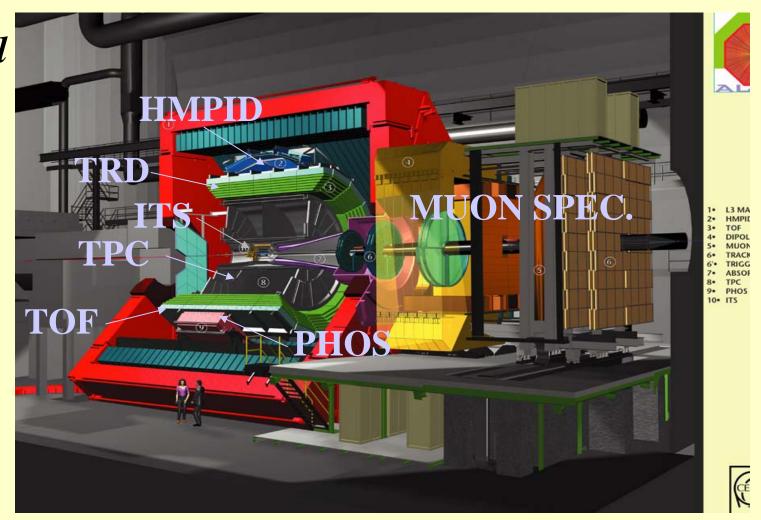
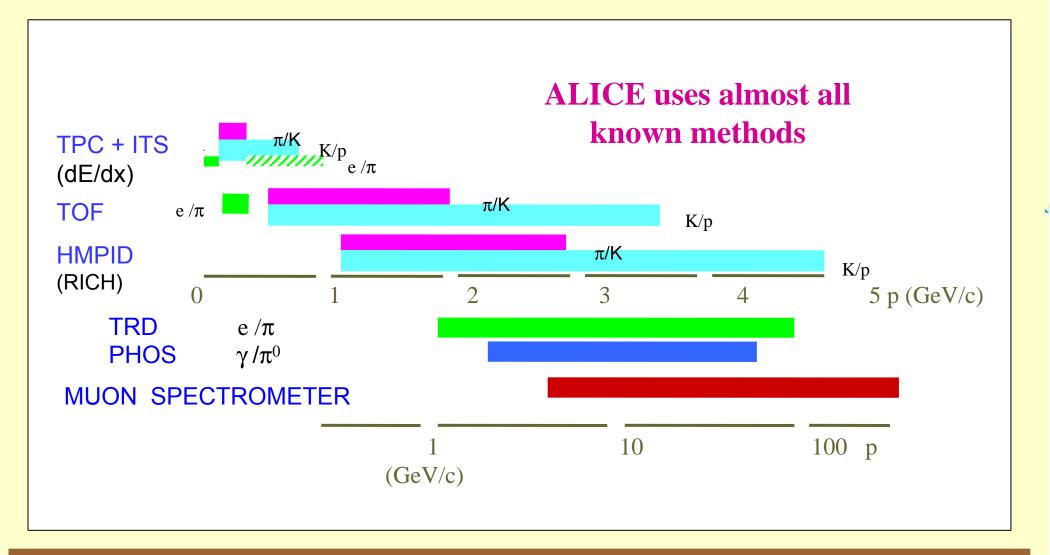
A low multiplicity trigger for peripheral collisions in ALICE

- The ALICE experiment
- Trigger strategy for diffractive events
- Two examples of diffractive ALICE physics
- Rates
- Conclusions, outlook


