Trento ECT*

Photonic and Dúffractive Phenomena in QCD Stan Brodsky, SLAC LHC Photoproduction Workshop January 16, 2007

Study Two-Photon Processes in Peripheral Heavy Ion Collisions
$Z_{1} Z_{2} \rightarrow X+Z_{1}+Z_{2} \quad \gamma \gamma \rightarrow \eta_{c}, \eta_{b}, Z^{0}, W^{+} W^{-}, H^{0}, \ldots$

$$
Z_{1}
$$

Exclusive Channels
Heavy Quarks
$\mathrm{C}=+$ Resonances
Hard and Soft Inclusive Channels, Jets
Pomeron, Odderon Exchange
Total Photon-Photon Cross Section

$$
(Z \alpha) F_{A}\left(q^{2}\right)
$$

High masses accessible at the LHC

Trento ECT*
Photonic and Diffractive
$\underset{2}{\text { Phenomena in QCD }}$
Stan Brodsky, SLAC

Elastic Scattering of Heavy Ions

Coulombscattering of heavy charges

$$
Q^{2}=-q^{2}=-t \ll M_{A}^{2}
$$

QED Effective Charge

$$
\alpha\left(q^{2}\right)=\frac{\alpha(0)}{1-\Pi\left(q^{2}\right)}
$$

Calculate Lippmann-Schwinger T Matrix from effective potential

$$
V_{\mathrm{C}}=Z_{1} Z_{2} \frac{\alpha\left(q^{2}\right)}{q^{2}} F_{A_{1}}\left(q^{2}\right) F_{A_{2}}\left(q^{2}\right)
$$

Trento ECT*
Photonic and Diffractive Phenomena in QCD

Stan Brodsky, SLAC

Elastic Scattering of Heavy Ions

Significant correction to Coulomb scattering from light-by-light scattering

$$
\begin{gathered}
V_{\mathrm{LL}}=\mathcal{O}(\alpha) V_{\mathrm{C}} \\
\quad \text { For } Z \alpha \simeq 1
\end{gathered}
$$

1% correction at $-t \sim m_{\ell}^{2}$

Effective Schrödinger potential

$$
V_{\mathrm{C}}+V_{\mathrm{LL}}
$$

$$
V_{\mathrm{C}}=Z_{1} Z_{2} \frac{\alpha\left(q^{2}\right)}{q^{2}} F_{A_{1}}\left(q^{2}\right) F_{A_{2}}\left(q^{2}\right) \quad V_{\mathrm{LL}}=Z_{1}^{2} Z_{2}^{2} \alpha^{4} \mathcal{T} F_{A_{1}} F_{A_{2}}
$$

Photonic and Diffractive
Trento ECT* Phenomena in QCD

Stan Brodsky, SLAC

Elastic Scattering of Heavy Ions

Multiple Light-by-
 Light scattering

All Orders:

$V_{\mathrm{LL}}=\mathcal{O}(\alpha) V_{\mathrm{C}}$
1% correction at $-t \sim m_{\ell}^{2}$
For $Z \alpha \simeq 1$

Calculate Lippmann-Schwinger T Matrix from $\quad V_{\text {eff }}=V_{\mathrm{C}}+V_{\mathrm{LL}}$

$$
V_{\mathrm{C}}=Z_{1} Z_{2} \frac{\alpha\left(q^{2}\right)}{q^{2}} F_{A_{1}}\left(q^{2}\right) F_{A_{2}}\left(q^{2}\right) \quad V_{\mathrm{LL}}=Z_{1}^{2} Z_{2}^{2} \alpha^{4} \mathcal{T} F_{A_{1}} F_{A_{2}}
$$

Photonic and Diffractive
Trento ECT* Phenomena in QCD

Stan Brodsky, SLAC

Study Two-Photon Processes in Peripheral Heavy Ion Collisions

$$
Z_{1} Z_{2} \rightarrow X+Z_{1}+Z_{2}
$$

Tag scattered nucleus

$(Z \alpha) F_{A}\left(q^{2}\right)$

Trento ECT*
Photonic and Diffractive Phenomena in QCD

Stan Brodsky, SLAC

Study Two-Photon Processes in Peripheral Heavy Ion Collisions

$$
Z_{1} Z_{2} \rightarrow X+Z_{1}+Z_{2}
$$

Light-front energy denominator

$$
\begin{array}{l:l}
M_{A}^{2}-\frac{M_{A}^{2}+k_{\perp}^{2}}{1-x}-\frac{k_{\perp}^{2}}{x}=-\frac{k_{\perp}^{2}+x^{2} M_{A}^{2}}{x(1-x)} \\
\frac{d N_{\gamma}}{d x d k_{\perp}^{2}} \simeq \frac{Z^{2} \alpha}{\pi x} \frac{k_{\perp}^{2}}{\left(k_{\perp}^{2}+x^{2} M_{A}^{2}\right)^{2}} F_{A}^{2}\left(k_{\perp}^{2}+x^{2} M_{A}^{2}\right) \\
& \\
k_{\perp}<\frac{1}{R_{A}} \\
x<\frac{1}{R_{A} M_{A}}
\end{array}
$$

