Photon-Photon and Photon-Nucleus Collisions in ALICE at the LHC

> Joakim Nystrand University of Bergen

• Overview of ALICE – Differences and Similarities with other LHC Experiments

• Ultra-Peripheral Collision Reaction Channels in ALICE

• Trigger strategies and backgrounds

Photoproduction at Collider Energies, ECT Trento, 15 – 19 January 2007

ALICE (= A Large Ion Collider Experiment) – The dedicated Heavy-Ion Experiment at the LHC Located at IP 2 (former L3) and uses the L3 Magnet

Central Barrel:

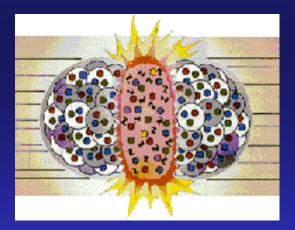
- Main tracking detector: The world's largest Time-Projection Chamber, Radius = 5 m, length = 10 m; $|\eta| \le 0.9$; B = 0.5 T.
- Inner Tracking System consisting of 6 layers of Si-detectors.
- ToF and Transition Radiation Detector used for PId.
- Partial Calorimetry Coverage (Photon Spectrometer, EmCal).

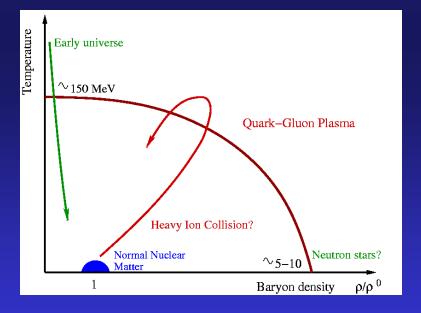
Muon Barrel:

- Absorber.
- A 3 Tm Dipole Magnet.
- Tracking system consisting of 10 planes of cathode pad chambers.
- 4 Trigger Chambers.

ALICE in comparison with other LHC Experiments

I. Focus on low p_T . Reconstruct every charged track with $p_T = 0.1 - 100$ GeV/c ATLAS, CMS $p_T > 1$ GeV/c (Note that $\langle p_T \rangle \sim 0.35$ GeV/c)


II. Handle extremely high multiplicities Design requirement $dn_{ch}/d\eta = 8000$


III. Handle very high data rates Write 1.25 GByte/sec to tape ATLAS/CMS ≈ 200 – 300 MByte/sec

Photoproduction at Collider Energies, ECT Trento, 15 – 19 January 2007

These differences in design are driven by the different physics goals of central nucleus-nucleus vs. proton-proton collisions.

Focus on determining the properties of the medium (possibly a new state of matter) produced in the collisions, and probing the phase transition from hadronic \rightarrow partonic matter.

Photoproduction at Collider Energies, ECT Trento, 15 – 19 January 2007

Ultra-Peripheral Collisions in ALICE

First an overview of what can be done, expected rates etc.

then

A discussion of the main challenge – Triggering on UPCs.

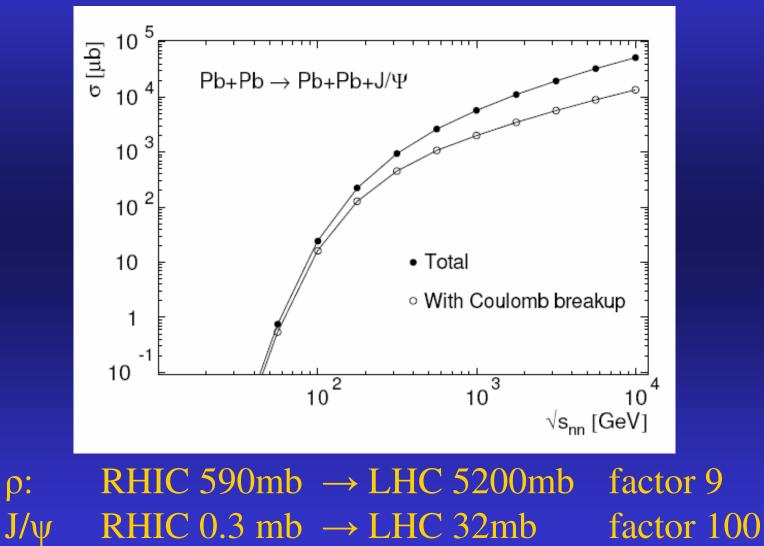
Photoproduction at Collider Energies, ECT Trento, 15 – 19 January 2007

