Simulation of Photoproduction on Nuclei and Astroparticle Physics Connection

Ralph Engel

Karlsruhe Institute of Technology

Astroparticle physics connection

Example: Ultra-high energy cosmic rays

- Sources:
interaction of hadrons with dense γ-ray fields
- Propagation:
interaction with cosmic microwave background
- Detection: interaction with nuclei in the Earth's atmosphere, extensive air showers

Equivalent c.m. energy $\sqrt{s}_{p p} \quad(\mathrm{GeV})$

Statistical errors only!

The first really big air shower

EVIDENCE FOR A PRIMARY COSMIC-RAY PARTICLE WITH ENERGY $10^{20} \mathrm{eV}^{\dagger}$
John Linsley
Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts (Received 10 January 1963)

The first really big air shower

EVIDENCE FOR A PRIMARY COSMIC-RAY PARTICLE WITH ENERGY $10^{20} \mathrm{eV}^{\dagger}$
John Linsley
Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts (Received 10 January 1963)

FIG. 1. Plan of the Volcano Ranch array in February 1962. The circles represent $3.3-\mathrm{m}^{2}$ scintillation detectors. The numbers near the circles are the shower densities (particles $/ \mathrm{m}^{2}$) registered in this event, No. $2-4834$. Point " A " is the estimated location of the shower core. The circular contours about that point aid in verifying the core location by inspection.

Magnetic fields in our Galaxy

Halo field: A0 dynamo

Disk field:
 bisymmetrical spiral

Near solar system:
$3 \mu G$ (regular) $\pm 3 \mu G$ (random)
Lamor radius (proton):
$1 \mathrm{pc}=3.2$ ly at $3 \times 10^{15} \mathrm{eV}$
1 kpc at $3 \times 10^{18} \mathrm{eV}$

Transition from galactic to extra-galactic CRs

Acceleration: general source constraints

M. Hillas, I984:

$E_{\max } \simeq Z e \beta B R$

Core of Galaxy NGC 426I

Hubble Space Telescope

Wide Field / Planetary Camera

Ground-Based Optical/Radio Image
HST Image of a Gas and Dust Disk

Background radiation

Energy loss due to propagation

(Allard et al.,JCAP 2006)

GZK suppression for all particles

Comparison AGASA vs. HiRes (E^{3} scaled)

(HiRes mono, PRL 92, 2004)

Inconsistent with Greisen-Zatsepin-Kuzmin (GZK) cutoff ?

Consistent with GZK cutoff ?

Top-down source scenarios

$$
\left(M_{x} \sim 10^{23}-10^{24} \mathrm{eV}\right)
$$

X particles from:

- topological defects
- monopoles
- cosmic strings
- cosmic necklaces
-

X particle

Fragmentation function

$$
\frac{d N_{h}}{d x} \sim x^{-3 / 2}(1-x)^{2}
$$

QCD: ~ $E^{-1.5}$ energy spectrum QCD+SUSY: $\sim E^{-1.9}$ spectrum

Top-down: SHDM flux predictions

(Aloisio, Berezinsky, Kachelrieß, 2004)

Predictions:

- no GZK cutoff
- large γ-ray and v fluxes
- anisotropy (~ I0\%)
- small-scale clustering (?)

Model:

- 5×10^{4} overdensity in halo
- lifetime $10^{17}-10^{28} \mathrm{~s}$

Comparison with AGASA data

Southern Pierre Auger Observatory

Malargue, Argentina

$$
\begin{gathered}
\text { Area } \sim 3000 \mathrm{~km}^{2}, \\
1600 \text { surface detectors, } \\
24 \text { telescopes }
\end{gathered}
$$

UHECRs and photoproduction

- Propagation:
photoproduction at particle production threshold on nuclei up to Fe , photodissociation of nuclei
- Acceleration:
photoproduction up to $V_{s} \sim 100 \mathrm{GeV}$ on nuclei up to Fe , photodissociation of nuclei
- Extensive air showers:
photoproduction up to $V_{s} \sim 400.000 \mathrm{GeV}$ on light nuclei of atmosphere, muon production in photon-induced showers

Monte Carlo models needed for simulation even if no theory/phenomenology or data available

Simulation concepts: energy ranges

Resonances
Regge region

Low energy region
 (resonances)

Example: Monte Carlo code SOPHIA

Resonance production (s channel)

$\Pi^{ \pm}$

$$
\sigma_{\mathrm{bw}}(s ; M, \Gamma, J)=\frac{s}{\left(s-m_{\mathrm{N}}^{2}\right)^{2}} \frac{4 \pi b_{\gamma}(2 J+1) s \Gamma^{2}}{\left(s-M^{2}\right)^{2}+s \Gamma^{2}}
$$