The ALICE experiment

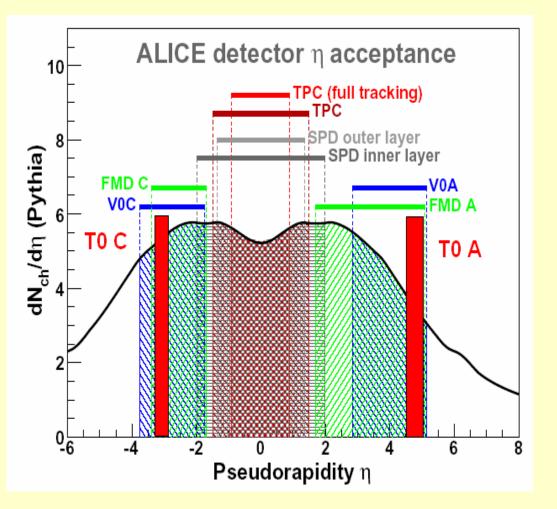
Acc central barrel


 $-0.9 < \eta < 0.9$

Acc muon spec $2.5 < \eta < 4.$

Particle identification in ALICE

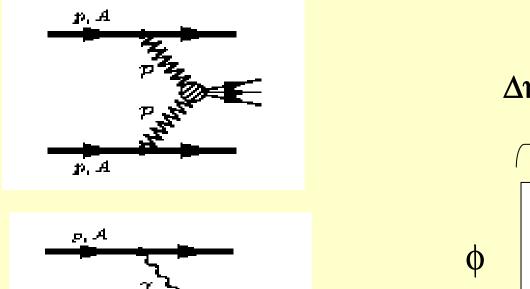
ALICE pseudorapidity coverage


 \rightarrow good particle identification $\Delta \eta = 2$ at midrapidity

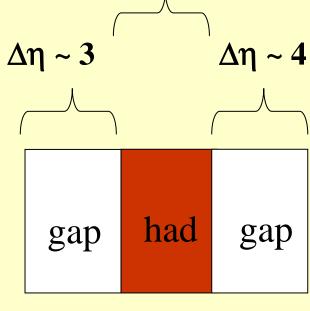
→additional forward detectors (no particle identification)

 $-4 < \eta < -1$ $1 < \eta < 5$

→ $L = 5x10^{30} cm^{-2} s^{-1}$:


one interaction/ 80 bunches

ALICE pseudorapidity acceptance



• ALICE acceptance matched to diffractive central exclusive production

<u>р</u>, А

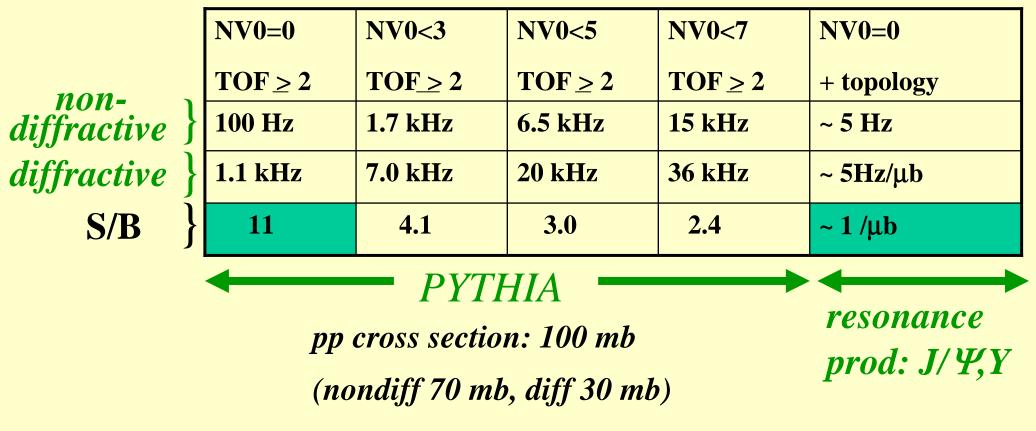
central barrel

ALICE diffractive trigger

- ALICE diffractive trigger
 - low multiplicity in central barrel TOF/ITS multiplicity
 - forward detector V0 empty

hardware implementation on L0 level

• ZDC at Level1 available (discussion Level0)


→ currently no discussion on Roman pots

ALICE diffractive L0 trigger rate

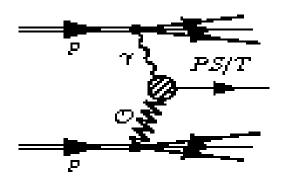
• pp @ 14 TeV: $L = 5 \times 10^{30} \text{ cm}^{-2} \text{ s}^{-1}$

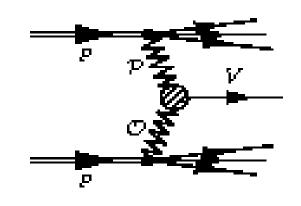
TOF=*TOF MULT*, *NV0* = *V0A mult* = *V0C mult*