Two classes of UPCs

Exclusive or "elastic":

The photon interacts with the entire nucleus coherently. Both nuclei remain intact. Pb+Pb \rightarrow Pb+Pb+V; γ +Pb \rightarrow V+Pb; V= ρ , J/ ψ , Υ ; <u>Pb+Pb} \rightarrow Pb+Pb+ $\mu^+\mu^-$; $\gamma\gamma \rightarrow \mu^+\mu^-$ </u>

Inclusive or "inelastic":


The photon interacts with a single nucleon or parton. The "target" nucleus breaks up. Pb+Pb \rightarrow Pb+X+cc; γ +g \rightarrow cc; Note: $\sigma \approx 1b$, y=0 \leftrightarrow x=5 $\cdot 10^{-4}$. Pb+Pb \rightarrow Pb+X+2jets. Ultra-Peripheral Collisions in ALICE (Ideas for Run 1 and 2)

- 1. Vector Meson production; Unique possibility to measure $\gamma + A \rightarrow \Upsilon + A$; sensitive probe of $g(x,Q^2)$
- Photonuclear jet production; photon+parton→jet+jet;
 e.g. γ+g→q+q; R.Vogt hep-ph/0407298, M.Strikman, R.Vogt, S.White PRL 96(2006)082001.
- 3. Photonuclear production of heavy quarks, γ +g \rightarrow cc.

4. Meson spectroscopy; e.g. $\gamma\gamma \rightarrow \eta_b$ (rate is too low)

Photoproduction at Collider Energies, ECT Trento, 15 – 19 January 2007

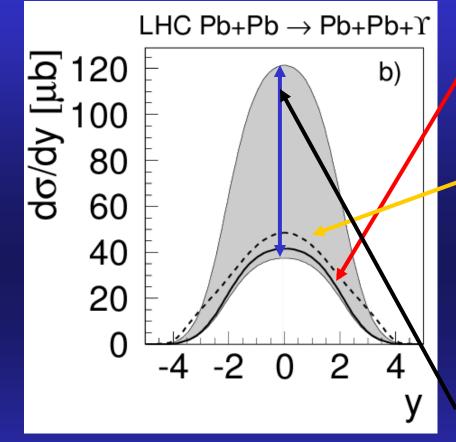
Exclusive Vector Meson Production: Increase in $\sigma(J/\Psi)$ with energy

Photoproduction at Collider Energies, ECT Trento, 15 – 19 January 2007

For the heavier VMs (J/ Ψ , Ψ), σ ($\gamma p \rightarrow V p$) calculable from QCD (2-gluon exchange)

$$\frac{d\sigma}{dt}\Big|_{t=0} = \frac{\alpha_s^2 \Gamma_{ee}}{3\alpha M_V^5} 16\pi^3 [xg(x, \frac{M_V^2}{4})]^2 \quad \text{Ryskin 1993}$$

\Rightarrow Sensitive probe of g(x), [(g(x))²]


Also studied by Frankfurt LL, McDermott MF, Strikman M, J. High Energy Physics 02:002 (1999) and Martin AD, Ryskin MG, Teubner T Phys.Lett. B454:339 (1999)

Photoproduction at Collider Energies, ECT Trento, 15 – 19 January 2007

kinematic ranges for photoproduction			
$W_{\gamma p}$ –	photon-proton CM	energy	
X -	Bjorken-x of gluon		
Q ² -	M_V^2		
y=0	J/ψ	Υ	
RHIC	$W_{\gamma p} = 25 \text{ GeV } x \approx 2 \cdot 10^{-2}$	$W_{\gamma p} = 43 \text{ GeV } x \approx 5 \cdot 10^{-2}$	
LHC PbPl	$O W_{\gamma p} = 130 \text{ GeV } x \approx 6 \cdot 10^{-4}$	$W_{\gamma p} = 230 \text{ GeV } x \approx 2 \cdot 10^{-3}$	
LHC pp	$W_{\gamma p} = 210 \text{ GeV } x \approx 2 \cdot 10^{-4}$	$W_{\gamma p} = 350 \text{ GeV } x \approx 6 \cdot 10^{-4}$	

Photoproduction at Collider Energies, ECT Trento, 15 – 19 January 2007

Y rapidity distribution

A² scaling of QCD prediction

- A² scaling of exp. data from HERA.