Frame-Independent Coherence Condition Trento ECT*

"EquivalentPhoton Approximation": PQCD Factorization
Photonic and Diffractive Phenomena in QCD

Stan Brodsky, SLAC

Study Two-Photon Processes in Peripheral Heavy Ion Collisions

Photonic and Diffractive
Trento ECT* Phenomena in QCD

Stan Brodsky, SLAC

(a)

(b)

$$
\frac{\frac{d \sigma}{d t}\left(\gamma \gamma \rightarrow \pi^{+} \pi^{-}\right)}{\frac{d \sigma}{d t}\left(\gamma \gamma \rightarrow \mu^{+} \mu^{-}\right)} \sim \frac{4\left|F_{\pi}(s)\right|^{2}}{1-\cos ^{4} \theta_{\mathrm{c} . \mathrm{m} .}}
$$

Crucial test: $\gamma \gamma \rightarrow \pi^{0} \pi^{0}$

Trento ECT*
Photonic and Diffractive
$\underset{\text { II }}{\text { Phenomena }}$ in QCD
Stan Brodsky, SLAC

Possible extension to very high invariant mass using LHC UPC

$$
s=E_{\mathrm{Cm}}^{2}=W^{2}=Q^{2}
$$

PQCD, AdS/CFT:
$\Delta \sigma\left(\gamma \gamma \rightarrow \pi^{+} \pi^{-}, K^{+}, K^{-}\right) \sim 1 / W^{6}$
$\left|\cos \left(\theta_{C M}\right)\right|<0.6$

Fig. 5. Cross section for (a) $\gamma \gamma \rightarrow \pi^{+} \pi^{-}$, (b) $\gamma \gamma \rightarrow K^{+} K^{-}$in the c.m. angular region $\left|\cos \theta^{*}\right|<0.6$ together with a W^{-6} dependence line derived from the fit of $s\left|R_{M}\right|$. (c) shows the cross section ratio. The solid line is the result of the fit for the data above 3 GeV . The errors indicated by short ticks are statistical only.

$$
\frac{d \sigma}{d\left|\cos \theta^{*}\right|}\left(\gamma \gamma \rightarrow M^{+} M^{-}\right) \approx \frac{16 \pi \alpha^{2}}{s} \frac{\left|F_{M}(s)\right|^{2}}{\sin ^{4} \theta^{*}}
$$

Fig. 4. Angular dependence of the cross section, $\sigma_{0}^{-1} d \sigma / d\left|\cos \theta^{*}\right|$, for the $\pi^{+} \pi^{-}$(closed circles) and $K^{+} K^{-}$(open circles) processes. The curves are $1.227 \times \sin ^{-4} \theta^{*}$. The errors are statistical only.

Photonic and Diffractive
Trento ECT*
Phenomena in QCD
Stan Brodsky, SLAC

Final-State Coulomb Corrections

$$
Z_{1} Z_{2} \rightarrow \pi^{+} \pi^{-}+Z_{1}+Z_{2}
$$

Schwinger - Sommerfeld Correction

Coulombic final-state interaction
between outgoing nuclei and produced charged particles
$\sigma \rightarrow \sigma \times \Pi_{i \neq j} \frac{2 \pi \eta_{i j}}{e^{2 \pi \eta_{i j}-1}}$

$$
\eta_{i j}=\frac{\pi Z_{i} q_{j} \alpha}{\beta_{i j}}
$$

Trento ECT*

Strong final-state interactions at small relative velocity

Photonic and Diffractive Phenomena in QCD

Schwinger-Sommerfeld Correction

- Final-state Coulombic interactions of nuclei with charged hadrons distort trajectories
- Not unitarity $\sigma \rightarrow \sigma \times \Pi_{i \neq j} \frac{2 \pi n_{i j}}{2 \pi n_{i j}-1} \quad \eta_{i j}=\frac{\pi z_{i} q_{j} \alpha}{\beta_{i j}}$
- Generate charge asymmetries and single-spin asymmetries -- opposite charges attract
- Use QED lepton production as reference

Study Two-Photon Processes in Peripheral Heavy

 Ion Collisions

Realpart interferes with
coulomb exchange
Charge asymmetries
single-Spin Asymmetries
Photonic and Diffractive
Trento ECT*
Phenomena in QCD
Stan Brodsky, SLAC

Study Doubly Düffractive $C=$ - Vector Meson Photoproduction in Peripheral Heavy Ion Collisions

$$
Z_{1} Z_{2} \rightarrow V^{0} V^{0}+Z_{1}+Z_{2}
$$

$$
(Z \alpha) F_{A}\left(q^{2}\right)
$$

Pomeron Exchange

Study Doubly C=+ Meson Production in Perípheral Heavy Ion Collisions

$$
Z_{1} Z_{2} \rightarrow \pi^{0} \pi^{0}+Z_{1}+Z_{2}
$$

Trento ECT*
Photonic and Diffractive
Phenomena in QCD
Stan Brodsky, SLAC

The odderon

- Three-Gluon Exchange, C=-, J=ı, Nearly Real Phase
- Interference of 2 -gluon and 3 -gluon exchange leads to matter/ antimatter asymmetries
- Asymmetry in jet asymmetry in $\gamma p \rightarrow c \bar{c} p \quad$ e-p collider test
- Analogous to lepton energy and angle asymmetry $\gamma Z \rightarrow e^{+} e^{-} Z$
- Pion Asymmetry in $\quad \gamma p \rightarrow \pi^{+} \pi^{-} p$

