Reconstruction


Results

World average Basic ideas Algorithms

PDG2010

Summary

• CP Violation and the KM mechanism

• Belle, KEKB and Belle-II

Summary

• Analysis of exclusive $B^0
ightarrow D^{*-} \ell^+
u_\ell$ decays

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism

The Belle experimer The accelerator

The detector

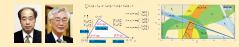
The collaboration

Delle-II

measurement of $|V_{cb}|$

The frame work

Reconstruction


Results

World average Basic ideas Algorithms

PDG2010

Summary

• CP Violation and the KM mechanism

• Belle, KEKB and Belle-II

Summary

• Analysis of exclusive $B^0
ightarrow D^{*-} \ell^+
u_\ell$ decays

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Introduction

- The main goal of Belle CP Violation The Kobayashi-Maskawa mechanism
- The Belle experiment The accelerator The detector The collaboration Belle-II
- Precision measurement of |V_{cb}| The frame work Reconstruction Results
- World average Basic ideas Algorithms PDG2010

Summary

Thanks for your attention!

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Appendix Some literat

CPV and CKM

- The Belle experiment Collaboration
- Detector
- Tags
- Nobel price poster
- Semileptonic B decays HQET, parametrization
- Fit procedure Covariance matrix
- $B^0 \rightarrow D^{*-}\ell^+ \nu$
- Resolutions
- B⁰ background
- B⁰ results
- $B^+ \rightarrow D^{*0} \ell^+ \nu$ $B^+ \text{ background}$ $B^+ \text{ results}$ $\pi^0_s \text{ momentum distribution}$

Title page

Precision measurements of the CKM mechanism at Belle

Wolfgang Dungel

Institute for high energy physics Austrian Academy of Sciences

"Physics in progress", April 29, 2010

1.57

HEPHY

Institut für Hochenergiephysik

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Appendix Some literature

CPV and CKM

- The Belle experiment
- Detector
- Tags
- Nobel price poste
- Semileptonic B decays HQET, parametrization

- Fit procedure Covariance matrix
- $B^0 \rightarrow D^* \ell^+ \iota$
- Resolutions
- B⁰ backgrour
- B⁰ results
- $B^+ \rightarrow D^{*0} \ell^+ \nu$ $B^+ \text{ background}$ $B^+ \text{ results}$ $\pi_s^0 \text{ momentum distribut}$
- Test of the parametrization

M. Neubert Heavy Quark Symmetry. Physics Reports (1994) 893; SLAC-PUB-6263.

🍉 J.D. Richman, P.R. Burchat

Leptonic and Semileptonic Decays of Charm and Bottom Hadrons.

Rev.Mod.Phys. 67, 893 (1995); Stanford-HEP-95-01.

BELLE Collaboration.

References I

Measurement of the form factors of the decay $B^0 \rightarrow D^{*-}\ell^+\nu_\ell$ and determination of the CKM matrix element $|V_{cb}|$. *arXiv:* hep-ex/0810.1657

BABAR Collaboration.

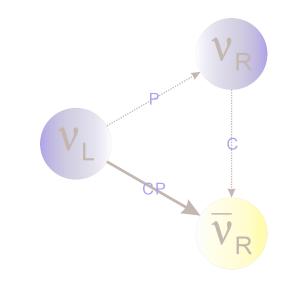
Determination of the Form Factors for the Decay $B_0 \rightarrow D^{*-} l^+ \nu_l$ and of the CKM Matrix Element $|V_{cb}|$. arXiv: hep-ex/0607076.

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Appendix Some literatur

CPV and CKM

- The Belle experiment Collaboration Detector
- rags
- Nobel price poster
- Semileptonic B decays HQET, parametrization
- Fit procedure Covariance matrix


 $B^{0} \rightarrow D^{*-}\ell^{+}\nu$ Resolutions $B^{0} \text{ background}$ $B^{0} \text{ results}$ $B^{+} \rightarrow D^{*0}\ell^{+}\nu$

 $B^+ \rightarrow D^{+} e^{\nu} \nu^{+} \nu^{-} B^+$ background B^+ results π_s^0 momentum distribution Test of the parametrization.

Title page

1.59

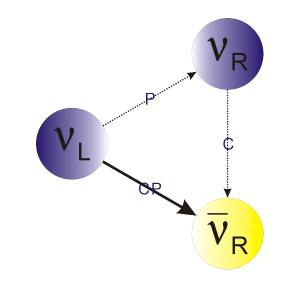
Example of a CP transformation

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Appendix Some literatur

CPV and CKM

- The Belle experiment Collaboration Detector
- Nobel price poster
- Semileptonic B decays HQET, parametrization
- Fit procedure Covariance matrix


 $B^{0} \rightarrow D^{*-} \ell^{+} \nu$ Resolutions B^{0} background B^{0} results

 $B^+ \rightarrow D^{*0}\ell^+\nu$ $B^+ \text{ background}$ $B^+ \text{ results}$ $\pi_s^o \text{ momentum distribution}$ Tast of the parametrization

Title page

1.59

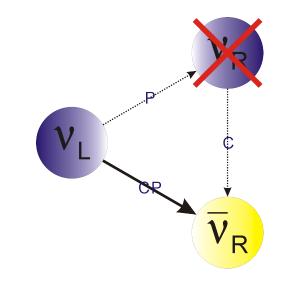
Example of a CP transformation

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Appendix Some literatur

CPV and CKM

- The Belle experiment Collaboration Detector
- Nobel price poster
- Semileptonic B decays HQET, parametrization
- Fit procedure Covariance matrix


 $B^{0} \rightarrow D^{*-} \ell^{+} \nu$ Resolutions B^{0} background B^{0} results

 $B^+ \rightarrow D^{*0} \ell^+ \nu$ $B^+ \text{ background}$ $B^+ \text{ results}$ $\pi_s^o \text{ momentum distributions}$ Tast of the parametrization

Title page

1.59

Example of a CP transformation

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Appendix Some literatu

CPV and CKM

The Belle experiment

Collaborat

Detector

Tags

Nobel price poster

Semileptonic B decays HQET, parametrization

Fit procedure Covariance matrix

 $B^0 \rightarrow D^* - \ell^+ \nu$ Resolutions

B⁰ background

B⁰ results

 $B^+ \to D^{*0} \ell^+ \nu$ $B^+ \text{ background}$ $B^+ \text{ results}$ $\pi_s^0 \text{ momentum distribution}$

Title page

1.60

Backup - The Belle experiment

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Appendix Some literatur

CPV and CKM

The Belle experiment Collaboration

Tags

Nobel price poste

Semileptonic B decays HQET, parametrization

Fit procedure Covariance matrix

 $B^0 \rightarrow D^* - \ell^+ \nu$

Resolutions

- B⁰ backgrour
- B⁰ results

 $\begin{array}{l} B^+ \to D^{*0} \ell^+ \nu \\ B^+ \text{ background} \\ B^+ \text{ results} \\ \pi^{\circ}_{s} \text{ momentum distributi} \end{array}$