Uncertainty in measured cross section (mainly poor statistics).

Mid-rapidity y=0 \Leftrightarrow $\gamma p \ CM \ energy \ W_{\gamma p} = 230 \ GeV,$ $x=2\cdot 10^{-3}$

Photoproduction at Collider Energies, ECT Trento, 15 – 19 January 2007

Expected rates – Vector Mesons

Pb+Pb ; <L> = 5 \cdot 10²⁶ cm⁻²s⁻¹ ; ALICE year 10⁶ s

	Prod. Rate	Decay	Br.Ratio	Geo Acc.*	Detection Rate
ρ	$2.6 \cdot 10^9$	ππ	100%	0.079	$2.0.10^{8}$
J/ψ	1.6.107	e+e-	5.93%	0.164	$1.5 \cdot 10^5$
Υ	$\sim 1.10^{5}$	e+e-	2.38%	0.236	pprox 600

Geo Acc: hl<0.9, p_T>0.15 GeV/c

Photoproduction at Collider Energies, ECT Trento, 15 – 19 January 2007

Expected rates – e⁺e⁻ continuum

Table 6.104. Cross sections for two-photon production of lepton pairs for different cuts on the invariant mass of the pair, calculated within the equivalent photon approach.

Selection	$\sigma(\mathrm{Pb} + \mathrm{Pb} \rightarrow \mathrm{Pb} + \mathrm{Pb} + \mathrm{l}\overline{\mathrm{l}})$		
	e+e-	$\mu^+\mu^-$	
Total	223 kb [1057]	2.0 b	
$m_{\rm inv} > 1.5 {\rm GeV}$	140 mb	45 mb	
$m_{\rm inv} > 6.0 {\rm GeV}$	2.8 mb	1.2 mb	

The corresponding event rates, $Pb+Pb \rightarrow Pb+Pb e+e-$ for one ALICE year:

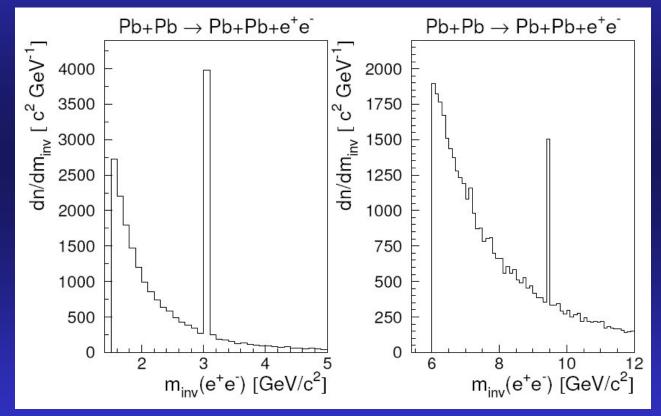
All: $|\eta| < 0.9, p_T > 0.15 \text{ GeV/c}$ $|\eta| < 0.9, p_T > 3 \text{ GeV/c}$

 $7 \cdot 10^7$ events $7 \cdot 10^5$ events 14,000 events

Photoproduction at Collider Energies, ECT Trento, 15 – 19 January 2007

Expected rates $-\mu^+\mu^-$ continuum

Table 6.108. Expected yields within the geometrical acceptance of the ALICE muon arm for two-photon production of $\mu^+\mu^-$ -pairs.


$Pb + Pb \rightarrow Pb + Pb + \mu^+\mu^-, m_{inv} > 1.5 \text{ GeV}$		
Selection	Geometrical Acceptance	Rate (per 10 ⁶ s)
All	100%	2.2×107
$2.2 \leqslant \eta \leqslant 4.0, p_{\rm t} > 1.0 {\rm GeV}$	0.26%	60 000

Photoproduction at Collider Energies, ECT Trento, 15 – 19 January 2007

Important background from $\gamma\gamma \rightarrow e^+e^-$ Events in the central barrel ($|\eta| < 0.9$)

 10^{4} s

Photoproduction at Collider Energies, ECT Trento, 15 – 19 January 2007

Ultra-peripheral production of heavy quarks (with nuclear break-up)

Table 6.105. Cross sections and production rates for $\gamma + g \rightarrow q\overline{q}$ in one ALICE year (10⁶ s), from [1054, 1062].

