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ULTRARELATIVISTIC δ FUNCTION POTENTIAL

• Begin with the Liénhard-Wiechart potential

V (ρ,z, t) =
αZ(1− vαz)

√

[(b−ρ)/γ]2 +(z− vt)2

• If one makes the gauge transformation on the wave function

ψ = e−iχ(r,t)ψ′; χ(r, t) =
αZ
v

ln[γ(z− vt)+
√

b2 + γ2(z− vt)2]

V (ρ,z, t) =
αZ(1− vαz)

√

[(b−ρ)/γ]2 +(z− vt)2
−

αZ(1− (1/v)αz)
√

b2/γ2 +(z− vt)2

A.J.B., M J. Rhoades-Brown, and J. Weneser, Phys. Rev. A 44, 5568 (1991)

• In the ultrarelativistic limit (ignoring correction terms in [(b−ρ)/γ]2)

V (ρ,z, t) = −δ(z− t)αZP(1−αz) ln(b−ρ)2

A.J.B., Phys. Rev. A 52, 4970 (1995)
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BOUND-ELECTRON POSITRON PAIRS

A.J.B., Phys. Rev. Lett. 78, 1231 (1997)

• The δ function potential allowed the closed form solution of the Dirac
equation for the bound-electron positron problem.

• The full solution of the problem is in perturbation theory form, but with
an eikonalized interaction in the transverse direction

V (ρ,z, t) = −iδ(z− t)(1−αz)(exp[−iαZP ln(b−ρ)2]−1).

• Calculation is in the frame of the ion that receives the bound electron.
Matrix element wave functions include rest ion’s static field αZT /r, thus
including higher order effects from the rest ion (G. Baur, this workshop).

• Recall that this exact semiclassical solution produced a reduction of a
little less than 10% in the predicted cross section for Au + Au at RHIC.

• One can identify this reduction as an additional Coulomb correction from
the moving ion to bound-electron positron pair production.
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CONTINUUM PAIRS

• Two center light cone calculation of continuum pairs by solving the
semi-classical Dirac equation for colliding δ function potentials

V (ρ,z, t) = δ(z− t)(1−αz)Λ−(ρ)+δ(z+ t)(1+αz)Λ+(ρ)

in collider center of mass (lab) frame, and

Λ±(ρ) = −Zα ln (ρ±b/2)2

(b/2)2

B. Segev and J. C. Wells, Phys. Rev. A 57, 1849 (1998)

A.J.B., Larry McLerran, Phys. Rev. C 58, 1679 (1998)

U. Eichmann, J. Reinhardt, S. Schramm, and W. Greiner, Phys. Rev. A 59, 1223 (1999)

• A.J.B and McLerran note the agreement with perturbation theory;
Segev and Wells also note the scaling with Z2

1Z2
2 seen in SPS data.

B. Segev and J. C. Wells, Phys. Rev. C 59, 2753 (1999)
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• CERN SPS data

160 GeV/c Pb ions on C, Al, Pa, Au; 200 Gev/c S ions on C, Al, Pa, Au:

“Cross sections scale as the product of the squares of the projectile and
target nuclear charges”

C. R. Vane, S. Datz, E. F. Deveney, P. F. Dittner, H. F. Krause, R. Schuch, H. Gao, and R.

Hutton, Phys. Rev. A 56, 3682 (1997)

• On the other hand, photoproduction on a heavy target shows a negative
correction proportional to Z2.

H. A. Bethe and L. C. Maximon, Phys. Rev. 93, 768 (1954); Handel Davies, H. A. Bethe

and L. C. Maximon, Phys. Rev. 93, 788 (1954)

• Several authors have argued that a correct regularization of the exact
Dirac equation amplitude should lead to Coulomb corrections.