Title page

The Belle Collaboration

16 countries, 60 institutes, ~370 collaborators

1.61

Precision measurements of the CKM mechanism at Belle Wolfgang Dungel.

dungel (at)

The Belle Detector

hephy.oeaw.ac.at

Appendix Some literatur

CPV and CKM

The Belle experiment Collaboration

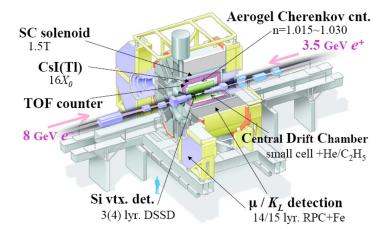
Detector

Tags Nobel price

Semileptonic B decays HQET, parametrization

Fit procedure Covariance matrix

 $B^0 \rightarrow D^* - \ell^+ i$


B⁰ backgroup

R⁰ results

 $B^+ \to D^{*0} \ell^+ \nu$ $B^+ \text{ background}$ $B^+ \text{ results}$ $\pi_s^0 \text{ momentum distribution}$

Title page

1.62

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Appendix Some literatur

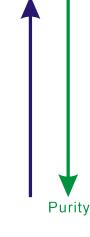
CPV and CKM

The Belle experiment Collaboration Detector

Tags

Nobel price poste

Semileptonic B decays HQET, parametrization


Fit procedure Covariance matri:

 $B^{0} \rightarrow D^{*-}\ell^{+}\nu$ Resolutions B^{0} background B^{0} results $B^{+} \rightarrow D^{*0}\ell^{+}\nu$

 B^+ background B^+ results

 π_s^0 momentum distributions Test of the parametrization

Title page

Tags at Belle

Efficiency

Untagged

- Only signal reconstructed
- High efficiency

Semileptonic tag

- Good statistics, clean events
- Kinematics not fully determined

Full reconstruction tag

- Kinematics fully determined
- Low statistics

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Appendix Some literatur

CPV and CKM

The Belle experiment Collaboration Detector

Tags

Nobel price poste

Semileptonic B decays HQET, parametrization

Fit procedure Covariance matrix

 $B^{0} \rightarrow D^{*-}\ell^{+}\nu$ Resolutions $B^{0} \text{ background}$ $B^{0} \text{ results}$ $B^{+} \rightarrow D^{*0}\ell^{+}\nu$

 B^+ background B^+ results

Title page

Test of the parametrization

--

Efficiency

Purity

Untagged

- Only signal reconstructed
- High efficiency

Semileptonic tag

- Good statistics, clean events
- Kinematics not fully determined

Full reconstruction tag

- Kinematics fully determined
- Low statistics

1.63

Tags at Belle

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Appendix Some literatur

CPV and CKM

The Belle experiment Collaboration Detector

Tags

Nobel price poste

Semileptonic B decays HQET, parametrization

Fit procedure Covariance matrix

 $B^0 \rightarrow D^* - \ell^+$ Resolutions B^0 background B^0 results

 $B^+ \rightarrow D^{*0} \ell^+ \nu$ $B^+ \text{ background}$ $B^+ \text{ results}$ $\pi_s^\circ \text{ momentum distributions}$ Test of the parametrization

Purity

Efficiency

Untagged

- Only signal reconstructed
- High efficiency

Semileptonic tag

- Good statistics, clean events
- Kinematics not fully determined

Full reconstruction tag

- Kinematics fully determined
- Low statistics

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

CPV and CKM

Nobel price poster

 $B^0 \rightarrow D^* = \ell^+ \nu$

Resolutions

B⁰ background

 $B^+ \rightarrow D^{*0} \ell^+ \mu$ B^+ results

Nobel prize 2008

2008年ノーベル物理学賞受賞!小林益川理論とは? クォークとは何ですか?

「P 別新姓の細れ」とは何ですから
 など重要なのですか?

O (MALE 11 1980 2 12 161 7-17-1

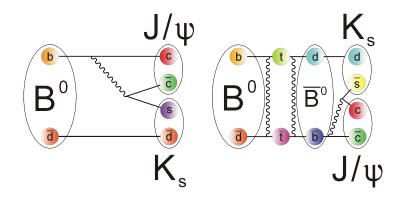
どうしてクォークがく種類の変なのですか?

○ 良給子とは何ですか?

林林川理論は森羅万象を説明できるんで

大人動の研究グループの中で、 するチャンスはありますか?

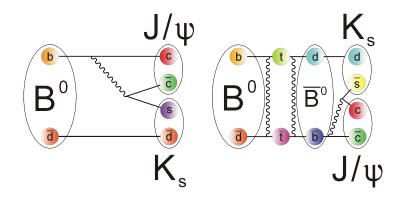
1.64


Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

- Appendix Some literatu
- CPV and CKM
- The Belle experiment Collaboration Detector
- Nabal
- Nobel price poster
- Semileptonic B decays HQET, parametrization
- Fit procedure Covariance matrix
- $B^0 \rightarrow D^{*-} \ell^+ \nu$
- Resolutions
- B⁰ background
- B⁰ results

 $B^+ \rightarrow D^{*0} \ell^+ \nu$ B^+ background B^+ results π_s° momentum distribution Test of the parametrization

Fitle nage


• CP violation through interference

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

- Appendix Some literatu
- CPV and CKM
- The Belle experiment Collaboration Detector
- lays
- Nobel price poster
- Semileptonic B decays HQET, parametrization
- Fit procedure Covariance matrix
- $B^0 \rightarrow D^{*-} \ell^+ \nu$
- Resolutions
- B⁰ background
- B⁰ results

 $B^+ \rightarrow D^{*0} \ell^+ \nu$ $B^+ \text{ background}$ $B^+ \text{ results}$ $\pi^0_s \text{ momentum distribution}$

CP violation through interference

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Appendix Some literatu

CPV and CKM

- The Belle experiment
- Detector
- Tags
- Nobel price poste

Semileptonic B decays HQET, parametrization

Fit procedure Covariance matri

 $B^0 \rightarrow D^* - \ell^+$ Resolutions

- B^o backgroun
- B^u results

 $B^+ \rightarrow D^{*0} \ell^+ \nu$ $B^+ \text{ background}$ $B^+ \text{ results}$ $\pi_s^o \text{ momentum distribution}$ Tast of the parametrization

Title page

Helicity amplitudes

•
$$H_{\pm} = f_{\pm}(w) h_{A_1}(w) \left(1 \mp \sqrt{\frac{w-1}{w+1}} R_1(w)\right)$$

• $H_0 = f_0(w) h_{A_1}(w) \left(1 + \frac{w-1}{1 - \frac{m_{D^*}}{m_B}} \left(1 - R_2(w)\right)\right)$

Parametrization by CLN

- $h_{A_1}(w) = h_{A_1}(1) (1 8\rho^2 z + (53\rho^2 15)z^2 (231\rho^2 91)z^3)$ $z = \frac{\sqrt{w+1} - \sqrt{2}}{\sqrt{w+1} + \sqrt{2}}$ • $R_1(w) = R_1(1) - 0.12(w-1) + 0.05(w-1)^2$
- $R_2(w) = R_2(1) + 0.11(w 1) 0.06(w 1)^2$