Final state	Pb–Pb		Ar–Ar	
	σ	rate (per 10 ⁶ s)	σ	rate (per 10 ⁶ s)
$\gamma + g \rightarrow c\overline{c} + X$	1050 mb	$5.5 imes 10^8$	14 mb	5.6×10^8
$\gamma + g \rightarrow b\overline{b} + X$	4.7 mb	2.3×10^{6}	$70\mu b$	$2.8 imes 10^6$
$\gamma + g \rightarrow t\bar{t} + X$	0.3 nb	-	29 pb	(~1)

Klein S R, Nystrand J and Vogt R 2002 Phys. Rev. C 66 044906

Rate simulations not possible: No Monte Carlo Event Generator available!!

Detection Principles

- 1. Vector mesons, $\gamma\gamma$: Reconstruct 2 tracks (low multiplicity), charge balance, low sum $|\mathbf{p}_T^1 + \mathbf{p}_T^2| < \sim 100$ MeV/c (nuclear form factor) (the two tracks will have higher pT).
- 2. Photonuclear jets:

Rapidity gap between photon-emitting nucleus and jet, distinguishes photonuclear jet production from hadronic jet production, suppression for a gap Δy : exp(-<dn/dy>· Δy) $\Rightarrow \Delta y=2 \leftrightarrow \sim 10^{-2} - 10^{-3}$ reduction.

Photoproduction at Collider Energies, ECT Trento, 15 – 19 January 2007

Trigger Strategies and Backgrounds I

- Trigger in ALICE designed for central, hadronic interactions.

- Main low-level trigger detectors located outside the acceptance of the central barrel, T0 and V0 detectors at $\approx 2 < |\eta| < 5$.

- No problem for central collisions, the produced particles fill the entire rapidity axis (no gaps).

Trigger Strategies and Backgrounds II

- Experience from RHIC \Rightarrow highly advantageous to combine a trigger from the ZDC with a trigger at mid-rapidity.

- Problem in ALICE: Long distance from primary vertex \rightarrow ZDC. The time for the signal to reach the Central Trigger Processor exceeds the allowed maximum (800 nsec) by about 150 nsec.

- The difference is not very big, but the overall L0 time will not be modified before ALICE begins to take data.

- A short, dedicated run with different Level 0 timing is conceivable, but this would lead to a very low integrated luminosity.

Trigger Strategies and Backgrounds III

- A low-level trigger at mid-rapidity in ALICE is, however, not excluded.

- Signals from Si-pixel and ToF-detectors will be included in Level 0 and could be used.

- See talks by Eugenio Scapparone and Rainer Schicker.

Backgrounds

1. Cosmic rays.

2. Peripheral nuclear collisions

3. beam-gas interactions

4. Incoherent photonuclear interactions.

For coherent events (Vector Mesons, $\gamma\gamma$) \rightarrow Low-p_T cut extremely efficient. Shown in simulations, experience from RHIC.

Rapidity Gaps: Not tried with heavy ions before, should work for gaps with $\Delta y \sim 2-3$.

Photoproduction at Collider Energies, ECT Trento, 15 – 19 January 2007

Effectiveness of Rapidity Gaps

Production of heavy-quark pairs $\sqrt{s} = 5.5$ TeV: **R.** Vogt [Hard Probe Collaboration], Int. J. Mod. Phys. E 12 (2003) 211. $\sigma(pp \rightarrow Q\overline{Q} + X)$: 5.8 mb (cc) 190µb (bb) [A² · $\sigma(pp \rightarrow Q\overline{Q} + X)$: 252 b (cc) 8.1 b (bb)]

Photoproduction $\sqrt{s} = 5.5$ TeV: $\sigma(Pb+Pb \rightarrow Pb+Q\bar{Q}+X)$: 1.2 b (c \bar{c}) 4.9 mb (b \bar{b})

Rapidity gap between photon-emitting nucleus and the produced particles, suppression for a gap Δy : $exp(-<dn/dy>\cdot\Delta y)$ \Rightarrow With $<dn/dy> \approx 2.5-3.5$ and $\Delta y=2 \Rightarrow$ $\sim 10^{-2}-10^{-3}$ reduction.

Photoproduction at Collider Energies, ECT Trento, 15 – 19 January 2007

Conclusions

Acceptance and efficiency of the ALICE detector

⇒ Rates for many interesting UPC channels are high.

There are ideas for triggering, but these must be implemented and shown to work with acceptable background rates.

• With appropriate triggers, there are analysis techniques to separate a signal from background.