Thomas Blake, Imperial College

Experimental prospects for B → K II

Introduction

- Why are we interested in b → sll transitions?
- Overview of the results from TeVatron and B-Factories.
- Prospects at LHCb.

b → s II

- Flavour changing neutral current process:
 - Forbidden at tree level in SM.
 - Mediated by γ / Z^0 penguin and W box diagrams in SM.
 - New physics can also contribute at loop order leading to large deviations from SM predictions.

b → s II

- Flavour changing neutral current process:
 - Forbidden at tree level in SM.
 - Mediated by γ / Z^0 penguin and W box diagrams in SM.
 - New physics can also contribute at loop order leading to large deviations from SM predictions.

Enhancements from : SUSY, generic little Higgs, 2 Higgs models , graviton exchange, extra dimension models

Brief phenomelogical aside

- Three energy scales:
 - $O(\Lambda_{QCD}) \sim 0.1 \text{ GeV}, O(m_b) \sim 5 \text{ GeV}, O(M_W) \sim 90 \text{ GeV}$
- Effective Hamiltonian for b → s decay:

Right handed currents, suppressed by $M_B /$ $_{W}$ in SM

Separate long and short distance effects:

(t) Operators, containing the long distance effects.

 $\mathcal{C}_i(\mu)$ Wilson coefficients, containing the short distance effects that can be calculated perturbatively.

A few definitions ...

- For B \rightarrow K^(*) II decays, parameterise the decay in terms of the Helicity angle of the $\mu^+ \theta_L$:
 - The angle between the direction of the µ⁺ in the rest frame of the dimuon pair and the direction of the dimuon in the B-rest frame.

and the invariant mass of the dimuon pair q².

Observables

- Focus on measuring ratios where the dominant hadronic uncertainties (e.g. those coming from the B → K form factors) cancel.
- Experimental observables:
 - Forward-backward asymmetry
 - Isospin asymmetry
 - R_K

Why have we focused on K* II ?

- A large number of existing measurements (and phenomenology papers) focus on the B → K* II rather than B⁺ → K⁺ II.
 - B →V II decays are highly sensitive to presence of new physics through the angular distribution (FL, AFB etc).
 - Effect on angular distribution is small for B → K II:

 $A_{FB} \propto \mathcal{R}e(A_S A_V^*)$

Wilson coefficient for the scalar operator highly suppressed in SM ,

$$C_S^{SM} \propto \frac{m_l M_B}{M_W^2}$$

$B^0 \rightarrow K^{*0} \parallel$

- Forward backward asymmetry is sensitive to C₇, C₉ and C₁₀ Wilson coefficients.
 - Magnitude of C_7 constrained by inclusive $b \rightarrow s \gamma$.
- BaBar, BELLE and CDF have O(100) events.

B⁰ → K^{*0} µµ at LHCb

- In the trigger and the offline selection, try to avoid cutting on p_T/IP of both muons that can bias θ_L (and AFB)
 - Rely on B flight distance, B vertex quality and the B p_T that are uncorrelated to the angular variables.
 - Largest acceptance biases come from the muon reconstruction (and are geometrical).
- Offline selection based on Fisher discriminant.

B⁰ → K^{*0} µµ at LHCb

selected / 2fb⁻¹ Background categories In the trigger and the offline selection, Part Reco try to avoid cutting on p_{T}/IP of both Ghost From-PV 3000 muons that can bias θ_1 (and AFB) bb 2500 Signal Rely on I LHCb statistical precision, and the 2.2σ SM exclusion using BELLE central value. angulary 0.5 LHCb 100pb⁻¹ BELLE Largest **BaBar** the muo 0.9 1 1 geometr 🖁 0.0 liscriminant Offline sel discrimina -0.5In nomir 6200 s 2 4 6 8 0 with S/ $q^2 (GeV^2)$

