Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Simulation of Photoproduction on Nuclei and Astroparticle Physics Connection

Ralph Engel

Karlsruhe Institute of Technology

Astroparticle physics connection

Example: Ultra-high energy cosmic rays

• Sources:

interaction of hadrons with dense γ -ray fields

• Propagation:

interaction with cosmic microwave background

• Detection:

interaction with nuclei in the Earth's atmosphere, extensive air showers

The first really big air shower

VOLUME 10, NUMBER 4

PHYSICAL REVIEW LETTERS

15 FEBRUARY 1963

EVIDENCE FOR A PRIMARY COSMIC-RAY PARTICLE WITH ENERGY 10²⁰ eV[†]

John Linsley Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts (Received 10 January 1963)

The first really big air shower

VOLUME 10, NUMBER 4

PHYSICAL REVIEW LETTERS

15 FEBRUARY 1963

EVIDENCE FOR A PRIMARY COSMIC-RAY PARTICLE WITH ENERGY 10²⁰ eV[†]

John Linsley Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts (Received 10 January 1963)

FIG. 1. Plan of the Volcano Ranch array in February 1962. The circles represent $3.3-m^2$ scintillation detectors. The numbers near the circles are the shower densities (particles/m²) registered in this event, No. 2-4834. Point "A" is the estimated location of the shower core. The circular contours about that point aid in verifying the core location by inspection.

Magnetic fields in our Galaxy

Halo field: A0 dynamo

Disk field: bisymmetrical spiral Near solar system: 3µG (regular) ± 3µG (random)

Lamor radius (proton): $Ipc = 3.2 \text{ ly at } 3 \times 10^{15} \text{ eV}$ Ikpc at $3 \times 10^{18} \text{ eV}$

Transition from galactic to extra-galactic CRs

Acceleration: general source constraints

Core of Galaxy NGC 4261

Hubble Space Telescope

Wide Field / Planetary Camera

380 Arc Seconds 88,000 LIGHT-YEARS 1.7 Arc Seconds 400 LIGHT-YEARS

Background radiation

Energy loss due to propagation

GZK suppression for all particles

Comparison AGASA vs. HiRes (E³ scaled)

Top-down source scenarios

X particle $(M_X \sim 10^{23} - 10^{24} \text{ eV})$

X particles from:

- topological defects
- monopoles
- cosmic strings
- cosmic necklaces

•

Fragmentation function

$$\frac{dN_h}{dx} \sim x^{-3/2} (1-x)^2$$

QCD: ~ $E^{-1.5}$ energy spectrum QCD+SUSY: ~ $E^{-1.9}$ spectrum

Top-down: SHDM flux predictions

UHECRs and photoproduction

Propagation:

photoproduction at particle production threshold on nuclei up to Fe, photodissociation of nuclei

• Acceleration:

photoproduction up to $\sqrt{s} \sim 100$ GeV on nuclei up to Fe, photodissociation of nuclei

• Extensive air showers:

photoproduction up to $\sqrt{s} \sim 400.000$ GeV on light nuclei of atmosphere, muon production in photon-induced showers

Monte Carlo models needed for simulation even if no theory/phenomenology or data available

Simulation concepts: energy ranges

Low energy region (resonances)

Example: Monte Carlo code SOPHIA

Description of total cross section

- PDG: 9 resonances, decay channels, angular distributions
- Regge parametrization at higher energy
- Direct contribution: fit to difference to data

Many measurements available, still approximations necessary

Description of final states

Resonance	М	Г	$10^{3}b_{\gamma}^{+}$	σ_0^+	σ_{\max}^+	$10^{3}b_{\gamma}^{0}$	σ_0^0	$\sigma_{ m max}^0$
Δ(1232)	1.231	0.11	5.6	31.125	411.988	6.1	33.809	452.226
N(1440)	1.440	0.35	0.5	1.389	7.124	0.3	0.831	4.292
N(1520)	1.515	0.11	4.6	25.567	103.240	4.0	22.170	90.082
N(1535)	1.525	0.10	2.5	6.948	27.244	2.5	6.928	27.334
N(1650)	1.675	0.16	1.0	2.779	7.408	0.0	0.000	0.000
N(1675)	1.675	0.15	0.0	0.000	0.000	0.2	1.663	4.457
N(1680)	1.680	0.125	2.1	17.508	46.143	0.0	0.000	0.000
$\Delta(1700)$	1.690	0.29	2.0	11.116	28.644	2.0	11.085	28.714
Δ(1905)	1.895	0.35	0.2	1.667	2.869	0.2	1.663	2.875
Δ(1950)	1.950	0.30	1.0	11.116	17.433	1.0	11.085	17.462