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Appendix Some literatu

CPV and CKM

- The Belle experiment Collaboration
- Detector
- Tags
- Nobel price poste
- Semileptonic B decays HQET, parametrization

Fit procedure

Covariance matrix

 $B^0 \rightarrow D^* - \ell^-$

Resolutions

- B⁰ backgroun
- B⁰ results

 $B^+ \rightarrow D^{*0} \ell^+ \nu$ B^+ background

B⁺ results

 π_s^0 momentum distributions Test of the parametrization

st of the parametriza

1.67

Covariances between bins of the marginal distributions

Covariances

$$\operatorname{Cov}_{ij} = \operatorname{Cov}(n_i, n_j) = N \cdot (p_{ij} - p_i p_j), \forall i \neq j$$

- N: Total number of events
- n_{ij}: Bin content of the bin (i, j) of 2d histogram
- *n_k*: Bin content of the bin *k* of a 1d histogram
- $p_x = \frac{n_x}{N}$

Special cases

- Independent variables: $p_{ij} = p_i p_j \rightarrow \text{Cov}_{ij} \equiv 0$
- Perfect anti-correlation: $n_{ij} = 0 \rightarrow \text{Cov}_{ij} < 0$
- Positive correlation: $p_{ij} > p_i p_j \rightarrow Cov_{ij} > 0$

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Appendix Some literatu

CPV and CKM

The Belle experiment Collaboration

Detector

Tags

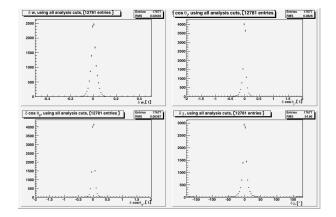
Nobel price poster

Semileptonic B decays HQET, parametrization

Fit procedure Covariance matri:

 $B^0 \rightarrow D^* - \ell^+$

Resolutions


B⁰ background B⁰ results

 $B^+ \rightarrow D^{*0} \ell^+ \nu$ $B^+ \text{ background}$ $B^+ \text{ results}$ $\pi^0 \text{ momentum distribut}$

Test of the parametrization

Title page

Resolutions in kinematic variables

Resolutions are approximately double gaussians
Almost identical for B⁰ and B⁺

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Appendix Some literati

CPV and CKM

- The Belle experiment Collaboration
- Detector
- Tags
- Nobel price poste

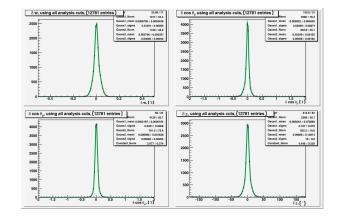
Semileptonic B decays HQET, parametrization

Fit procedure Covariance matri

 $B^0 \rightarrow D^{*-} \ell^+ \nu$

Resolutions

Title page


B⁰ background B⁰ results

 $B^+ \rightarrow D^{*0} \ell^+ \nu$ $B^+ \text{ background}$ $B^+ \text{ results}$

Test of the parametrization

1.68

Resolutions in kinematic variables

Resolutions are approximately double gaussians
Almost identical for B⁰ and B⁺

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Appendix Some literati

CPV and CKM

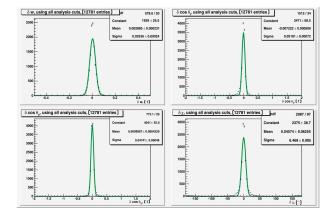
- The Belle experiment Collaboration
- Detector
- Tags
- Nobel price poste

Semileptonic B decays HQET, parametrization

Fit procedure Covariance matri

 $B^0 \rightarrow D^{*-} \ell^+ \nu$

Resolutions


Title page

B⁰ background B⁰ results

 $B^+ \rightarrow D^{*0} \ell^+ \nu$ $B^+ \text{ background}$ $B^+ \text{ results}$ $\pi^0 \text{ momentum distribut}$

s Test of the parametrization

Resolutions in kinematic variables

For easier comparison: Gaussian assumption

• $\delta_{\rm w} = 0.025, \, \delta_{\cos \theta_{\ell}} = 0.052, \, \delta_{\cos \theta_{V}} = 0.047, \, \delta_{\chi} = 6.47^{\circ}$

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Appendix Some literatur

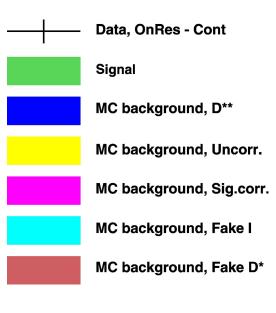
CPV and CKM

The Belle experiment Collaboration Detector

Nobel price poste

Semileptonic B decays HQET, parametrization

Fit procedure Covariance matrix


 $B^0 \rightarrow D^* - \ell^+ i$ Resolutions

B⁰ background B⁰ results

 $B^+ \to D^{*0} \ell^+ \nu$ $B^+ \text{ background}$ $B^+ \text{ results}$ $\pi_s^0 \text{ momentum distribution}$ Tract of the percentrication

Title page

Color scheme

1.69

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Appendix Some literatu

CPV and CKM

- The Belle experiment
- Detector
- Tags
- Nobel price poste
- Semileptonic B decays HQET, parametrization
- Fit procedure Covariance matri
- $B^0 \rightarrow D^{*-} \ell^+ \nu$

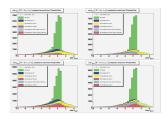
Resolutions

B⁰ background

 $B^+ \rightarrow D^{*0} \ell^+ \nu$ $B^+ \text{ background}$ $B^+ \text{ results}$ $\pi_s^0 \text{ momentum distribut}$

rest of the parametr

1.70


Background investigation

Investigated using MC

- Fake D*
- Fake Lepton
- Uncorrelated
- $B \rightarrow D^{**}\ell\nu, B \rightarrow D^*X\ell\nu$
- Signal correlated

Off-resonance data

• Continuum: qq decays

HMCMLL, TFractionFitter

- Determine norm of MC components from fit to data
- Use one dimensional distribution $\cos \theta_{B^0, D^* \ell}$

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Appendix

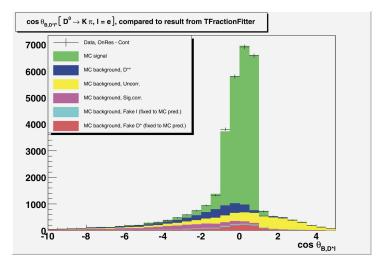
Some interature

CPV and CKM

- The Belle experiment Collaboration
- Detector
- Tags
- Nobel price poster
- Semileptonic B decays HQET, parametrization

Fit procedure Covariance matrix

 $B^0 \rightarrow D^{*-}\ell^+$


Resolutions

B⁰ background

 $B^+ \rightarrow D^{*0} \ell^+ \nu$ $B^+ \text{ background}$ $B^+ \text{ results}$ $\pi_s^0 \text{ momentum distribution}$ Tast of the parametrization