D. Yu. Ivanov, A. Schiller, and V. G. Serbo, Phys. Lett. B 454, 155 (1999)

R. N. Lee and A. I. Milstein, Phys. Rev. A 61, 032103; 64, 032106
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EXACT CROSS SECTION FOR CONTINUUM PAIRS

The amplitude takes the form

M(p,q) =
Z

d2k
(2π)2 exp[ik ·b]M (k)FB(k)FA(q⊥ +p⊥−k)

p and q are the momenta of the produced electron and positron,

M (k) = ū(p)
α(k−p⊥)+ γ0m

−p+q−− (k−p⊥)2 −m2 + iε
γ−u(−q)

+ū(p)
−α(k−q⊥)+ γ0m

−p−q+ − (k−q⊥)2 −m2 + iε
γ+u(−q),

and the transverse integrals FB and FA originally took the eikonalized form

F(k) = 2π
Z ∞

0
ρdρJ0(kρ){exp[−i2Zα lnρ]−1}.

F(k) has to be regularized at large ρ.

How it is regularized is the key to understanding Coulomb corrections.

6



σT is the number weighted inclusive cross section

σT =
Z

d2b < N >=
Z

d2b
∞

∑
n=1

nPn(b),

σT =
Z

m2d3 pd3q
(2π)6εpεq

Z

d2k
(2π)2 |M (k)|2|FA(q⊥ +p⊥−k)|2|FB(k)|2

|M (k)|2 =
p+q−[(k−p⊥)2 +m2]

[p+q− +(k−p⊥)2 +m2]2
+

p−q+[(k−q⊥)2 +m2]

[p−q+ +(k−q⊥)2 +m2]2

+
2[k·p⊥q+q−+k·q⊥p+ p−−2k·p⊥k·q⊥+k2(p⊥·q⊥−m2)−p+ p−q+q−]

[p+q− +(k−p⊥)2 +m2][p−q+ +(k−q⊥)2 +m2]
.

If one merely regularizes the eikonal integrals FA,B at large ρ one obtains
apart from a trivial phase

F(k) =
4παZ

k2−2iαZ .
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If one puts in a cutoff by hand by replacing k2 with k2 +ω2/γ2

F(k) =
4παZ

(k2 +ω2/γ2)1−iαZ .

the cross section formula goes to the known perturbation theory limit.

All the higher order Zα effects in M(p,q) are contained only in the phase
of the denominator, which falls out of the expression when squared.

A PHYSICAL REGULARIZATION

Alternatively, a physically motivated cutoff of the transverse potential
leads to an “exact” cross section expression:

• Coulomb corrections consistent with the Lee and Milstein result,

• Cross section consistent with perturbation theory in that limit.

A.J.B., Phys. Rev. C 68, 034906 (2003)

• “Exact” Dirac equation cross sections evaluated on a computer.

A.J.B., Phys. Rev. C 71, 024901 (2005)
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• In a Weizsacker-Williams equivalent photon treatment the potential is cut
off at impact parameter b ' γ/ω, where γ is the relativistic boost of the
ion producing the photon and ω is the energy of the photon. If

χ(ρ) =
Z ∞

−∞
dzV (

√

z2 +ρ2)

and V (r) is cut off in a physically motivated way, such as an equivalent
photon cutoff, then

V (r) =
−Zαexp[−rωA,B/γ]

r

where
ωA =

p+ +q+

2 ; ωB =
p− +q−

2

• ωA the energy of the virtual photon from ion A moving in the positive z

direction and ωB the energy of the virtual photon from ion B moving in
the negative z direction.
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• All beam energy dependence (γ) and some of the electron and positron
energy dependence (ωA,B) is contained in this cutoff. The integral

0.01 0.1 1 10 100
kγ/ω

0

0.5

1

 Coulomb Corrections
 Scaled Magnitude of Transverse Integral F(k)

Z=1 Z=1

Z=82 Z=82

ω2|F(k)|/γ24παZ
k2|F(k)|/4παZ

χ(ρ) =

Z ∞

−∞
dzV (

√

z2 +ρ2)

can be carried out to obtain

χ(ρ) = −2ZαK0(ρωA,B/γ),

and

FA,B(k) = 2π
Z

dρρJ0(kρ){exp[2iZA,BαK0(ρωA,B/γ)]−1}.