Baryon resonances and their physical parameters implemented in SOPHIA (see text). Superscripts ⁺ and ⁰ in the parameters refer to $p\gamma$ and $n\gamma$ excitations, respectively. The maximum cross section, $\sigma_{\text{max}} = 4m_N^2 M^2 \sigma_0 / (M^2 - m_N^2)^2$, is also given for reference

Example: INC Monte Carlo model

(Ilinov, Pshenichnov et al., NPA616, 1997)

Decay channels of 6 baryon resonances and multiparticle channels

Explicit generation of kinematics of multiparticle final states (isobar model)

Interaction with nuclei, used in RELDIS

Others: PEANUT (FLUKA) Channels of elementary γN interactions taken into account in the INC model

γp -interaction	yn-interaction
$\gamma p \to \pi^+ n$ $\gamma p \to \pi^0 p$	$\gamma n ightarrow \pi^- p$ $\gamma n ightarrow \pi^0 n$
$egin{aligned} &\gamma p o \pi^- \Delta^{++} \ &\gamma p o \pi^0 \Delta^+ \ &\gamma p o \pi^+ \Delta^0 \end{aligned}$	$egin{aligned} &\gamma n & ightarrow \pi^- \Delta^+ \ &\gamma n & ightarrow \pi^0 \Delta^0 \ &\gamma n & ightarrow \pi^+ \Delta^- \end{aligned}$
$\begin{array}{l} \gamma p ightarrow \eta p \ \gamma p ightarrow \omega p \ \gamma p ightarrow \omega p \ \gamma p ightarrow ho^0 p \ \gamma p ightarrow ho^+ n \end{array}$	$\gamma n \rightarrow \eta n$ $\gamma n \rightarrow \omega n$ $\gamma n \rightarrow \rho^0 n$ $\gamma n \rightarrow \rho^- p$
$egin{array}{lll} \gamma p & ightarrow \pi^+\pi^-p \ \gamma p & ightarrow \pi^0\pi^+n \end{array}$	$\gamma n ightarrow \pi^+ \pi^- n$ $\gamma n ightarrow \pi^0 \pi^- p$
$egin{aligned} &\gamma p & ightarrow \pi^0 \pi^0 \pi^0 p \ &\gamma p & ightarrow \pi^+ \pi^- \pi^0 p \ &\gamma p & ightarrow \pi^+ \pi^0 \pi^0 n \ &\gamma p & ightarrow \pi^+ \pi^+ \pi^- n \end{aligned}$	$\gamma n \rightarrow \pi^0 \pi^0 \pi^0 n$ $\gamma n \rightarrow \pi^+ \pi^- \pi^0 n$ $\gamma n \rightarrow \pi^- \pi^0 \pi^0 p$ $\gamma n \rightarrow \pi^+ \pi^- \pi^- p$
$\gamma p \rightarrow i\pi N \ (4 \leqslant i \leqslant 8)$ (35 channels)	$\gamma n \rightarrow i\pi N \ (4 \leqslant i \leqslant 8)$ (35 channels)

INC: Description of final states

(Ilinov, Pshenichnov et al., NPA616, 1997)

Interaction with nuclei

Purely electromagnetic excitations:

- $E_Y \le 20$ MeV: E and M transitions, Giant Dipole resonance, selection according to quantum numbers
- 50 \leq E_Y \leq 150 MeV: mainly photon absorption by p and p-n pair
- evaporation: neutron, quasi-deuteron and alpha-particle emission

Hadronic interactions (particle production):

- $150 \le E_Y \le$ few GeV: single nucleon absorption of photon
- intra-nuclear cascade of secondaries (formation time)
- evaporation, fission, multifragmentation

Available code packages

- RELDIS (RElativistic ELectromagnetic DISsociation) I. Pshenichnov
- FLUKA (FLUktuierende KAskade)

A. Ferrari et al. & G.I. Smirnov

Effective em. dissociation cross section

Product of equivalent photon flux dn/dE_{γ} and cross section for dissociation

Simulation with RELDIS

(Pshenichnov 2002)

Example: photo-dissociation of nuclei

Intermediate energy region (Reggeons, topologies)