Elastic scattering

Description of total cross section

- PDG: 9 resonances, decay channels, angular distributions
- Regge parametrization at higher energy
- Direct contribution: fit to difference to data

Description of final states

Baryon resonances and their physical parameters implemented in SOPHIA (see text). Superscripts ${ }^{+}$and ${ }^{0}$ in the parameters refer to $p \gamma$ and $n \gamma$ excitations, respectively. The maximum cross section, $\sigma_{\max }=4 m_{\mathrm{N}}^{2} M^{2} \sigma_{0} /\left(M^{2}-m_{\mathrm{N}}^{2}\right)^{2}$, is also given for reference

Resonance	M	Γ	$10^{3} b_{\gamma}^{+}$	σ_{0}^{+}	$\sigma_{\max }^{+}$	$10^{3} b_{\gamma}^{0}$	σ_{0}^{0}	$\sigma_{\max }^{0}$
$\Delta(1232)$	1.231	0.11	5.6	31.125	411.988	6.1	33.809	452.226
$N(1440)$	1.440	0.35	0.5	1.389	7.124	0.3	0.831	4.292
$N(1520)$	1.515	0.11	4.6	25.567	103.240	4.0	22.170	90.082
$N(1535)$	1.525	0.10	2.5	6.948	27.244	2.5	6.928	27.334
$N(1650)$	1.675	0.16	1.0	2.779	7.408	0.0	0.000	0.000
$N(1675)$	1.675	0.15	0.0	0.000	0.000	0.2	1.663	4.457
$N(1680)$	1.680	0.125	2.1	17.508	46.143	0.0	0.000	0.000
$\Delta(1700)$	1.690	0.29	2.0	11.116	28.644	2.0	11.085	28.714
$\Delta(1905)$	1.895	0.35	0.2	1.667	2.869	0.2	1.663	2.875
$\Delta(1950)$	1.950	0.30	1.0	11.116	17.433	1.0	11.085	17.462

Example: INC Monte Carlo model

(llinov, Pshenichnov et al., NPA6 16, 1997)

Channels of elementary γN interactions taken into account in the INC model
Decay channels of 6 baryon resonances and multiparticle channels

Explicit generation of kinematics of multiparticle final states (isobar model)

Interaction with nuclei, used in RELDIS

Others:
PEANUT (FLUKA)

Channels of elementary γN interactions taken into account in the INC model	
γp-interaction	γn-interaction
$\gamma p \rightarrow \pi^{+} n$	$\gamma n \rightarrow \pi^{-} p$
$\gamma p \rightarrow \pi^{0} p$	$\gamma n \rightarrow \pi^{0} n$
$\gamma p \rightarrow \pi^{-} \Delta^{++}$	$\gamma n \rightarrow \pi^{-} \Delta^{+}$
$\gamma p \rightarrow \pi^{0} \Delta^{+}$	$\gamma n \rightarrow \pi^{0} \Delta^{0}$
$\gamma p \rightarrow \pi^{+} \Delta^{0}$	$\gamma n \rightarrow \pi^{+} \Delta^{-}$
$\gamma p \rightarrow \eta p$	$\gamma n \rightarrow \eta n$
$\gamma p \rightarrow \omega p$	$\gamma n \rightarrow \omega n$
$\gamma p \rightarrow \rho^{0} p$	$\gamma n \rightarrow \rho^{0} n$
$\gamma p \rightarrow \rho^{+} n$	$\gamma n \rightarrow \rho^{-} p$
$\gamma p \rightarrow \pi^{+} \pi^{-} p$	$\gamma n \rightarrow \pi^{+} \pi^{-} n$
$\gamma p \rightarrow \pi^{0} \pi^{+} n$	$\gamma n \rightarrow \pi^{0} \pi^{-} p$
$\gamma p \rightarrow \pi^{0} \pi^{0} \pi^{0} p$	$\gamma n \rightarrow \pi^{0} \pi^{0} \pi^{0} n$
$\gamma p \rightarrow \pi^{+} \pi^{-} \pi^{0} p$	$\gamma n \rightarrow \pi^{+} \pi^{-} \pi^{0} n$
$\gamma p \rightarrow \pi^{+} \pi^{0} \pi^{0} n$	$\gamma n \rightarrow \pi^{-} \pi^{0} \pi^{0} p$
$\gamma p \rightarrow \pi^{+} \pi^{+} \pi^{-} n$	$\gamma n \rightarrow \pi^{+} \pi^{-} \pi^{-} p$
$\gamma p \rightarrow i \pi N(4 \leqslant i \leqslant 8)$	$\gamma n \rightarrow i \pi N(4 \leqslant i \leqslant 8)$
$(35$ channels $)$	$(35$ channels $)$