Branching ratios

$$\mathcal{B}(B o Kl^+l^-) = (4.8^{+0.5}_{-0.4} \pm 0.3) imes 10^{-7}$$

 $\mathcal{B}(B o Kl^+l^-) = (3.4 \pm 0.7 \pm 0.2) imes 10^{-7}$
 $\mathcal{B}(B o Kl^+l^-) = (3.4 \pm 0.7 \pm 0.2) imes 10^{-7}$
 $\mathcal{B}(B o Kl^+l^-) = (3.4 \pm 0.7 \pm 0.2) imes 10^{-7}$
 $\mathcal{B}(B o Kl^+l^-) = (3.4 \pm 0.7 \pm 0.2) imes 10^{-7}$
 $\mathcal{B}(B o Kl^+l^-) = (3.4 \pm 0.7 \pm 0.2) imes 10^{-7}$
 $\mathcal{B}(B o Kl^+l^-) = (3.4 \pm 0.7 \pm 0.2) imes 10^{-7}$
 $\mathcal{B}(B o Kl^+l^-) = (3.4 \pm 0.7 \pm 0.2) imes 10^{-7}$
 $\mathcal{B}(B o Kl^+l^-) = (3.4 \pm 0.7 \pm 0.2) imes 10^{-7}$
 $\mathcal{B}(B o Kl^+l^-) = (3.4 \pm 0.7 \pm 0.2) imes 10^{-7}$
 $\mathcal{B}(B o Kl^+l^-) = (3.4 \pm 0.7 \pm 0.2) imes 10^{-7}$
 $\mathcal{B}(B o Kl^+l^-) = (3.4 \pm 0.7 \pm 0.2) imes 10^{-7}$
 $\mathcal{B}(B o Kl^+l^-) = (3.4 \pm 0.7 \pm 0.2) imes 10^{-7}$
 $\mathcal{B}(B o Kl^+l^-) = (3.4 \pm 0.7 \pm 0.2) imes 10^{-7}$
 $\mathcal{B}(B o Kl^+l^-) = (3.4 \pm 0.7 \pm 0.2) imes 10^{-7}$
 $\mathcal{B}(B o Kl^+l^-) = (3.4 \pm 0.7 \pm 0.2) imes 10^{-7}$
 $\mathcal{B}(B o Kl^+l^-) = (3.4 \pm 0.7 \pm 0.2) imes 10^{-7}$
 $\mathcal{B}(B o Kl^+l^-) = (3.4 \pm 0.7 \pm 0.2) imes 10^{-7}$
 $\mathcal{B}(B o Kl^+l^-) = (3.4 \pm 0.7 \pm 0.2) imes 10^{-7}$
 $\mathcal{B}(B o Kl^+l^-) = (3.4 \pm 0.7 \pm 0.2) imes 10^{-7}$
 $\mathcal{B}(B o Kl^+l^-) = (3.4 \pm 0.7 \pm 0.2) imes 10^{-7}$
 $\mathcal{B}(B o Kl^+l^-) = (3.4 \pm 0.7 \pm 0.2) imes 10^{-7}$
 $\mathcal{B}(B o Kl^+l^-) = (3.4 \pm 0.7 \pm 0.2) imes 10^{-7}$
 $\mathcal{B}(B o Kl^+l^-) = (3.4 \pm 0.7 \pm 0.2) imes 10^{-7}$
 $\mathcal{B}(B o Kl^+l^-) = (3.4 \pm 0.7 \pm 0.2) imes 10^{-7}$
 $\mathcal{B}(B o Kl^+l^-) = (3.4 \pm 0.7 \pm 0.2) imes 10^{-7}$
 $\mathcal{B}(B o Kl^+l^-) = (3.4 \pm 0.7 \pm 0.2) imes 10^{-7}$
 $\mathcal{B}(B o Kl^+l^-) = (3.4 \pm 0.7 \pm 0.2) imes 10^{-7}$
 $\mathcal{B}(B o Kl^+l^-) = (3.4 \pm 0.7 \pm 0.2) imes 10^{-7}$
 $\mathcal{B}(B o Kl^+l^-) = (3.4 \pm 0.7 \pm 0.2) imes 10^{-7}$
 $\mathcal{B}(B o Kl^+l^-) = (3.4 \pm 0.7 \pm 0.2) imes 10^{-7}$
 $\mathcal{B}(B o Kl^+l^-) = (3.4 \pm 0.7 \pm 0.2) imes 10^{-7}$
 $\mathcal{B}(B o Kl^+l^-) = (3.4 \pm 0.7 \pm 0.2) imes 10^{-7}$
 $\mathcal{B}(B o Kl^+l^-) = (3.4 \pm 0.7 \pm 0.2) imes 10^{-7}$
 $\mathcal{B}(B o Kl^+l^-) = (3.4 \pm 0.7 \pm 0.2) imes 10^{-7}$
 $\mathcal{B}(B o Kl^+l^-) = (3.4 \pm 0.7 \pm 0.2) i$

$$\begin{split} \mathcal{B}(B^+ \to K^+ \nu \bar{\nu}) < 1.4 \times 10^{-5} \\ \mathcal{B}(B^0 \to K^0 \nu \bar{\nu}) < 16 \times 10^{-5} \\ \mathcal{B}(B^+ \to K^+ \nu \bar{\nu}) < 4.5 \times 10^{-5} \\ \end{split} \\ \end{split}$$

Branching ratios at CDF

• CDF measure only the final states with muons:

$$\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-) = [0.38 \pm 0.05(\text{stat}) \pm 0.03(\text{syst})] \times 10^{-6}$$

Note systematic error not dissimilar to the statistical error

Breakdown of systematic contributions:

CDF Note 10047, 2010

Differential BR, dΓ/dq²

- Differential branching fraction consistent with SM prediction.
 - Sensitive to to C₇, C₉ and C₁₀ Wilson coefficients.