• FA(k) and FB(k) are functions of virtual photon ωA and ωB respectively.

• K0(ρω/γ) = − ln(ρω/2γ)− γEuler for small ρ and cuts off exponentially
at ρ ∼ γ/ω. This is the physical cutoff to the transverse potential ln(ρ).
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CALCULATIONS: NUMERICAL TECHNIQUES AND RESULTS

• The expression for the total cross section involves an eight dimensional
integral over the positron and electron momenta as well as the virtual
photon transverse momentum.

• Reduces to seven dimensions in the usual way by symmetry, e. g. let the
positron transverse momentum define the x-axis.

• The usual method of evaluation e. g. in perturbation theory is via Monte
Carlo.

• I have chosen to do the seven dimensional integral directly on meshes
uniform on a logarithmic scale in each momentum dimension.

• It was possible to carry the calculation out without using Monte Carlo
because the integrand is very smooth and smoothly goes to zero at both
high end and low end of the momentum ranges.

• No cutoffs were applied except the cutoffs implicit in the ωA,B/γ of the of
the virtual photon sources FA,B(k).
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RESULTS IN BARNS Exact Perturb. Difference
Pb + Au Computer Evaluation 2670 3720 -1050
γ = 9.2 Racah Formula 3480

SPS Lee-Milstein 3050 5120 -2070

Au + Au Computer Evaluation 28,600 34,600 -6,000
γ = 100 Racah Formula 34,200
RHIC Lee-Milstein 34,100 42,500 -8,400

Hencken, Trautman, Baur[*] 34,000

Pb + Pb Computer Evaluation 199,000 224,000 -25,000
γ = 2960 Racah Formula 226,000

LHC Lee-Milstein 226,000 258,000 -32,000

[*]Kai Hencken, Dirk Trautmann, and Gerhard Baur, Phys. Rev. C 59, 841 (1999)
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• Positron transverse momentum spectra
for Au + Au at RHIC with γ = 100.
The exact calculation (filled circles) is
below perturbation theory (stars) for
the entire range of q⊥.
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• Positron longitudinal momentum
spectra for Au + Au at RHIC with
γ = 100. The exact calculations (filled
circles) are below perturbation theory
(stars) for the entire range of qz.
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• Calculated positron momentum
spectra compared with CERN SPS
Pb+Au data[*] at γ = 9.2 c.m. The
solid line is the exact calculation and
the dashed line perturbation theory.
The closer agreement of data to
perturbation theory is a puzzle.
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• As above for SPS S+Au data[*]. The
dot-dashed line follows the
experimental authors’ repesentation
of their data.

[*] C. R. Vane, S. Datz, E. F. Deveney, P. F.

Dittner, H. F. Krause, R. Schuch, H. Gao, and

R. Hutton, Phys. Rev. A 56, 3682 (1997)
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RHIC STAR DATA

• e+e− pairs accompanied by nuclear dissociation have been measured by
STAR[*]. Comparison with perturbative QED calculations allowed a
limit to be set “on higher-order corrections to the cross section,

−0.5σQED < ∆σ < 0.2σQED

at a 90% confidence level.

[*]STAR Collaboration, J. Adams et al., Phys. Rev. C 70, 031902(R) (2004)

• Calculations in the STAR acceptance without dissociation provide an
indication of the relative difference between perturbation theory and the
exact result. In the STAR acceptance the exact result is calculated to be
17% lower than perturbation theory. This rough estimate,

∆σ = −0.17σQED

is not excluded by STAR.
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IMPACT PARAMETER DEPENDENCE OF HEAVY ION e+e−

PAIR PRODUCTION TO ALL ORDERS IN Zα

A.J.B., Phys. Rev. C 74, 054903 (2006)

• ZDC triggering (e.g. for the STAR pair production) weights smaller
parameter contributions: the probability at each impact parameter goes as
the product of the dissociation probabilty (ZDC) and the pair production
probability.

