Enhancement Presentation

Carlos Abellan Barcelona May, 5th 2010

Enhancement Presentation

Summary

- Analogue Mezzanine Board
 - Issues with ADC
 - Break out board
 - Digital Connector
- Discrete Electronics Simulation
 - Delay lines
 - Linearity
 - Noise

Issues with the ADC

LQFP vs. LFCSP LFCSP not found in stock 6 weeks delay!! LQFP inadequate pinout 44 currently on my desk

- Issues with the ADC
 - Possible solutions:
 - Wait for the ADC
 - Small adaptor board

Break out board for mezzanine

Digital Connector (just to make it clear)

Mezzanine(Jane)

Mother Board(Tarzan)

- Simulation tools
 - Synopsys Saber
 - Uncommon language
 - Bad GUI
 - Cadence Spectre
 - Hard to install
 - Hard learning curve
 - Not intended for this purpose
 - Synopsys Hspice
 - Has no GUI (solved with gEDA)
 - Native SPICE

Delay Lines

- Commercial models
 - Many small sized found
 - Bad delay tolerances
 - 5% or 2ns whichever is greater

- **Delay Lines**
 - Spice modeling
 - Asked to vendor

14 12

1 O 8

б 4 2

Ū

Ō

149

0.1

0.2

Frequen cy[GHz]

0.3

0.4

0.5

Delay Lines

Spice simulations, Accurate? → Measurement

- Linearity
 - Definition: Charge/Voltage [C/V]
 - Simulated Linearity Error

Linearity

Simulation

- Linearity
 - Simulation

• Error simulation: $e=\int_{0}^{t} Input(\tau) d\tau - Output(t)$

• Error simulation: $e=\int_{0}^{t} Input(\tau) d\tau - Output(t)$

- Further Steps
 - Noise
- Problems in SPICE model
- Real Delay Line simulation