Red bands correspond to estimated theoretical uncertainty on SM prediction. Theory uncertainty comparable to existing experimental precision.

Differential BR, dΓ/dq²

- Differential branching fraction consistent with SM prediction.
 - Sensitive to to C_7 , C_9 and C_{10} Wilson coefficients.

Forward-backward asymmetry

- Reminder, non-zero AFB comes from the scalar contribution, C_s.
- Expect AFB ≈ o in SM and plausible NP models.
 - Existing experimental results are consistent with AFB = o.

Isospin asymmetry

 Isospin asymmetry is the asymmetry between the charged and neutral B decay modes (as a function of q²):

$$A_{\rm I}(q^2) = \frac{\mathcal{B}\left(B^0 \to K^0 \mu^+ \mu^-\right) - (\tau_0/\tau_+) \times \mathcal{B}\left(B^\pm \to K^\pm \mu^+ \mu^-\right)}{\mathcal{B}\left(B^0 \to K^0 \mu^+ \mu^-\right) + (\tau_0/\tau_+) \times \mathcal{B}\left(B^\pm \to K^\pm \mu^+ \mu^-\right)}$$

• Expect $A_1 \approx$ o away from charmonium resonances in SM.

Sensitive to the spectator quark interactions.

(operators $O_1 - O_6$ and O_8)

T. Feldmann, J. Matias hep-ph/0212158v2 (2002)

Isospin asymmetry

Babar/BELLE observe large asymmetry at low q²

Ratio R_{κ}

Ratio of final states with muons to final states with electrons:

$$R_K = \frac{\int \frac{d\Gamma\left(B^+ \to K^+ \mu^+ \mu^-\right)}{dq^2} dq^2}{\int \frac{d\Gamma\left(B^+ \to K^+ e^+ e^-\right)}{dq^2} dq^2} \stackrel{\text{SM}}{\simeq} 1.0$$

- SM contribution from Higgs exchange diagram.
- In MSSM R_{κ} –1 proportional to BR(B_s $\rightarrow \mu\mu$), enhanced at large tan β .

Ratio R_{K}

Ratio of final states with muons to final states with electrons:

$$R_K = \frac{\int \frac{d\Gamma\left(B^+ \to K^+ \mu^+ \mu^-\right)}{dq^2} dq^2}{\int \frac{d\Gamma\left(B^+ \to K^+ e^+ e^-\right)}{dq^2} dq^2} \simeq 1.0$$

 SM contribution from Higgs exchange diagram.

$$R_K = 0.96^{+0.44}_{-0.34} \pm 0.05$$
 $iggsin 384$ M BB pairs, arXiv 0807.4119 $R_K ~=~ 1.03 \pm 0.19 \pm 0.06$ $iggsin 657$ M BB pairs, arXiv 0904.0770

What can we measure at LHCb?

- Difficult to measure modes with one or more neutral final state particles:
 - Higher background and smaller signal.

B → K II at LHCb

- For B → K II LHCb focus has been:
 - $B^+ \rightarrow K^+ \mu \mu$ and $B^+ \rightarrow K^+$ ee
- In a nominal year of data taking (2fb⁻¹) expect:
 - 1840 B⁺ → K⁺ ee candidates.
 - 3750 B+ → K⁺ µµ candidates.

B → K II at LHCb

- For B → K II LHCb focus has been:
 - $B^+ \rightarrow K^+ \mu \mu$ and $B^+ \rightarrow K^+$ ee
- In a nominal year of data taking (2fb⁻¹) expect:
 - 1840 B⁺ → K⁺ ee candidates.
 - 3750 B+ \rightarrow K⁺ $\mu\mu$ candidates.

$B^+ \rightarrow J/\psi K^+$ candidate

LHCb has started to collect samples of fully reconstructed B candidates !

Conclusions

- Exclusive B → K^(*) II decays are highly sensitive to a range of NP scenarios.
 - Existing measurements are compatible with SM predictions but in many cases are statistically limited.
- LHCb is now taking data, we expect:
 - O(100) nb⁻¹ by end of June
 - O(100) pb⁻¹ by the end of 2010.
 - O(1) fb⁻¹ by the end of 2011.

Expect to have similar statistics to BaBar, BELLE and CDF.