INC: Description of final states

(llinov, Pshenichnov et al., NPA6 16, 1997)

Interaction with nuclei

Purely electromagnetic excitations:

$-\mathrm{E}_{\mathrm{\gamma}} \leq 20 \mathrm{MeV}$: E and M transitions, Giant Dipole resonance, selection according to quantum numbers
$-50 \leq \mathrm{E}_{\mathrm{Y}} \leq 150 \mathrm{MeV}$: mainly photon absorption by p and $p-n$ pair

- evaporation: neutron, quasi-deuteron and alpha-particle emission

Hadronic interactions (particle production):

- $150 \leq \mathrm{E}_{\mathrm{Y}} \leq$ few GeV : single nucleon absorption of photon
- intra-nuclear cascade of secondaries (formation time)
- evaporation, fission, multifragmentation

Available code packages

- RELDIS (RElativistic ELectromagnetic DISsociation) I. Pshenichnov
- FLUKA (FLUktuierende KAskade)

Effective em. dissociation cross section

Product of equivalent photon flux $\mathrm{dn} / \mathrm{dE}_{\gamma}$ and cross section for dissociation

Simulation with RELDIS

Example: photo-dissociation of nuclei

Saclay \& Livermore data

Projectile: $30 \mathrm{AGeV} \mathrm{Pb}$, different targets

(Smirnov, 2005)

Intermediate energy region (Reggeons, topologies)

Vector meson dominance model

Lifetime of hadronic fluctuation of real photon

$$
\begin{aligned}
& \text { M } \\
& k_{r} \\
& t_{\text {fluc }} \sim 1 / \Delta E \sim \frac{2 k_{\gamma}}{M^{2}+Q^{2}}
\end{aligned}
$$

Approximation (low energy):

$$
\begin{aligned}
& A_{\gamma h \rightarrow X}^{(T)}\left(s, t, q^{2}, \ldots\right)=\sum_{V=\rho, \omega, \phi}\left(\frac{e}{f_{V}}\right) \frac{m_{V}^{2}}{m_{V}^{2}-q^{2}-i \Gamma_{V} m_{V}} A_{V h \rightarrow X}^{(T)}(s, t, \ldots) \\
& A_{\gamma h \rightarrow X}^{(L)}\left(s, t, q^{2}, \ldots\right)=\sum_{V=\rho, \omega, \phi}\left(\frac{e}{f_{V}}\right)\left(\frac{-q^{2} \xi_{V}}{m_{V}^{2}}\right)^{\frac{1}{2}} \frac{m_{V}^{2}}{m_{V}^{2}-q^{2}-i \Gamma_{V} m_{V}} A_{V h \rightarrow X}^{(T)}(s, t, \ldots)
\end{aligned}
$$

$\frac{e^{2}}{f_{\rho}^{2}} \approx 0.0036, \quad \frac{e^{2}}{f_{\Phi}^{2}} \approx 0.00031, \quad \frac{e^{2}}{f_{\dot{\phi}}^{2}} \approx 0.00055$
Very successful at low Q^{2}

Generalized vector dominance model

- Sum over all hadronic states
- Non-diagonal terms
- Many parameters (assumptions needed)

Neglecting off-diagonal transitions:

$$
D\left(M^{2}\right)=\frac{R_{e^{+} e^{-}}\left(M^{2}\right)}{12 \pi^{2} M^{2}}
$$

$$
\begin{gathered}
\sigma_{\gamma^{\star} N}\left(s, Q^{2}\right)=4 \pi \alpha_{\mathrm{em}} \int_{M_{0}^{2}}^{M_{1}^{2}} d M^{2} D\left(M^{2}\right)\left(\frac{M^{2}}{M^{2}+Q^{2}}\right)^{2}\left(1+\epsilon \frac{Q^{2}}{M^{2}}\right) \sigma_{V N}\left(s, Q^{2}, M^{2}\right) \\
\sigma_{V N}\left(s, Q^{2}, M^{2}\right)=\frac{\widetilde{\sigma}_{V N}\left(s, Q^{2}\right)}{M^{2}+Q^{2}+C^{2}}
\end{gathered}
$$

Confinement: color flow topologies

Partons only asymptotically free!

Example:
meson propagation
time

Scattering process:

('t Hooft, Veneziano, Witten, ... 1974)

Unitarity cuts (optical theorem)

(Capella et al. PR I994, Kaidalov et al.)

