

First prototyping run

Upgrade of the front end electronics of the LHCb calorimeter

Calorimeter upgrade meeting – Phone Conference– May 5th 2010

- I. Introduction
- II. Possible channel architecture
- III. Key issues to be tested
- IV. Summary

• Requirements as agreed during last year (PM gain 1/5):

	Value	Value Comments					
Energy range	0-10 GeV/c (ECAL)	1-3 Kphe / GeV					
	Transverse energy	Total energy					
Calibration	4 fC /2.5 MeV / ADC cnt	4 fC input of FE card: assuming 25 Ω					
		clipping at PMT base					
		12 fC / ADC count if no clipping					
Dynamic range	4096-256=3840 cnts :12 bit	Enough? New physic req.? Pedestal					
		variation? Should be enough	See talk about noise in				
Noise	${\scriptstyle \textbf{<}\approx 1}$ ADC cnt or ENC ${\scriptstyle \textbf{<}}$ 5 -6 fC	< 0.7 nV/√Hz	June's meeting:				
Termination	50 ± 5 Ω	Passive vs. active	atp://indico.cern.ch/materialDis lay.py?contribId=1&sessionId=				
AC coupling	Needed	Low freq. (pick-up) noise	&materialId=slides&confId=59				
Baseline shift	Dynamic pedestal subtraction	How to compute baseline?					
Prevention	(also needed for LF pick-up)	Number of samples needed?					
Max. peak current	4-5 mA over 25 Ω	50 pC in charge					
	1.5 mA at FE input if clipping						
Spill-over	Clipping	Residue level: 2 % <u>+</u> 1 % ?					
correction							
Spill-over noise	<< ADC cnt	Relevant after clipping?					
Linearity	< 1%						
Crosstalk	< 0.5 %						
Timing	Individual (per channel)	PMT dependent]				

I. Introduction: mini@sic run

• AMS 0.35µm SiGe-BiCMOS S35 4M/4P

• Mini@sic run:

- Smaller minimum area: 2 mm²
- Low cost: 800 € / mm²

austriamicrosystems		F	Μ	А	Μ	J	J	А	S	0	Ν	D
austriamicrosystems 0.35µ CMOS C35B3C3 3M/2P/HR/5V IO		8		12			12				2	6
austriamicrosystems 0.35µ CMOS C35B4C3 4M/2P/HR/5V IO		8		12			12				2	6
austriamicrosystems 0.35µ CMOS C350PTO 4M/2P/5V IO				12							2	
austriamicrosystems 0.35μ HV CMOS H35 50V 3M				26							8	
austriamicrosystems 0.35μ HV CMOS H35 50V 4M				26							8	
austriamicrosystems 0.35µ SiGe-BiCMOS S35 4M/4P						7					22	_
austriamicrosystems 0.18µ CMOS C18 6M/1P/MIM			29								15	
austriamicrosystems 0.18µ HV CMOS H18 50V 4M/MIM		22			10			2			2	

II. Possible channel architecture

- Current mode amplifier
- Switched integrator
 - Fully differential Op Amp
- Track and hold
 - ADC has already got one, really needed?
- Multiplexer
- ADC driver
 - Depends on ADC input impedance: resistive or capacitive?

III. Key components: amplifier: current output / mixed feedback

III. Key components: amplifier: current output / current feedback

Current mode feedback: Inner loop: lower input impedance Current feedback (gain): mirror: K Outer loop: control input impedance Current feedback: mirror: m MP1 lb2 Κ 1 5 Current gain: m • Input impedance Q1 $Z_i \Box \frac{1/g_{m1} + Re}{1 + K} + \frac{K}{1 + K} mR_f$ Rf Re Current mode feedback Optical comunications MN1 lb1 SiPM readout

• Better in terms of ESD:

 No input pad connected to any transistor gate or base

III. Key components: low noise amplifier

- First simulations of current amplifiers are promising but:
 - $Z_{in}\text{=}50~\Omega$ for full dynamic and BW=100 MHz
 - Noise: 400 μV rms after integration and pedestal subtraction
 - Linearity of the current mirrors must be better than 1 %
 - Trade off: linearity / BW / noise
- Test key issues of input amplifier:
- First estimate of the effect of mismatch
- Methods to compensate process variation to be included in next coming prototypes

III. Summary

To be prototype in June's run:

- Low noise current amplifier:
 - Basic schemes
- Integrator:
 - High GBW fully differential OpAmp
 - See Edu's talk
 - Could be used in other stages

- To be tested in future runs:
 - Compensation of process variation of amplifier's input impedance
 - Track and hold (if needed)
 - Analogue multiplexer
 - ADC driver
 - ADC needs to be characterized
 - Common blocks:
 - Clock generation
 - Biasing (CMOS band gap already exists)