Vector meson dominance model

Lifetime of hadronic fluctuation of real photon

Approximation (low energy):

$$A_{\gamma h \to X}^{(T)}(s,t,q^{2},...) = \sum_{V=\rho,\omega,\phi} \left(\frac{e}{f_{V}}\right) \frac{m_{V}^{2}}{m_{V}^{2}-q^{2}-i\Gamma_{V}m_{V}} A_{Vh \to X}^{(T)}(s,t,...)$$

$$A_{\gamma h \to X}^{(L)}(s,t,q^{2},...) = \sum_{V=\rho,\omega,\phi} \left(\frac{e}{f_{V}}\right) \left(\frac{-q^{2}\xi_{V}}{m_{V}^{2}}\right)^{\frac{1}{2}} \frac{m_{V}^{2}}{m_{V}^{2}-q^{2}-i\Gamma_{V}m_{V}} A_{Vh \to X}^{(T)}(s,t,...)$$

$$\frac{e^2}{f_{
ho}^2} \approx 0.0036, \qquad \frac{e^2}{f_{\omega}^2} \approx 0.00031, \qquad \frac{e^2}{f_{\phi}^2} \approx 0.00055$$

Very successful at low Q²

Generalized vector dominance model

- Sum over all hadronic states
- Non-diagonal terms
- Many parameters (assumptions needed)

Neglecting off-diagonal transitions:

$$D(M^2) = \frac{R_{e^+e^-}(M^2)}{12\pi^2 M^2}$$

$$\sigma_{\gamma^{\star}N}(s,Q^{2}) = 4 \pi \alpha_{\rm em} \int_{M_{0}^{2}}^{M_{1}^{2}} dM^{2} D(M^{2}) \left(\frac{M^{2}}{M^{2} + Q^{2}}\right)^{2} \left(1 + \epsilon \frac{Q^{2}}{M^{2}}\right) \sigma_{VN}(s,Q^{2},M^{2})$$

$$\sigma_{VN}(s,Q^{2},M^{2}) = \frac{\tilde{\sigma}_{VN}(s,Q^{2})}{M^{2} + Q^{2} + C^{2}}$$

(RE, Ranft, Roesler, PRD55, 1997)

Confinement: color flow topologies

Partons only asymptotically free !

Scattering process:

('t Hooft, Veneziano, Witten, ... 1974)

Unitarity cuts (optical theorem)

Splitting functions (Regge asymptotics)

Fragmentation & two-string model

NA22 European Hybrid Spectrometer data

Multiplicity at low energy

DPMJET in p-p mode: simulation of particle production from energy threshold on

proton - proton, $E_{lab} = 200 \text{GeV}$						
	Exp.	DPMJET-III				
charged	7.69 ± 0.06	7.64				
neg.	2.85 ± 0.03	2.82				
р	1.34 ± 0.15	1.26				
n	0.61 ± 0.30	0.66				
π +	3.22 ± 0.12	3.20				
π -	2.62 <u>+</u> 0.06	2.55				
K^+	0.28 <u>+</u> 0.06	0.30				
K⁻	0.18 <u>+</u> 0.05	0.20				
Λ	0.096 <u>+</u> 0.01	0.10				
$\overline{\Lambda}$	0.0136 ± 0.004	0.0105				

(Roesler, 2006)

New NA49 data (p-p and p-C, I58 GeV)

(Baznat, 2006)

Photoproduction on hadrons

Glauber model of nuclear collisions

Standard Glauber approximation:

$$\sigma_{\text{inel}} = \int d^2 \vec{b} \left[1 - \prod_{k=1}^A \left(1 - \sigma_{\text{tot}}^{NN} T_N(\vec{b} - \vec{s}_k) \right) \right] \approx \int d^2 \vec{b} \left[1 - \exp\left\{ -\sigma_{\text{tot}}^{NN} T_A(\vec{b}) \right\} \right]$$

$$\sigma_{\rm prod} \approx \int d^2 \vec{b} \left[1 - \exp\left\{ -\sigma_{\rm ine}^{NN} T_A(\vec{b}) \right\} \right]$$

DPMJET: Pauli blocking intranuclear cascade with formation zone

Fixed-target hadron-nucleus data (i)

Fixed-target hadron-nucleus data (ii)