Title page

TFractionFitter result - $K\pi$, *e* **sample**

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

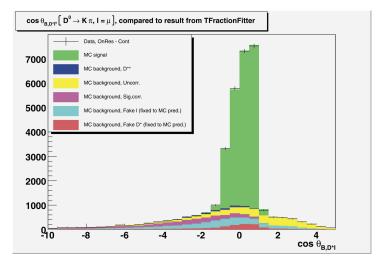
Appendix Some literati

CPV and CKM

- The Belle experiment Collaboration
- Detector
- Tags
- Nobel price poster
- Semileptonic B decays HQET, parametrization

Fit procedure

 $B^0 \rightarrow D^{*-}\ell^+ \ell^+$


Resolutions

B⁰ background

 $B^+ \rightarrow D^{*0} \ell^+ \nu$ B^+ background B^+ results π_s^0 momentum distribution Test of the parametrization

Title page

TFractionFitter result - $K\pi$, μ **sample**

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Appendix

Some ilterature

CPV and CKM

The Belle experiment Collaboration

Detector

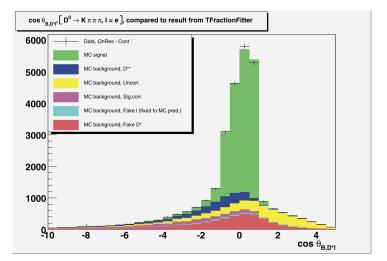
Tags

Nobel price poster

Semileptonic B decays HQET, parametrization

Fit procedure Covariance matrix

 $B^0 \to D^{*-} \ell^+ \nu$


Resolutions

B⁰ background

 $B^+ \rightarrow D^{*0} \ell^+ \nu$ $B^+ \text{ background}$ $B^+ \text{ results}$ $\pi_s^\circ \text{ momentum distribution}$ Test of the parametrization

Title page

TFractionFitter result - $K3\pi$, *e* **sample**

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Appendix

Some interature

CPV and CKM

The Belle experiment Collaboration

Detector

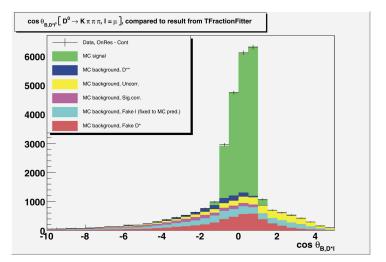
lags

Nobel price poster

Semileptonic B decays HQET, parametrization

Fit procedure Covariance matrix

 $B^0 \rightarrow D^{*-}\ell^+ \ell^+$


Resolutions

B⁰ background

 $B^+ \rightarrow D^{*0} \ell^+ \nu$ $B^+ \text{ background}$ $B^+ \text{ results}$ $\pi_s^\circ \text{ momentum distribution}$ Test of the parametrization

Title page

TFractionFitter result - $K3\pi$, μ **sample**

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Appendix Some literati

CPV and CKM

The Belle experiment

Detector

Tags

Nobel price poste

Semileptonic B decays HQET, parametrization

Fit procedure Covariance matrix

 $B^0 \rightarrow D^{*-}\ell^+\iota$

Resolutions

B⁰ background

 $B^+ \rightarrow D^{*0} \ell^+ \mu$

 B^+ background B^+ results π^0 momentum distributi

Test of the parametrization

Title page

1.75

Background and signal purity

Fractions of the components

sample	Кπ, е	$K\pi, \mu$	К3π,е	$K3\pi, \mu$
signal	(80.95 ± 1.06)%	(80.92 ± 0.98)%	(73.17 ± 1.71)%	(72.22 ± 1.46)%
D**	(4.73 ± 0.87)%	(1.24 ± 0.85)%	(5.21 ± 1.18)%	(2.85 ± 1.10)%
uncorrelated	(5.36 ± 0.27)%	(4.38 ± 0.29)%	$(5.42 \pm 0.58)\%$	(4.17 ± 0.54)%
correlated	(1.69 ± 0.26)%	(2.42 ± 0.28)%	(2.04 ± 0.69)%	$(2.25 \pm 0.59)\%$
fake ℓ	0.68 % (fixed)	3.62% (fixed)	0.72% (fixed)	4.04% (fixed)
fake D*	2.96% (fixed)	2.91% (fixed)	(8.78 ± 2.63)%	(9.63 ± 2.15)%
continuum	3.62% (fixed)	4.51% (fixed)	4.81% (fixed)	4.87% (fixed)

Back to overview page

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Appendix Some literat

CPV and CKM

The Belle experiment

Detector

Tags

Nobel price pos

Semileptonic B decays HQET, parametrization

Fit procedure Covariance matrix

 $B^0 \rightarrow D^{*-} \ell^+ \nu$

Resolutions

B⁰ background

B⁰ results

 $B^+ \rightarrow D^{*0} \ell^+ \nu$ B^+ background B^+ results π_s° momentum distribution Test of the parametrization

Title page

Fit results for all subsamples and the total sample

sample	Кπ,е	$K\pi, \mu$	К3π, е
ρ^2	$1.329 \pm 0.072 \pm 0.017$	$1.221 \pm 0.075 \pm 0.046$	$1.238 \pm 0.133 \pm 0.053$
R ₁ (1)	$1.455 \pm 0.077 \pm 0.046$	$1.608 \pm 0.087 \pm 0.099$	$1.085 \pm 0.125 \pm 0.044$
R ₂ (1)	$0.782 \pm 0.055 \pm 0.014$	$0.853 \pm 0.055 \pm 0.027$	$0.980 \pm 0.087 \pm 0.027$
$R_{K3\pi/K\pi}$	2.153 (fixed)	2.153 (fixed)	2.153 (fixed)
$\mathcal{B}(B^0)$	$4.43 \pm 0.03 \pm 0.25$	$4.41 \pm 0.03 \pm 0.26$	$4.42 \pm 0.04 \pm 0.25$
$\mathcal{F}(1) \left V_{cb} \right $	$34.3 \pm 0.4 \pm 1.0$	$33.5 \pm 0.4 \pm 1.0$	$35.6 \pm 0.8 \pm 1.3$
$\chi^2/n.d.f.$	29.2/36	37.4/36	19.2/36
P ₂ 2	78.2%	40.4%	99.0%
sample	$K3\pi, \mu$		total sample
	$K3\pi, \mu$ 1.436 ± 0.121 ± 0.062		total sample 1.293 ± 0.045 ± 0.029
sample			
sample ρ^2	$1.436 \pm 0.121 \pm 0.062$		$1.293 \pm 0.045 \pm 0.029$
$\frac{\text{sample}}{\rho^2} R_1(1)$	$\begin{array}{c} 1.436 \pm 0.121 \pm 0.062 \\ 1.643 \pm 0.163 \pm 0.112 \end{array}$		$\begin{array}{c} 1.293 \pm 0.045 \pm 0.029 \\ 1.495 \pm 0.050 \pm 0.062 \end{array}$
$\begin{tabular}{ c c c c }\hline sample \\ \hline ρ^2 \\ $R_1(1)$ \\ $R_2(1)$ \\ \end{tabular}$	$\begin{array}{c} 1.436 \pm 0.121 \pm 0.062 \\ 1.643 \pm 0.163 \pm 0.112 \\ 0.842 \pm 0.105 \pm 0.038 \end{array}$		$\begin{array}{c} 1.293 \pm 0.045 \pm 0.029 \\ 1.495 \pm 0.050 \pm 0.062 \\ 0.844 \pm 0.034 \pm 0.019 \end{array}$
$\begin{tabular}{ c c c c c }\hline\hline sample \\\hline \hline ρ^2 \\ $R_1(1)$ \\ $R_2(1)$ \\ $R_{K3\pi/K\pi}$ \end{tabular}$	$\begin{array}{c} 1.436 \pm 0.121 \pm 0.062 \\ 1.643 \pm 0.163 \pm 0.112 \\ 0.842 \pm 0.105 \pm 0.038 \\ 2.153 \mbox{ (fixed)} \end{array}$		$\begin{array}{c} 1.293 \pm 0.045 \pm 0.029 \\ 1.495 \pm 0.050 \pm 0.062 \\ 0.844 \pm 0.034 \pm 0.019 \\ 2.153 \pm 0.011 \end{array}$
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 1.436 \pm 0.121 \pm 0.062 \\ 1.643 \pm 0.163 \pm 0.112 \\ 0.842 \pm 0.105 \pm 0.038 \\ 2.153 (\text{fixed}) \\ 4.47 \pm 0.04 \pm 0.26 \end{array}$		$\begin{array}{c} 1.293 \pm 0.045 \pm 0.029 \\ 1.495 \pm 0.050 \pm 0.062 \\ 0.844 \pm 0.034 \pm 0.019 \\ 2.153 \pm 0.011 \\ 4.42 \pm 0.03 \pm 0.25 \end{array}$

