## (Semi)leptonic kaon decays: experimental results & prospects

### Evgueni Goudzovski

### (University of Birmingham)

email: eg@hep.ph.bham.ac.uk

### <u>Outline:</u>

- 1) Overview of recent and planned kaon experiments;
- 2) Global analysis of (semi)leptonic kaon decay data;
- 3) CKM unitarity and SM tests;
- 4) Summary and prospects.



Lattice QCD meets Experiment • University of Glasgow 3 June 2010

# Overview of kaon experiments

### Major recent & future K experiments



NA62, K<sup>o</sup>TO, P996 aim at the "golden modes" K→πνν. Several experiments plan |V<sub>us</sub>| measurements with (semi)leptonic decays: lattice QCD is a crucial ingredient!

## Future $K_{\pi\nu\nu}$ experiments



### Other major experiments



# Global analysis of (semi)leptonic K decay data

| V <sub>us</sub>  f <sub>+</sub> (0                                                                                                                                                             | ) from K <sub>I3</sub> decays                                                                                  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|--|
| $K \rightarrow \pi I_V$ (K <sub>13</sub> ) decays: ideal channels for $ V_{us} $ determination                                                                                                 |                                                                                                                |  |  |  |
| $\Gamma(K_{l3(\gamma)}) = \frac{C_K^2 G_F^2 M_K^5}{192\pi^3} S_{EW}  V_{us} ^2  f_+^{1}$                                                                                                       | $ (0)^{2} I_{Kl}(\lambda) (1 + 2\Delta_{K}^{SU(2)} + 2\Delta_{Kl}^{EM}) $                                      |  |  |  |
| (with K=K <sub>S</sub> , K <sub>L</sub> , K <sup>+</sup> ; I=e, $\mu$ ; C                                                                                                                      | $_{\rm K}^2 = \frac{1}{2}$ for K <sup>+</sup> , C <sub>K</sub> <sup>2</sup> = 1 for K <sup>0</sup> )           |  |  |  |
| Inputs from experiment                                                                                                                                                                         | Inputs from theory                                                                                             |  |  |  |
| Γ <b>(K<sub>I3(γ)</sub>):</b><br>radiation-inclusive decays rates;<br>in practice, branching ratios & lifetimes.                                                                               | S <sub>EW</sub> =1.0232(3):<br>short-distance EW correction                                                    |  |  |  |
| $I_{\kappa l}(\lambda)$ :<br>Phase space integrals;<br>$\lambda$ s parameterize form factor dependence                                                                                         | <pre>f<sub>+</sub>(0): vector form factor at zero momentum transfer (t=0)</pre>                                |  |  |  |
| on momentum transfer $t = (P_K - P_\pi)^2$ .<br>E.g. Taylor expansion parameterization:<br>$(\lambda_+', \lambda_+'')$ for $K_{e3}$ , $(\lambda_+', \lambda_+'', \lambda_0')$ for $K_{\mu3}$ . | $\Delta^{SU(2)}$ and $\Delta^{EM}$ :<br>channel-dependent isospin breaking<br>and long-distance EM corrections |  |  |  |
|                                                                                                                                                                                                | 7                                                                                                              |  |  |  |

## |V<sub>us</sub>| from K<sub>I3</sub>: recent history

2002: (PDG 2004)  $|V_{ud}|^2 + |V_{us}|^2 - 1 = -0.0035(15).$ A 2.3 $\sigma$  hint for CKM unitarity violation.

 BNL E865 measured higher BR(K<sup>+</sup><sub>e3</sub>)=0.0513(10). ← 1.9%
 Start of the |V<sub>us</sub>| revolution: first modern measurement, consistent with unitarity.

2004-present: Many new measurements (KLOE, KTeV, ISTRA+, NA48)

- BRs, lifetimes, form factor shapes;
- Much higher statistical precision than early measurements;
- Adequate treatment of radiative corrections;
- Correlations between measurements properly reported.