Unitarity cut of Reggeon exchange: chain of hadrons

Pomeron exchange: two strings of hadrons

Splitting functions
(Regge asymptotics)

$$
\begin{aligned}
& f_{\mathrm{nuc}}^{\mathrm{DPM}}(x) \sim x_{q}^{-1 / 2}\left(1-x_{q}\right)^{3 / 2} \\
& f_{\mathrm{mes}}^{\mathrm{DPM}}(x) \sim x_{q}^{-1 / 2}\left(1-x_{q}\right)^{1 / 2}
\end{aligned}
$$

Fragmentation \& two-string model

Example: q-qbar pair produced in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation

time

Chain of hadrons

Most important final state topology

PHOJET (RE, Ranft)
DPMJET (Roesler, RE, Ranft)
PYTHIA (Sjöstrand)

NA22 European Hybrid Spectrometer data

Multiplicity at low energy

DPMJET in p-p mode: simulation of particle production from energy threshold on
proton - proton, $\mathrm{E}_{\mathrm{lab}}=200 \mathrm{GeV}$

	Exp.	DPMJET-III
charged	7.69 ± 0.06	7.64
neg.	2.85 ± 0.03	2.82
p	1.34 ± 0.15	1.26
n	0.61 ± 0.30	0.66
π^{+}	3.22 ± 0.12	3.20
π^{-}	2.62 ± 0.06	2.55
$\mathrm{~K}^{+}$	0.28 ± 0.06	0.30
$\mathrm{~K}^{-}$	0.18 ± 0.05	0.20
Λ	0.096 ± 0.01	0.10
$\bar{\Lambda}$	0.0136 ± 0.004	0.0105

New NA49 data (p-p and p-C, 158 GeV)

(Baznat, 2006)

Photoproduction on hadrons

Note: PHOJET now part of DPMJET III

Glauber model of nuclear collisions

Standard Glauber approximation:

$$
\sigma_{\mathrm{inel}}=\int d^{2} \vec{b}\left[1-\prod_{k=1}^{A}\left(1-\sigma_{\mathrm{tot}}^{N N} T_{N}\left(\vec{b}-\vec{s}_{k}\right)\right)\right] \approx \int d^{2} \vec{b}\left[1-\exp \left\{-\sigma_{\mathrm{tot}}^{N N} T_{A}(\vec{b})\right\}\right]
$$

$$
\sigma_{\mathrm{prod}} \approx \int d^{2} \vec{b}\left[1-\exp \left\{-\sigma_{\mathrm{ine}}^{N N} T_{A}(\vec{b})\right\}\right]
$$

DPMJET: Pauli blocking intranuclear cascade with formation zone

Fixed-target hadron-nucleus data (i)

Fixed-target hadron-nucleus data (ii)

(Roesler, 2006)	Exp.	DPMJET-III
14.6 GeV p Al	1.57 ± 0.23	1.52
p Au	2.15 ± 0.33	1.92
200 GeV p S	5.0 ± 0.2	4.98
	p Xe	6.84 ± 0.13
360 GeV	p Al	6.8 ± 0.6
p Au	8.9 ± 0.4	5.87

Fixed-target nucleus-nucleus data

(Roesler, 2006)

Photon-nucleus scattering

Straightforward application of GVDM (DPMJET III)

$$
\sigma_{\gamma^{\star} A}\left(s, Q^{2}\right)=4 \pi \alpha_{\mathrm{em}} \int_{M_{0}^{2}}^{M_{1}^{2}} d M^{2} D\left(M^{2}\right)\left(\frac{M^{2}}{M^{2}+Q^{2}}\right)^{2}\left(1+\epsilon \frac{Q^{2}}{M^{2}}\right) \sigma_{V A}\left(s, Q^{2}, M^{2}\right)
$$

$$
\Gamma\left(s, Q^{2}, M^{2}, \vec{b}\right)=\frac{\sigma_{V N}\left(s, Q^{2}, M^{2}\right)}{4 \pi B\left(s, Q^{2}, M^{2}\right)}\left(1-i \frac{\operatorname{Re} f(0)}{\operatorname{Im} f(0)}\right) \exp \left(\frac{-\vec{b}^{2}}{2 B\left(s, Q^{2}, M^{2}\right)}\right)
$$