• Pair production probability as a function of impact parameter is needed to
describe ZDC triggered events as was done for ρ production at STAR.[*]

• We calculate the number weighted probability PT (or number operator)
for producing e+e− pairs at some impact parameter b

PT =
∞

∑
n=1

nPn(b) =
Z

m2d3 pd3q
(2π)6εpεq

|M(p,q)|2

[*]A. J. B., S. R. Klein, and J. Nystrand, Phys.Rev.Lett. 89, 012301 (2002)

16



IMPACT PARMETER DEPENDENT AMPLITUDE

• Express k in Cartesian co-ordinates:

M (k) = ū(p)
αxkx +αyky −α ·p⊥ + γ0m

−p+q−− (k−p⊥)2 −m2 + iε
γ−u(−q)

+ū(p)
−αxkx −αyky +α ·q⊥ + γ0m

−p−q+ − (k−q⊥)2 −m2 + iε
γ+u(−q).

• The expression for the amplitude M(p,q) then becomes

M(p,q) = ū(p)[Ipxαx + Ipyαy +(−α ·p⊥ + γ0m)Jp]γ−u(−q)

+ū(p)[−Iqxαx − Iqyαy +(α ·q⊥ + γ0m)Jq]γ+u(−q),

where letting b define the x-axis,

Ipx =
1

(2π)2

Z

exp[i kx b]dkx

Z

FB(k)FA(q⊥ +p⊥−k) kx dky

−p+q−− (k−p⊥)2 −m2

Ipy =
1

(2π)2

Z

exp[i kx b]dkx

Z

FB(k)FA(q⊥ +p⊥−k) ky dky

−p+q−− (k−p⊥)2 −m2
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Iqx =
1

(2π)2

Z

exp[i kx b]dkx

Z

FB(k)FA(q⊥ +p⊥−k) kx dky

−p−q+ − (k−q⊥)2 −m2

Iqy =
1

(2π)2

Z

exp[i kx b]dkx

Z

FB(k)FA(q⊥ +p⊥−k) ky dky

−p−q+− (k−q⊥)2 −m2

Jp =
1

(2π)2

Z

exp[i kx b]dkx

Z

FB(k)FA(q⊥ +p⊥−k) dky

−p+q−− (k−p⊥)2 −m2

Jq =
1

(2π)2

Z

exp[i kx b]dkx

Z

FB(k)FA(q⊥ +p⊥−k) dky

−p−q+ − (k−q⊥)2 −m2 .

• There is an apparent numerical difficulty in evaluating the integrals over
kx due to the oscillating factor exp[i kx b].

• In the b = 0 limit this factor is absent:
we will first investigate this numerically more tractable case.

• The general case of non-zero b is addressed by a technique involving
piecewise analytical integration.
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After squaring, summing over spin states, and taking traces with the aid
of the computer program FORM[*]

|M(p,q)|2 = p+q−[(m2 + p2
⊥)|Jp|

2 + |Ipx|
2 + |Ipy|

2

−2pxRe(JpI∗px)−2pyRe(JpI∗py)]

+ p−q+[(m2 +q2
⊥)|Jq|

2 + |Iqx|
2 + |Iqy|

2

−2qxRe(JqI∗qx)−2qyRe(JqI∗qy)]

+ 2[(m2 + p2
⊥)(qxRe(JpI∗qx)+qyRe(JpI∗qy))

+(m2 +q2
⊥)(pxRe(JqI∗px)+ pyRe(JqI∗py))

+(p⊥ ·q⊥−m2)(Re(IpxI∗qx)+Re(IpyI∗qy))

−(m2 + p2
⊥)(m2 +q2

⊥)Re(JpJ∗q)

−(pxqy + pyqx)(Re(IpxI∗qy)+Re(IpyI∗qx))

−2pxqxRe(IpxI∗qx)−2pyqyRe(IpyI∗qy)].