2008-beyond: Value of  $|V_{us}|$  used in precision tests of the SM FlaviaNet Kaon WG [www.lnf.infn.it/wg/vus] arXiv:0801.1817 + update arXiv:1005.2323





### BR & τ measurements: K<sup>±</sup>



### BR & τ measurements: K<sub>s</sub>

 $|V_{us}|$  with K<sub>s</sub> decays: the most recent development

KLOE (2006): BR(K<sub>S</sub> $\rightarrow \pi e \nu$ ) / BR(K<sub>S</sub> $\rightarrow \pi^{+}\pi^{-}$ )  $= 10.19(13) \times 10^{-4}$ ← 1.3% BR(K<sub>s</sub> $\rightarrow \pi^+\pi^-)$  / BR(K<sub>s</sub> $\rightarrow \pi^0\pi^0)$ ) = 2.2459(54)dominated by statistics NA48 (2007):  $BR(K_{s} \rightarrow \pi ev)/BR(K_{i} \rightarrow \pi ev)$ = 0.993(34)NA48 (2002): = 89.598(70) ps  $\tau_{KS}$ FlaviaNet'10 fit: 6 inputs. KTeV (2003): Free parameters: 4 BRs and lifetime. = 89.58(13) ps  $\tau_{KS}$ Constraint:  $\Sigma BR_i = 1$ .  $\chi^2$ /ndf = 0.015/1 (P=90%) Assuming lepton universality and using measured form factors:

 $\frac{\text{Fit result:}}{\text{BR}(\text{K}_{e3})} = 7.05(8) \times 10^{-4}$ 

 $BR(K_{e3})/BR(K_{u3}) = 0.6655(15)$ 

### Form factors with $K_{e3}$ : ( $\lambda'_{+}, \lambda''_{+}$ )

Polynomial parameterization:  $f_{+}(t)/f_{+}(0) = 1 + \lambda'(t/m_{\pi}^{2}) + \frac{1}{2}\lambda''(t/m_{\pi}^{2})^{2} + \dots$ 



Slope parameters x10<sup>3</sup>  $\lambda' = 25.1\pm0.9$   $\lambda'' = 1.6\pm0.4$   $\rho(\lambda',\lambda'') = -0.94$  $\chi^2/ndf = 3.5/6$  (P=51%)



 $4\sigma$  significance of  $\lambda''$ 

Fits to pole and dispersive parameterizations lead to similar PSIs within 0.1% 12



# V<sub>us</sub>|f<sub>+</sub>(0) measurements with K<sub>I3</sub>



$$V_{us}|/|V_{ud}|$$
 from (K, $\pi$ ) $\rightarrow$  $\mu\nu$ 

SM ratio of radiation-inclusive leptonic decay widths:



### Experimental input

(1) from K<sup>±</sup> BR fit BR(K<sub>µ2</sub>) = 0.6347(18)  $\leftarrow$  0.28%  $\tau$ (K<sup>±</sup>) = 12.384(15) ns

(2) from PDG 2009  $\Gamma(\pi^{\pm} \rightarrow \mu^{\pm} \nu) = 38.408(7) \ \mu s^{-1}$ 

Experimental result:  $|V_{us}/V_{ud}| f_K/f_{\pi} = 0.2758(5) \leftarrow 0.18\%$ 

Long-distance EM correction

 $\delta_{
m EM} = -0.0070(35)$ 

(Marciano, PRL 93 (2004) 231803)