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Appendix Some literatu

CPV and CKM

The Belle experiment Collaboration Detector

Tags

Nobel price poste

Semileptonic B decays HQET, parametrization

Fit procedure Covariance matri

 $B^0 \rightarrow D^{*-} \ell^+ \nu$

Resolutions

B⁰ background

B⁰ results

 $B^+ \rightarrow D^{*0} \ell^+ \nu$ B^+ background B^+ results π_s° momentum distribution Test of the parametrization

Preliminary systematic error

	ρ^2	$R_{1}(1)$	$R_{2}(1)$	$\mathcal{B}(B^0)$	$\mathcal{F}(1) V_{cb} $
Stat. error	0.050	0.060	0.043	0.030	0.22
D**	0.015	0.038	0.011	0.051	0.25
Uncorr.	0.009	0.028	0.002	0.003	0.04
Sig.corr.	0.003	0.003	0.007	0.028	0.14
Fake ℓ	0.020	0.037	0.009	0.002	0.04
Fake D*	0.012	0.011	0.009	0.034	0.33
Continuum	0.003	0.008	0.000	0.001	0.02
Trk., det.eff.	-	-	-	0.221	0.86
$\mathcal{B}\left(D^{0}\right)$	-	-	-	0.081	0.31
B (`D*)	-	-	-	0.033	0.13
B ⁰ life time	-	-	-	0.026	0.10
N _{BB}	-	-	-	0.036	0.14
$f_{+-}/f_{0\bar{0}}$	0.003	0.011	0.005	0.001	0.04
Syst. error	0.029	0.062	0.019	0.251	1.04

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Appendix

CPV and CKM

The Belle experiment Collaboration

Delecit

Tags

Nobel price poster

Semileptonic B decays HQET, parametrization

Fit procedure

 $B^0 \rightarrow D^* - \ell^+ \nu$

Resolutions

B⁰ background

B⁰ results

 $B^+ \rightarrow D^{*0}\ell^+\nu$ $B^+ \text{ background}$ $B^+ \text{ results}$ $\pi_s^o \text{ momentum distribution}$ Tast of the parametrization

Title page

1.78

Correlations

Correlations between the fit parameters

			Correlations		
Parameters	Global	ρ^2	$R_{1}(1)$	$R_{2}(1)$	$R_{K3\pi/K\pi}$
$\mathcal{F}(1) V_{cb} $	0.99168	0.635	-0.285	-0.220	0.011
ρ^2	0.99732		0.388	-0.870	0.040
$R_{1}(1)$	0.95366			-0.511	0.001
$R_{2}(1)$	0.99342				0.002
$R_{K3\pi/K\pi}$	0.41362				

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Appendix Some literatur

CPV and CKM

- The Belle experiment Collaboration Detector
- Nobel price poste
- Semileptonic B decays HQET, parametrization
- Fit procedure Covariance matrix
- $B^0 \rightarrow D^{*-} \ell^+ \iota$ Resolutions
- B⁰ background
- B⁰ results

 $B^+ \rightarrow D^{*0} \ell^+ \nu$ $B^+ \text{ background}$ $B^+ \text{ results}$ $\pi_s^{\circ} \text{ momentum distribution}$ Tast of the parametrization

Title page

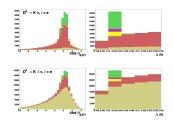
Color scheme

- (OnRes Continuum) data
 - Signal
 - MC background, Sig.corr.
 - MC background, D**
 - MC background, Uncorr.
 - MC background, Fake Lepton
 - MC background, Comb D*
 - MC background, Fake D⁰

Wolfgang Dungel. dungel (at) hephy.oeaw.ac.at

- B⁺ background

 $B^+ \rightarrow D^{*0} \ell^+ \mu$


Background investigation

Investigated using MC

- Fake D⁰
- Combinatoric D*
- Fake Lepton
- Uncorrelated
- $B \rightarrow D^{**}\ell\nu, B \rightarrow D^*X\ell\nu$
- Signal correlated

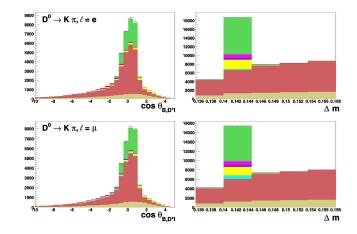
Off-resonance data

• Continuum: qq decays

HMCMLL, **TFractionFitter**

- Determine norm of MC components from fit to data
- Use 2D distribution $\cos \theta_{B^0 D^* \ell}$ vs. Δm

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at



- Appendix Some literati
- CPV and CKM
- The Belle experiment Collaboration
- Tags
- Nobel price poste
- Semileptonic B decays HQET, parametrization
- Fit procedure Covariance matrix
- $B^0 \rightarrow D^* \ell^+ \nu$ Resolutions
- B⁰ background
- B⁰ results

Title page

 $B^+ \rightarrow D^{*0} \ell^+ \nu$ $B^+ \text{ background}$ $B^+ \text{ results}$ $\pi_s^\circ \text{ momentum distribution}$ Tast of the personnetization

Plot of TFractionFitter result - $D^0 \rightarrow K\pi$ **modes**

1.81

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Appendix Some literati

CPV and CKM

The Belle experiment Collaboration

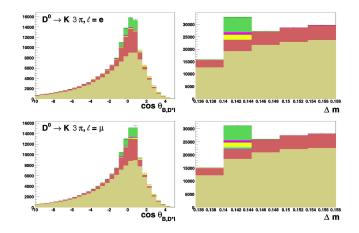
T----

Mahalan

Semileptonic B decays HQET, parametrization

Fit procedure Covariance matrix

 $B^0 \rightarrow D^{*-} \ell^+ \nu$ Resolutions


B⁰ background

B" results

 $B^+ \to D^{*0} \ell^+ \nu$ $B^+ \text{ background}$ $B^+ \text{ results}$ $\pi_s^0 \text{ momentum distribution}$