Diffractive min bias analysis

- Look at events with hard/soft scale: $P_T \ge P_{Thresh}$
 - P_T distribution
 - Multiplicity
 - Mass
 - Correlations P_T multiplicity mass
- ZDC information

A search for the Odderon I




Look at exclusive processes with rapidity gaps

Examples:

diffractive pseudo scalar and tensor meson production: C = +1 states

diffractive vector meson production: C = -1 states

 \rightarrow measure cross sections

Analysis strategy I

- Production cross sections in pp at LHC energies
 - Look for diffractive π^0, η, η_c production: $J^{PC} = 0^{-+}$
 - \rightarrow Photon-Photon, Photon-Odderon contributions
 - Look for diffractive J/ Ψ production
 - \rightarrow Photon-Pomeron, Odderon-Pomeron contribution

Diffractive J/ Ψ production in pp at LHC

• HERA-LHC workshop CERN june 06 (Motyka et al):

– Photon: t-integrated
$$\frac{d\sigma}{dy} \Big|_{v=0} \sim 12 \text{ nb}$$

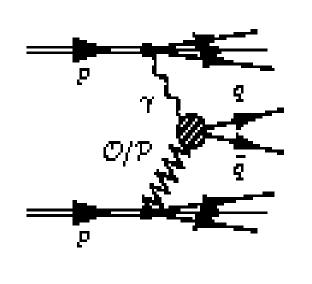
- Odderon: t-integrated
$$\frac{d\sigma}{dy}\Big|_{y=0} \sim 0.3 - 5 \text{ nb}$$

At $L = 5 \times 10^{30} \text{ cm}^{-2} \text{s}^{-1}$:

 \rightarrow 0.12 J/ Ψ in ALICE central barrel in 1 s, 120k in 10⁶ s

 \rightarrow 7200 in e⁺e⁻ channel in 10⁶ s

A search for the Odderon II



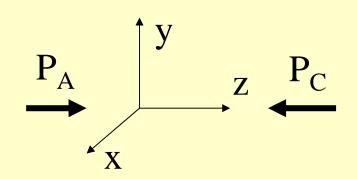
- Cross sections contain squared Odderon amplitudes
 - → Odderon-Pomeron interference !

 $d\sigma \sim |A\gamma(A_P + A_O)|^2 d^N q$ $\sim |A_P|^2 + 2Re(A_P A_O^*) + |A_O|^2$

→ look at final states which can be produced by Odderon or Pomeron exchange

 \rightarrow find signatures for interference of C-odd and C-even amplitude

Analysis strategy II



- Interference effects (relative contribution C = -1)
 - Asymmetries in $\pi^+\pi^-$ and K^+K^- pairs (C = ± 1) in continuum
 - → charge asymmetry relative to polar angle of π^+ in dipion rest frame
 - *C-even:* \vec{P}_{sum} : sum of transverse momenta of π^+, π^- *C-odd :* \vec{P}_{diff} : difference of transverse momenta of $\pi^+, \pi^ \rightarrow$ look at distribution of angle α (\vec{P}_{diff} relative to \vec{P}_{sum}) *C-transformation:* $\alpha \rightarrow \alpha + \pi$
 - \rightarrow expect sin(2 ϕ) and cos(2 ϕ) terms in Fourier transform

beam-beam symmetry

• Exchange symmetry proton A side ↔ proton C side

Symmetry: rotation around 1) \vec{e}_x by π 2) \vec{e}_y by π

 $\alpha (\vec{P}_{diff}/\vec{P}_{sum}): \alpha \rightarrow 2\pi - \alpha$

 \rightarrow this symmetry is reflected in Fourier transform

 \rightarrow beam-beam symmetry broken in pp $\rightarrow pN^*X$

 \rightarrow neutron tagging in ZDC

Conclusions, Outlook

- ALICE has capability to do $\gamma\gamma$ /diffractive physics
 - Diffractive trigger: low mult central barrel, gap trigger
 - HLT trigger: FMD information
- QCD studies, Pomeron and Odderon phenomenology
- Two Photon physics