[*]J. A. M. Vermaseren, arXiv:math-ph/0010025 (2000)
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THE b = 0 LIMIT

1 10 100
 Positron Energy E (MeV)

0.01

0.1

1

dP
/d

E

• Present calculation: Dashed
line, perturbation theory.

• Comparison with previous
calculation[*]:
Dotted line, perturbation
theory.

[*]Kai Hencken, Dirk Trautmann, and Gerhard Baur, Phys. Rev. A 49, 1584 (1994)
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1 10 100
 Positron Energy E (MeV)

0.01

0.1

1

dP
/d

E

• Dashes: perturbation theory

P0(0) = 1.64

• Solid line: exact

P(0) = .94 = .57P0(0)

• Long dashed line: eikonal

Pe(0) = 1.03 = .63P0(0)

• Pb + Pb at LHC

P0(0) = 4.07; P(0) = 2.39 = .59P0(0)

21



EIKONAL, EXACT, AND PERTURBATIVE CASES

Exact:

FA,B(k) = 2π
Z

dρρJ0(kρ){exp[2iZA,BαK0(ρωA,B/γ)]−1},

or
FA,B(k) =

4πiZA,Bα
k2 IA,B(γk/ω)

where

IA,B(γk/ω) =
1

2iZA,Bα

Z

dξξJ0(ξ){exp[2iZA,BαK0(ξω/γk)]−1}.

eikonal,

IE
A,B(γk/ω) = −i(

exp[γe]ω
γk

)−2iαZ Γ(−iαZ)

Γ(iαZ)

1
(1+ω2/k2γ2)1−iαZ .

and perturbative
I0
A,B(γk/ω) =

−i
1+ω2/k2γ2 ,

22



0.01 0.1 1 10 100
kγ/ω

0

90

180

270

360

Ph
as

e 
of

 F
(k

γ/
ω

)

0

0.5

1

|I(
kγ

/ω
)|2

(ω/kγ)4|I|2
|I|2

Top:

Exact, solid;

Eikonal or perturbative,
dashes.

Bottom:

Exact, solid;

Eikonal, dashes ;

Perturbative (not shown)
does not vary.
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b DEPENDENT PROBABILITIES

RHIC case of Au + Au at γ = 100

10 100 1000 10000 100000 1000000
Impact Parameter b (fm)

0

5000
dσ

/d
 ln

(b
) (

ba
rn

s)

• Present calculations:
Dashed line, perturbation
theory; long dashed line
eikonal.

• Comparison with previous
calculations [*]:
Dotted line, perturbation
theory; Dot dashed line,
eikonal.

[*]Kai Hencken, Dirk Trautmann, and Gerhard Baur, Phys. Rev. C 59, 841 (1999)
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• Dashed line, perturbation
theory.

• Solid line, exact.

• Long dashed line eikonal.

RESULTS IN BARNS Perturb. Exact Eikonal
Integration over b 34,600 29,400 35,500

Previous no b 34,600 28,600 34,600
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• Present calculations:
Dashed line, perturbation
theory; solid line exact.

• Bertulani and
Baur[*]:Dotted line
pertubation theory; long
dashed line, Coulomb
corrected.

• Lee, Milstein, and Serbo[†]:
Dot-dashed line, perturb.
[*]Carlos A. Bertulani and Gerhard Baur, Physics Reports 163, 299 (1988)

[†]R. N. Lee, A. I. Milstein, and V. G. Serbo, Phys. Rev. A 65, 022102 (2002)
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FORWARD PAIRS AT LHC

• A sample numerical calculation has been performed using the same
method for e+e− production by Pb + Pb ions with cuts from a possible
detector setup suggested by Bocian and Piotrzkowski[*] at the LHC. With
electron and positron energy E and angle θ in the range,

3 Gev < E < 20 GeV

and
.00223 radians < θ < .00817 radians,

the no form factor perturbation theory cross section of 2.88 b is reduced
by 18% to 2.36 b in an exact numerical calculation.

• If forward e+e− pairs are to be employed for luminosity measurements at
LHC, then it seems necessary to consider the Coulomb corrections to the
predicted cross sections.