Title page

Plot of TFractionFitter result - $D^0 \rightarrow K3\pi$ **modes**

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Appendix

Some literature

CPV and CKM

The Belle experiment Collaboration Detector

Tags

Nobel price poster

Semileptonic B decays HQET, parametrization

Fit procedure

 $B^0 \rightarrow D^* = \ell^+$

Resolutions

B⁰ background

B⁰ results

 $B^+ \rightarrow D^{*0} \ell^+ \nu$ B^+ background B^+ results π^0 momentum distribut

Test of the parametrization

Title page

1.83

Background and signal purity

Fractions of the components

	Кπ,е	$K\pi, \mu$	К3π,е	$K3\pi, \mu$
Raw yield	13035	12262	16989	16350
Signal events	8133 ± 205	7447 \pm 201	5987 ± 229	5539 \pm 222
Signal	(62.39 ± 1.57)%	(60.73 ± 1.64)%	(35.24 ± 1.35)%	(33.88 ± 1.36)%
Signal correlated	(1.27 ± 0.31)%	(1.46 ± 0.32)%	(1.16 ± 0.26)%	(1.34 ± 0.31)%
D**	(0.77 ± 0.98)%	(0.73 ± 0.98)%	$(0.39 \pm 0.50)\%$	(0.36 ± 0.47)%
Uncorrelated	(4.97 ± 0.54)%	(4.25 ± 0.45)%	(3.48 ± 0.41)%	$(3.30 \pm 0.38)\%$
Fake ℓ	(0.31 ± 0.10)%	(1.94 ± 0.59)%	(0.18 ± 0.06)%	$(0.95 \pm 0.29)\%$
Combinatoric D*0	(24.76 ± 0.51)%	(24.30 ± 0.48)%	(16.35 ± 0.69)%	(15.19 ± 0.67)%
Fake D ⁰	(2.91 ± 0.25)%	(3.12 ± 0.23)%	(38.53 ± 0.50)%	(39.45 ± 0.51)%
Continuum	(2.63 ± 0.43)%	(3.46 ± 0.51)%	(4.68 ± 0.50)%	(6.14 ± 0.56)%

Back to overview page

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Appendix

CPV and CKM

The Belle experiment Collaboration

Detector

Tags

Nobel price poster

Semileptonic B decays HQET, parametrization

Fit procedure Covariance matrix

 $B^0 \rightarrow D^{*-} \ell^+ \nu$

Resolutions

B⁰ background

B⁻ results

 $B^+ \rightarrow D^{*0} \ell^+ \nu$ B^+ background B^+ results

 π°_{s} momentum distributions Test of the parametrization

Results for all subsamples

	$D^0 \rightarrow K\pi, \ell = e$	$D^0 \rightarrow K\pi, \ell = \mu$	$D^0 \rightarrow K3\pi, \ell = e$
ρ ²	$1.199 \pm 0.125 \pm 0.051$	$1.370 \pm 0.129 \pm 0.057$	$1.723 \pm 0.162 \pm 0.062$
R ₁ (1)	$1.507 \pm 0.135 \pm 0.095$	$1.568 \pm 0.158 \pm 0.089$	$1.840 \pm 0.271 \pm 0.110$
R ₂ (1)	$0.868 \pm 0.093 \pm 0.036$	$0.839 \pm 0.110 \pm 0.032$	$0.585 \pm 0.198 \pm 0.049$
$R_{K3\pi/K\pi}$	2.072	2.072	2.072
$\mathcal{B}(B^+ \to \bar{D}^{*0} \ell^+ \nu_{\ell})$	$4.91 \pm 0.05 \pm 0.58$	$4.77 \pm 0.05 \pm 0.57$	$4.83 \pm 0.07 \pm 0.57$
$\mathcal{F}(1) V_{cb} \times 10^3$	$34.3\pm0.6\pm2.2$	$35.0 \pm 0.6 \pm 2.3$	$36.5\pm1.0\pm2.4$
$\chi^2/\text{ndf.}$	48.3 / 36	40.6 / 36	39.6 / 36
P ₂ ²	8.3 %	27.5 %	31.3 %
	$D^0 \rightarrow K3\pi, \ell = \mu$		Fit to total sample
ρ ²	$1.434 \pm 0.209 \pm 0.086$		$1.376 \pm 0.074 \pm 0.056$
R ₁ (1)	$1.813 \pm 0.273 \pm 0.107$		$1.620 \pm 0.091 \pm 0.093$
R ₂ (1)	$0.764 \pm 0.191 \pm 0.052$		$0.805 \pm 0.064 \pm 0.037$
$R_{K3\pi/K\pi}$	2.072		2.072 ± 0.023
$\mathcal{B}(B^+ \to \bar{D}^{*0}\ell^+\nu_\ell)$	$4.83 \pm 0.07 \pm 0.58$		$4.84 \pm 0.04 \pm 0.57$
$\mathcal{F}(1) V_{cb} \times 10^3$	$34.8\pm1.0\pm2.3$		$35.0 \pm 0.4 \pm 2.2$
$\chi^2/\text{ndf.}$	44.2 / 36		187.8 / 155
P 2	16.3 %		3.7 %

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Appendix Some literatu

CPV and CKM

The Belle experiment Collaboration Detector Tags Nobel price poster

Semileptonic B decays HQET, parametrization

Fit procedure Covariance matrix

 $B^0 \rightarrow D^* - \ell^+$

Resolutions

B⁰ background

B^o results

 $B^+ \rightarrow D^{*0} \ell^+ \nu$ $B^+ \text{ background}$ $B^+ \text{ results}$

Test of the parametrization

Breakdown of the preliminary systematic error

	ρ2	R ₁ (1)	R ₂ (1)	$\mathcal{F}(1) V_{cb} \times 10^3$	$\mathcal{B}(B^+ \to \bar{D}^{*0}\ell^+\nu_\ell)$
Value	1.376	1.620	0.805	34.98	4.841
Statistical Error	0.074	0.091	0.064	0.37	0.044
π_s^0 & tracking	0.027	0.025	0.012	1.97	0.491
LeptonID	0.012	0.024	0.011	0.39	0.096
Norm - Signal Corr.	0.007	0.002	0.007	0.13	0.038
Norm - D**	0.005	0.023	0.002	0.04	0.041
Norm - Uncorr	0.014	0.074	0.025	0.28	0.023
Norm - Fake ℓ	0.017	0.028	0.010	0.05	0.024
Norm - Comb D* ⁰	0.008	0.014	0.008	0.11	0.028
Norm - Fake D ⁰	0.009	0.014	0.007	0.06	0.020
Norm - Continuum	0.004	0.005	0.001	0.00	0.003
Shape - Uncorr	0.014	0.003	0.005	0.10	
Shape - Comb D* ⁰	0.027	0.005	0.008	0.21	
Shape - Fake D ⁰	0.024	0.003	0.008	0.17	
$\mathcal{B}(D^0 \rightarrow K\pi)$				0.32	0.089
$\mathcal{B}(D^{*0} \rightarrow D^0 \pi^0)$				0.82	0.227
B ⁺ life time				0.12	0.033
$N(\Upsilon(4S))$				0.14	0.040
f_{+-}/f_{00}	0.003	0.006	0.003	0.15	0.043