Fixed-target nucleus-nucleus data

Photon-nucleus scattering

Straightforward application of GVDM (DPMJET III)

$$\sigma_{\gamma^{\star}A}(s,Q^2) = 4 \pi \alpha_{\rm em} \int_{M_0^2}^{M_1^2} dM^2 D(M^2) \left(\frac{M^2}{M^2 + Q^2}\right)^2 \left(1 + \epsilon \frac{Q^2}{M^2}\right) \sigma_{VA}(s,Q^2,M^2)$$

$$\Gamma(s,Q^2,M^2,\vec{b}) = \frac{\sigma_{VN}(s,Q^2,M^2)}{4\pi B(s,Q^2,M^2)} \left(1 - i\frac{\text{Re}f(0)}{\text{Im}f(0)}\right) \exp\left(\frac{-\vec{b}^2}{2B(s,Q^2,M^2)}\right) \\B(s,Q^2,M^2) = 2\left[B_0^2 + \alpha_P' \ln\left(\frac{s}{M^2 + Q^2}\right)\right], \\B_0^2 = \left(2 + \frac{m_\rho^2}{M^2 + Q^2}\right) \text{GeV}^{-2}, \quad \alpha_P' = 0.25 \text{GeV}^{-2}.$$

$$\sigma_{VA}^{\text{inel}}(s,Q^2,M^2) = \int d^2b \int \prod_{j=1}^{A} d^3r_j \rho_A(\vec{r}_j) \left(1 - \left| \prod_{i=1}^{A} \left[1 - \Gamma(s,Q^2,M^2,\vec{b}_i) \right] \right|^2 \right) \right)$$

(RE, Ranft, Roesler, PRD55, 1997)

 $0.15 \le Q^2 \le 8 \text{ GeV}^2$

Inclusive photoproduction on nuclei

(Roesler, RE, Ranft, PRD57, 1998)

High energy region (partons, perturbative QCD)

Partons and color flow configurations (i)

One-gluon exchange: pomeron topology Initial and final state radiation: no change of basic topology

Partons and color flow configuations (ii)

DPMJET III: detailed color flow simulation for each event

QCD parton model: minijets

$$\int \sigma_{QCD} = \sum_{i,j,k,l} \frac{1}{1 + \delta_{kl}} \int dx_1 \, dx_2 \, \int_{p_{\perp}^{\text{cutoff}}} dp_{\perp}^2 \, f_i(x_1, Q^2) \, f_j(x_2, Q^2) \, \frac{d\sigma_{i,j \to k,l}}{dp_{\perp}}$$

Direct interactions of photons

Problem: matching soft/hard contributions

CDF inclusive charged particle distribution

- Topologies similar
- Matching of pt distribution of partons

Unitarization: eikonal-based model

Classic eikonal formula

$$\sigma_{\rm ine} = \int d^2 \vec{b} \left(1 - \exp\left\{ -\sigma_{\rm soft} A_{\rm soft}(s, \vec{b}) - \sigma_{\rm QCD} A_{\rm hard}(s, \vec{b}) \right\} \right)$$

Overlap
function
$$\langle n(\vec{b}) \rangle = \sigma_{\rm QCD} A(s, \vec{b})$$

Independent interactions: Poisson distribution (same result follows from AGK cutting rules)

$$P_n = \frac{\langle n(\vec{b}) \rangle^n}{n!} \exp\left(-\langle n(\vec{b}) \rangle\right)$$

AKG cutting rules

Other graphs explicitly calculated in DPMJET III

Miracles of model building or physics ?

Unjustified approximations (known not to be satisfied)

- Eikonal and Glauber approximations:
 - known to follow from planar graphs

$$a^{(n)}(s,\vec{B}) = -\frac{i}{2}(i)^n \frac{1}{n!} \prod_{i=1}^n \left(2a^{(1)}(s,\vec{B}) \right)$$

- recoil (momentum transfer) neglected
- inelastic intermediate states (off-diagonal terms)
- No correlations between partons
- Universality of string fragmentation (soft/hard)

Comparison with collider data

Photoproduction at HERA

Jet and multiple interaction study by HI

Energy density outside of jet cone, averaged over $-1 \le \eta^* \le 1$

(H1 Collab., ZPC 70, 1995)

Direct photon interactions: no shadowing

Treatment within dipole model: Rogers, Strikman JPG 32 2006

Reconstruction of $W_{\gamma\gamma}$ at LEP

RHIC: nucleus-nucleus data

PHOBOS data: d-Au @ 200 GeV cms

Au-Au, data compilation (BRAHMS, PHENIX, PHOBOS)

Summary

Available (real/quasi-real photons):

- Low-energy region several well-tested MC models (SOPHIA, PEANUT, RELDIS, FLUKA)
- Intermediate energy region: DPMJET III (minimum bias studies)
- High-energy region: DPMJET III (with many caveats)
- Various photon flux MCs

Missing so far:

- Heavy quark production (diffractive and non-diffractive)
- MC based on dipole model and $k_{\!\perp}$ factorization
- Color transparency (cross section fluctuations + forward dijets)
- Rapidity gap (pomeron/diffraction) MC generator for nuclei

History of DPMJET

History of DPMJET