[*]D. Bocian and K. Piotrzkowski, Acta Phys. Polon. B 35, 2417 (2004)
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µ+µ− PAIRS

For point charge heavy ions (no form factor) if length is expressed in
terms of 1/ml and energy in terms of ml then the total cross section

σ(µ+µ−) is identical to σ(e+e−)

Assume simple form factor

F(k) =
1

1+ k2/Λ2

where for Au or Pb

Λ ' 80MeV = 160me = .75mµ

The form factor is relatively insignificant for σ(e+e−),
but for σ(µ+µ−) contributions at large k are cut off more rapidly.

Without a form factor
σ(µ+µ−)

σ(e+e−)
=

( me

mµ

)2
= 23.4×10−6
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But with a form factor the perturbation theory result

σ(µ+µ−)

σ(e+e−)
= 6.1×10−6 = .26×

(me

mµ

)2 RHIC

and
σ(µ+µ−)

σ(e+e−)
= 11.6×10−6 = .50×

(me

mµ

)2 LHC

As previously noted there is a 17% (RHIC) and 11% (LHC) reduction
in the exact σ(e+e−) from the perturbation theory result.

For σ(µ+µ−) the reduction from perturbation theory is even greater,
22% (RHIC) and 14% (LHC).

Present perturbative σ(µ+µ−) calculations are in good agreement with
recent calculations of Hencken, Kuraev, and Serbo[*], but the present
exact cross section calculations are in disagreement with their arguement
that Coulomb corrections are relatively insignificant for mu pairs.

[*]K. Hencken, E. A. Kuraev, and V. G. Serbo, Acta Phys. Polon. B37, 969 (2006)
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• The difference between the
perturbative and exact cross
sections arises from:

(1) differences between the
perturbative (long dashed) and
exact (solid) values of the
magnitude (top) of

FA,B(k) =
4πiZA,Bα

k2 IA,B(γk/ω);

(2)the change in the phase of the
exact value of FA,B(k) (bottom).
(The perturbative expression for
FA,B(k) does not change in phase.)

• At the highest values of γk/ω (corresponding to the region where µ pairs
are suppressed by the form factor) the exact magnitude is not reduced.
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DEVIATIONS FROM Z4 SCALING

• No statistically significant deviation of continuum e+e− pair production
rates from Z2

AZ2
B scaling was observed in the SPS data of

160 GeV/c Pb ions on C, Al, Pa, Au and

200 Gev/c S ions on C, Al, Pa, Au

• The statistics of the published Au + Au STAR data are insuffient to rule
out Coulomb correction deviations from perturbation theory calculations.

• Observe lepton pairs at LHC from Ca + Ca and Pb + Pb

at the same relativistic beam γ

and with the same detector acceptance

A statistically significant lack of deviations from Z4 scaling would
provide a severe challenge to our present understanding of QED with
UPCs.
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CONCLUSIONS: THEORY

• A full numerical evaluation of the “exact” total cross section for e+e−

production with gold or lead ions shows reductions from perturbation
theory of 28% (SPS), 17% (RHIC), and 11%(LHC).

• For large Z no final momentum region was found in which there was no
reduction or an insignificant reduction of the exact cross section.

• Reductions in the exact total probability of e+e− production from
perturbation theory were seen at all impact parameters.

• The reduction of the µ+µ− cross section from perturbation theory is even
larger than in the e+e− case.
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FOR THE FUTURE: THEORY

• Still to be done is an accurate exact calculation of the high transverse
momentum slice of data seen by STAR to be combined with a Coulomb
dissociation calculation for the zero degree calorimeter acceptance.

• The present approach is strictly speaking valid only when either the
positrons or electons have been integrated over; in the STAR case both
electron and positron are constrained to be in the high momentum slice.
At present the best one can do is observe that the present method is valid
for both uncorrelated positrons and electrons of all momenta, and ignore
the correlations. The effect of correlations averages to zero, but some
estimate of individual magnitudes would be useful.
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