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Appendix Some literat

CPV and CKM

The Belle experiment Collaboration

Detector

Tags

Nobel price poste

Semileptonic B decays HQET, parametrization

Fit procedure

 $B^0 \rightarrow D^{*-}\ell^+$

B⁰ background

B⁰ results

 $B^+ \rightarrow D^{*0} \ell^+ \nu$ B^+ background B^+ results

 π^0_s momentum distributions Test of the parametrization

Title page

1.86

Correlations between the fit parameters

Correlations

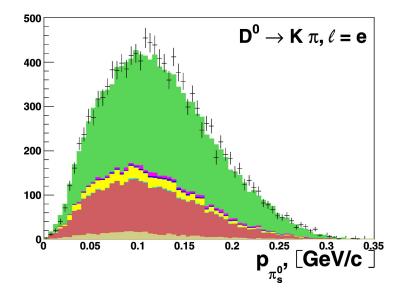
 Table shows statistical/systematic/total correlation coefficients

	$\mathcal{F}(1) V_{cb} $	ρ ²	R ₁ (1)	R ₂ (1)
$\mathcal{F}(1) V_{cb} $	1.000	0.455/0.399/0.295	-0.222 /-0.219/-0.179	-0.054/-0.024/-0.019
ρ ²		1.000	0.648/ 0.413/ 0.540	-0.889/-0.751/-0.841
R ₁ (1)			1.000	-0.749/-0.873/-0.763
R ₂ (1)				1.000

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Appendix Some literatu

CPV and CKM


- The Belle experiment Collaboration Detector
- Tags
- Nobel price poster
- Semileptonic B decays HQET, parametrization

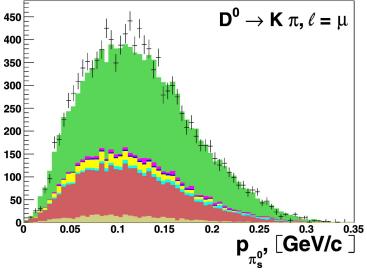
Fit procedure Covariance matrix

 $B^{0} \rightarrow D^{*-} \ell^{+} \nu$ Resolutions $B^{0} \text{ background}$ $B^{+} \rightarrow D^{*0} \ell^{+} \nu$ $B^{+} \text{ background}$ $B^{+} \text{ results}$

 π_s^0 momentum distributions Test of the parametrization

$p_{\pi_s^0}$ distribution - $K\pi$, *e* channel

Wolfgang Dungel. dungel (at) hephy.oeaw.ac.at



CPV and CKM

 $B^0 \rightarrow D^* = \ell^+ \nu$

 $B^+ \rightarrow D^{*0} \ell^+ \mu$ B^+ results π^0_{-} momentum distributions

 $p_{\pi^0_{\alpha}}$ distribution - $K\pi, \mu$ channel

Title page

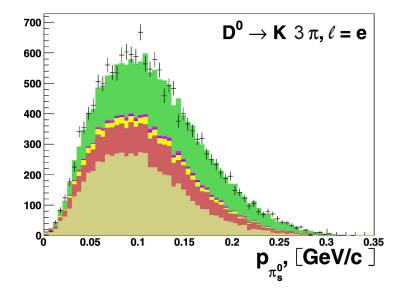
Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Appendix Some literatu

CPV and CKM

- The Belle experiment Collaboration Detector Tags
- Nobel price poster
- Semileptonic B decays HQET, parametrization

Fit procedure Covariance matrix


 $B^{0} \rightarrow D^{*-}\ell^{+}\nu$ Resolutions $B^{0} \text{ background}$ $B^{0} \text{ results}$ $B^{+} \rightarrow D^{*0}\ell^{+}\nu$ $B^{+} \text{ background}$

B⁺ results

 π_s^0 momentum distributions Test of the parametrization

Title page

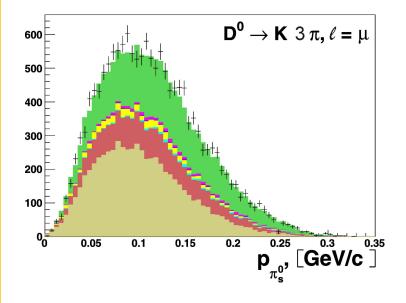
$p_{\pi_{e}^{0}}$ distribution - $K3\pi$, *e* channel

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Appendix Some literatur

CPV and CKM

- The Belle experiment Collaboration Detector
- Tags
- Nobel price poster
- Semileptonic B decays HQET, parametrization


Fit procedure Covariance matrix

 $B^{0} \rightarrow D^{*-} \ell^{+} \nu$ Resolutions $B^{0} \text{ background}$ $B^{0} \text{ results}$ $B^{+} \rightarrow D^{*0} \ell^{+} \nu$ $B^{+} \text{ background}$ $B^{+} \text{ results}$

 π_s^0 momentum distributions Test of the parametrization

Title page

 $p_{\pi^0_{\epsilon}}$ distribution - $K3\pi, \mu$ channel

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Appendix Some literatu

CPV and CKM

The	Belle	experiment
Coll	aboratio	on
Dete	ector	

Tags

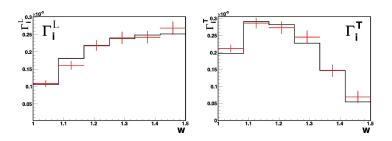
Nobel price poster

Semileptonic B decays HQET, parametrization

Fit procedure Covariance matrix

 $B^0 \rightarrow D^* - \ell^+$

R⁰ backgroun


R⁰ results

 $B^+ \rightarrow D^{*0} \ell^+ \nu$ $B^+ \text{ background}$ $B^+ \text{ results}$

 π_s momentum distribution: Test of the parametrization

Explicit test of the parametrization - B^+

- Result of discussions with theoreticians in Karlsruhe
- Extract shapes of longitudinal and transversal helicity amplitudes from a 2D fit
- Good agreement with parametrized result

(The statistical error is shown in these plots)

Back to results page

1.91

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Appendix Some literati

CPV and CKM

The Belle experiment

Collabora

Tags

- iugo

Nobel price poste

Semileptonic B decays HQET, parametrization

Fit procedure

Covariance matrix

 $B^0 \rightarrow D^* - \ell^+ \nu$ Resolutions

B⁰ background

B⁰ results

 $\begin{array}{l} B^+ \longrightarrow D^{*0} \ell^+ \nu \\ B^+ \text{ background} \\ B^+ \text{ results} \\ \pi_s^0 \text{ momentum distribution} \end{array}$