# CKM unitarity and SM tests

## **CKM unitarity**

| V <sub>us</sub> |                                                     | V <sub>us</sub> vs V <sub>ud</sub> fit                                    | $\frac{\text{Experimental input:}}{ V_{\text{US}} f_{+}(0)} = 0.2163(5)$                                               |
|-----------------|-----------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| 0.228           |                                                     | $  \mathbf{\leftarrow V}_{ud} \ (\mathbf{0^+} \rightarrow \mathbf{0^+}) $ | $ V_{us}/V_{ud}  f_K/f_{\pi} = 0.2758(5)  V_{ud}  = 0.97425(22)$                                                       |
|                 | - \                                                 |                                                                           | (average from 20 nuclear beta decays,<br>Hardy & Towner, PRC79 (2009) 055502                                           |
| 0.226           | - V <sub>us</sub> (K <sub>I3</sub> )<br>-           |                                                                           | $\frac{\text{Lattice input:}}{f_{+}(0)} = 0.959(6) = 1.193(6)$                                                         |
|                 | fit →                                               | ← fit with<br>unitarity                                                   | Fit result: $0.4\%$<br>$ V_{us}  = 0.2253(9)$                                                                          |
| 0.224           | V <sub>us</sub>  V <sub>ud</sub> (K <sub>µ2</sub> ) | unitari                                                                   | Fit imposing unitarity:<br>$ V_{us}  = 0.2254(6)$<br>CKM unitarity test:<br>$ V_{us} ^2 +  V_{ud} ^2 - 1 = -0.0001(6)$ |
|                 | 0.972 0.97                                          | 4 0.976                                                                   | Other (less precise)  V <sub>us</sub>  <br>evaluations have been made<br>with hyperon and tau decays                   |

### K<sub>µ2</sub>: sensitivity to new physics

Comparison of  $|V_{us}|$  determined from helicity-suppressed  $K_{\mu 2}$  decays vs helicity allowed  $K_{13}$  decays



To reduce uncertainties of hadronic and EM corrections to  $K_{\mu2}$ ,



### K<sub>13</sub>: lepton universality test

Comparison of  $|V_{us}|$  determined from  $K_{e3}$  vs  $K_{\mu3}$  decays

$$r_{\mu e} = \frac{[|V_{us}|f_{+}(0)]_{\mu 3, \exp}^{2}}{[|V_{us}|f_{+}(0)]_{e 3, \exp}^{2}} = \frac{\Gamma_{K\mu 3}}{\Gamma_{Ke 3}} \frac{I_{e 3} \left(1 + 2\delta_{\rm EM}^{Ke}\right)}{I_{\mu 3} \left(1 + 2\delta_{\rm EM}^{K\mu}\right)} = (g_{\mu}/g_{e})^{2} =$$

Experimental results

K±:
$$r_{\mu e} = 0.998(9)$$
  
 $K^{0}$ : $r_{\mu e} = 1.003(5)$  $r_{\mu e} = 1.002(4)$ Non-kaon measurements: $\pi \rightarrow lv$ : $r_{\mu e} = 1.0042(33)$ (PRD 76 (2007) 095017) $\tau \rightarrow lvv$ : $r_{\mu e} = 1.000(4)$ (Rev.Mod.Phys. 78 (2006) 1043)

The sensitivity in kaon sector approaches those obtained in the other fields.

SM

lepton coupling

at the  $W \rightarrow V$  vertex



### Summary

- Tremendous progress in measurements and interpretation of (semi)leptonic kaon decays during the last decade!
- Thanks to advances of both experiment and theory,
   |V<sub>us</sub>|f<sub>+</sub>(0) has been measured to 0.23% precision, and
   |V<sub>us</sub>| has been evaluated to 0.4% precision with kaon decays.
- CKM unitary with  $|V_{ud}|^2 + |V_{us}|^2$  tested at 0.06% precision:  $\rightarrow$  O(10 TeV) bound on the scale of new physics.
- $K_{\mu 2}/\pi_{\mu 2}$  and  $K_{e 2}/K_{\mu 2}$  put non-trivial constraints of 2HDM.
- Experimental precision on  $|V_{us}|f_+(0)$  is expected to be improved to the level of ~0.1% in mid-term: a similar precision on  $f_+(0)$ and an improvement on radiative corrections for  $|V_{ud}|$ would allow for a CKM unitarity test at ~0.02% level.

Interpretation of  $K_{e3}$  data is currently limited by lattice QCD input