$$
\begin{gathered}
B\left(s, Q^{2}, M^{2}\right)=2\left[B_{0}^{2}+\alpha_{\mathrm{P}}^{\prime} \ln \left(\frac{s}{M^{2}+Q^{2}}\right)\right] \\
B_{0}^{2}=\left(2+\frac{m_{\rho}^{2}}{M^{2}+Q^{2}}\right) \mathrm{GeV}^{-2}, \quad \alpha_{\mathrm{P}}^{\prime}=0.25 \mathrm{GeV}^{-2}
\end{gathered}
$$

$$
\sigma_{V A}^{\text {inel }}\left(s, Q^{2}, M^{2}\right)=\int d^{2} b \prod_{j=1}^{A} d^{3} r_{j} \rho_{A}\left(\vec{r}_{j}\right)\left(1-\left|\prod_{i=1}^{A}\left[1-\Gamma\left(s, Q^{2}, M^{2}, \vec{b}_{i}\right)\right]\right|\right.
$$

DPMJET: cross sections

Coherence length

Photoproduction cross section

(a)

(b)

$0.15 \leq \mathrm{Q}^{2} \leq 8 \mathrm{GeV}^{2}$

Inclusive photoproduction on nuclei

High energy region (partons, perturbative QCD)

Partons and color flow configurations (i)

Partonic view:

Large N_{c} approximation

One-gluon exchange: pomeron topology

Initial and final state radiation:
no change of basic topology

Partons and color flow configuations (ii)

DPMJET III: detailed color flow simulation for each event

QCD parton model: minijets

$$
\sigma_{Q C D}=\sum_{i, j, k, l} \frac{1}{1+\delta_{k l}} \int d x_{1} d x_{2} \int_{p_{\perp}^{\text {cutoff }}} d p_{\perp}^{2} f_{i}\left(x_{1}, Q^{2}\right) f_{j}\left(x_{2}, Q^{2}\right) \frac{d \sigma_{i, j \rightarrow k, l}}{d p_{\perp}}
$$

Direct interactions of photons

Gluon Compton scattering

Box diagram

Boson-gluon fusion

Anomalous contribution

LO, GRV parton densities

ISR parton shower does not always end at soft scale

Problem: matching soft/hard contributions

$\sigma_{\text {soft }} \sim s^{0.1}$

pt cutoff

- Topologies similar
- Matching of p_{t} distribution of partons

CDF inclusive charged particle distribution

Unitarization: eikonal-based model

Classic eikonal formula

$$
\sigma_{\mathrm{ine}}=\int d^{2} \vec{b}\left(1-\exp \left\{-\sigma_{\mathrm{soft}} A_{\mathrm{soft}}(s, \vec{b})-\sigma_{\mathrm{QCD}} A_{\mathrm{hard}}(s, \vec{b})\right\}\right)
$$

Independent interactions: Poisson distribution (same result follows from AGK cutting rules)

$$
P_{n}=\frac{\langle n(\vec{b})\rangle^{n}}{n!} \exp (-\langle n(\vec{b})\rangle)
$$

AKG cutting rules

Other graphs explicitly calculated in DPMJET III

Miracles of model building or physics ?

Unjustified approximations (known not to be satisfied)

- Eikonal and Glauber approximations:
- known to follow from planar graphs

$$
a^{(n)}(s, \vec{B})=-\frac{i}{2}(i)^{n} \frac{1}{n!} \prod_{i=1}^{n}\left(2 a^{(1)}(s, \vec{B})\right)
$$

- recoil (momentum transfer) neglected
- inelastic intermediate states (off-diagonal terms)

- No correlations between partons
- Universality of string fragmentation (soft/hard)

Comparison with collider data

Charged particle pseudorapidity distributions

Photoproduction at HERA

Jet and multiple interaction study by HI

Energy density outside of jet cone, averaged over $-\mathrm{I} \leq \eta^{*} \leq$ I
(HI Collab., ZPC 70, I995)

Direct photon interactions: no shadowing

Treatment within dipole model:
Rogers, Strikman JPG 322006

Reconstruction of W_{Yy} at LEP

RHIC: nucleus-nucleus data

PHOBOS data:
d-Au @ 200 GeV cms

Au-Au, data compilation (BRAHMS, PHENIX, PHOBOS)

Summary

Available (real/quasi-real photons):

- Low-energy region several well-tested MC models (SOPHIA, PEANUT, RELDIS, FLUKA)
- Intermediate energy region: DPMJET III (minimum bias studies)
- High-energy region: DPMJET III (with many caveats)
- Various photon flux MCs

Missing so far:

- Heavy quark production (diffractive and non-diffractive)
- MC based on dipole model and k_{\perp} factorization
- Color transparency (cross section fluctuations + forward dijets)
- Rapidity gap (pomeron/diffraction) MC generator for nuclei

History of DPMJET

History of DPMJET