Test of the parametrization

1.92

Check	of Γ_L
-------	---------------

	$D^0 \rightarrow K\pi, \ell = e$	$D^0 \rightarrow K\pi, \ell = \mu$
$\Gamma^{00}, w \in (1, \frac{13}{12})$	$(1.025 \pm 0.119 \pm 0.120) imes 10^{-4}$	$(1.176 \pm 0.146 \pm 0.137) imes 10^{-4}$
$\Gamma^{00}, w \in (\frac{13}{12}, \frac{7}{6})$	(1.544 \pm 0.165 \pm 0.176) $ imes$ 10 $^{-4}$	$(1.689\pm0.177\pm0.192)\! imes\!10^{-4}$
$\Gamma^{00}, w \in (\frac{7}{6}, \frac{15}{12})$	$(2.238 \pm 0.213 \pm 0.237) imes 10^{-4}$	$(2.121 \pm 0.216 \pm 0.238) imes 10^{-4}$
$\Gamma^{00}, w \in (\frac{15}{12}, \frac{8}{6})$	$(2.677 \pm 0.244 \pm 0.268) imes 10^{-4}$	(2.059 \pm 0.240 \pm 0.228) $ imes$ 10 $^{-4}$
$\Gamma^{00}, w \in (\frac{8}{6}, \frac{17}{12})$	(2.406 \pm 0.235 \pm 0.256) $ imes$ 10 $^{-4}$	$(2.426 \pm 0.263 \pm 0.263) imes 10^{-4}$
$\Gamma^{00}, w \in (\frac{17}{12}, 1.5)$	(2.907 \pm 0.250 \pm 0.301) $\times 10^{-4}$	(2.384 \pm 0.273 \pm 0.278) $\times 10^{-4}$

	fit to total sample	central value of parametrized fit
$\Gamma^{00}, w \in (1, \frac{13}{12})$	$(1.087 \pm 0.092 \pm 0.123) imes 10^{-4}$	1.062×10^{-4}
$\Gamma^{00}, w \in (\frac{13}{12}, \frac{7}{6})$	$(1.611 \pm 0.121 \pm 0.179) imes 10^{-4}$	1.812×10^{-4}
$\Gamma^{00}, w \in (\frac{7}{6}, \frac{15}{12})$	$(2.186 \pm 0.151 \pm 0.238) imes 10^{-4}$	2.175×10^{-4}
$\Gamma^{00}, w \in (\frac{15}{12}, \frac{8}{6})$	$(2.406 \pm 0.172 \pm 0.262) imes 10^{-4}$	2.379×10^{-4}
$\Gamma^{00}, w \in (\frac{8}{6}, \frac{17}{12})$	$(2.421 \pm 0.175 \pm 0.258) imes 10^{-4}$	2.483×10^{-4}
$\Gamma^{00}, w \in (\frac{17}{12}, 1.5)$	(2.683 \pm 0.186 \pm 0.298) $ imes$ 10 $^{-4}$	2.514×10^{-4}

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Appendix Some literati

CPV and CKM

The Belle experiment

Guilabura

Tags

Tays

Nobel price poste

Semileptonic B decays HQET, parametrization

Fit procedure Covariance matri

 $B^0 \rightarrow D^{*-} \ell^+ \nu$

Resolutions

B⁰ background

B⁰ results

 $\begin{array}{l} B^+ \to D^{*0} \ell^+ \nu \\ B^+ \text{ background} \\ B^+ \text{ results} \\ \pi^0_e \text{ momentum distribution} \end{array}$

Test of the parametrization

5-

1.93

Check of Γ_T

	$D^0 \to K \pi . \ell = e$	$D^0 \rightarrow K \pi . \ell = \mu$
$\Gamma^{T}, w \in (1, \frac{13}{12})$	$(2.267 \pm 0.153 \pm 0.264) \times 10^{-4}$	$(1.939 \pm 0.152 \pm 0.228) imes 10^{-4}$
$\Gamma^{T}, w \in (\frac{13}{12}, \frac{7}{6})$	$(2.695 \pm 0.214 \pm 0.307) imes 10^{-4}$	(3.015 \pm 0.216 \pm 0.348) $ imes$ 10 $^{-4}$
$\Gamma^{T}, w \in (\frac{7}{6}, \frac{15}{12})$	$(2.786 \pm 0.253 \pm 0.310) \times 10^{-4}$	$(2.678 \pm 0.261 \pm 0.299) imes 10^{-4}$
$\Gamma^{T}, w \in (\frac{15}{12}, \frac{8}{6})$	$(2.298 \pm 0.249 \pm 0.246) imes 10^{-4}$	(2.673 \pm 0.295 \pm 0.290) $ imes$ 10 $^{-4}$
$\Gamma^{T}, w \in (\frac{8}{6}, \frac{17}{12})$	$(1.557 \pm 0.242 \pm 0.162) imes 10^{-4}$	$(1.369 \pm 0.250 \pm 0.144) imes 10^{-4}$
$\Gamma^{T}, w \in (\frac{17}{12}, 1.5)$	$(0.588\pm 0.205\pm 0.056)\!\times\!10^{-4}$	$(0.862\pm 0.284\pm 0.099)\!\times\!10^{-4}$

	fit to total sample	central value of parametrized fit
$\Gamma^T, w \in (1, \frac{13}{12})$	$(2.117 \pm 0.108 \pm 0.248) imes 10^{-4}$	1.975×10^{-4}
$\Gamma^{T}, w \in (\frac{13}{12}, \frac{7}{6})$	(2.865 \pm 0.152 \pm 0.327) $ imes$ 10 $^{-4}$	2.908×10^{-4}
$\Gamma^{T}, w \in (\frac{7}{6}, \frac{15}{12})$	$(2.732 \pm 0.181 \pm 0.303) imes 10^{-4}$	2.819×10^{-4}
$\Gamma^T, w \in (\frac{15}{12}, \frac{8}{6})$	(2.454 \pm 0.191 \pm 0.263) $ imes$ 10 $^{-4}$	2.276×10^{-4}
$\Gamma^{T}, w \in (\frac{8}{6}, \frac{17}{12})$	$(1.468 \pm 0.174 \pm 0.154) imes 10^{-4}$	1.478×10^{-4}
$\Gamma^T, w \in (\frac{17}{12}, 1.5)$	(0.693 \pm 0.170 \pm 0.070) $ imes$ 10 $^{-4}$	0.547×10^{-4}

Wolfgang Dungel, dungel (at) hephy.oeaw.ac.at

Appendix Some literatur

CPV and CKM

- The Belle experiment Collaboration
- Tags
- Nobel price poster

Semileptonic B decays HQET, parametrization

Fit procedure Covariance matrix

 $B^0 \rightarrow D^{*-} \ell^+ \iota$

Resolutions

B⁰ background

B⁰ results

 $B^+ \rightarrow D^{*0} \ell^+ \nu$ $B^+ \text{ background}$ $B^+ \text{ results}$ $\pi_s^o \text{ momentum distributio}$ Tota of the commentionation

Title page

Precision measurements of the CKM mechanism at Belle

Wolfgang Dungel

Institute for high energy physics Austrian Academy of Sciences

"Physics in progress", April 29, 2010

1.94