Pomeron

Odderon

Odderon: Another source of antisfiadowing

Photonic and Diffractive
Trento ECT* Phenomena in QCD

Use Díffraction to Resolve Hadron Substructure

- Measure Light-Front Wavefunctions
- Test AdS/CFT predictions
- Novel Aspects of Hadron Wavefunctions: Intrinsic Charm, Hidden Color, Color Transparency/Opaqueness
- Diffractive Di-Jet, Tri-Jet Production
- Nuclear Shadowing and Antishadowing
- Novel QCD Mechanism for Higgs Production

Díffractive Dissociation of Pion into Quark Jets

 E791 Ashery et al.

$$
M \propto \frac{\partial^{2}}{\partial^{2} k_{\perp}} \psi_{\pi}\left(x, k_{\perp}\right)
$$

Measure Light-Front Wavefunction of Pion
Minimal momentum transfer to nucleus Nucleus left Intact!

Coulomb- or Hadron -Dissociate Proton to Three Jets

Frankfurt
Miller
Strikman

Measure $\Psi_{q q q}\left(x_{i}, \vec{k}_{\perp i}\right)$ valence wavefunction of proton
Polarized proton: Spin correlations
Photonic and Diffractive
Trento ECT* Phenomena in QCD

Stan Brodsky, SLAC

Diffractive Dissociation of Proton into QuarkJets

Frankfurt, Miller, Strikman

Measure Light-Front Wavefunction of proton
Minimal momentum transfer to nucleus $M \propto \sum_{i j}^{3} \frac{\partial^{2}}{\partial \vec{k}_{\perp i} \partial \vec{k}_{\perp j}} \psi_{3}^{p}\left(x_{i}, \vec{k}_{\perp i}\right)$ Nucleus left Intact
conformal invariance - AdS/CFT

$$
\psi_{3}^{p}\left(x_{i}, \vec{k}_{\perp i}\right) \simeq \frac{F_{p}^{2}}{\mathcal{M}^{4}} \quad \mathcal{M}^{2}=\sum_{i} \frac{k_{\perp i}^{2}}{x_{i}}
$$

LHC with forward acceptance
Trento ECT*
Photonic and Diffractive Phenomena in QCD

Stan Brodsky, SLAC

Diffractive dissociation of color-octet deuteron to two high tranverse momentum clusters

Fluctuation of a Pion to a Compact Color Dípole State

Color-Transparent Fock State For High Transverse Momentum Di-Jets

Photonic and Diffractive
Trento ECT*
$\underset{26}{\text { Phenomena in QCD }}$
Same Fock State Determines Weak Decay
Stan Brodsky, SLAC

Key Ingredients in Ashery Experiment

1-2005
8711A4

Local gauge-theory interactions measure transverse size of color dipole

Photonic and Diffractive
Trento ECT* Phenomena in QCD

Stan Brodsky, SLAC

Key Ingredients in Ashery Experiment

1-2005

Small color-dipole moment pion not absorbed; interacts with each nucleon coherently QCD COLOR Transparency

Photonic and Diffractive
Trento ECT* Phenomena in QCD

Stan Brodsky, SLAC

- Fully coherent interactions between pion and nucleons.
- Emerging Di-Jets do not interact with nucleus.

Photonic and Diffractive
Trento ECT*
Phenomena in QCD
Stan Brodsky, SLAC

Ashery E791:
 Measure of pion LFWF in diffractive dijet production Confirmation of color transparency, gauge theory of strong interactions

Theory predictions;
Frankfurt, Miller, Strikman
α (СТ)

1. 25
1.45
2. 60

Conventional Glauber
Theory Ruled Out !
Factor of 7
Photonic and Diffractive Trento ECT* Phenomena in QCD

Is there an
additional contribution from Coulomb exchange?

Stan Brodsky, SLAC

Coulomb Contribution to Díffractive Dýet Production

Electric Dipole
Contribution to Coulomb $\quad M \propto b_{\perp}$
Scattering

$Z \alpha s F_{A}(t)$
Real Phase Charge asymmetries from HO Coulomb and interference with pomeron

Trento ECT*
Photonic and Diffractive Phenomena in QCD

Stan Brodsky, SLAC

Color Transparency
 A. H. Mueller, sjb
 Bertsch, Gunion, Goldhaber, sjb
 Frankfurt, Miller, Strikman

- Fundamental test of gauge theory in hadron physics
- Small color dipole moments interact weakly in nuclei
- Complete coherence at high energies
- Clear Demonstration of CT from Diffractive Di-Jets

Key Ingredients in \mathcal{A} shery Experiment

Two-gluon exchange measures the second derivative of the pion light-front wavefunction

Photonic and Diffractive
Trento ECT* Phenomena in QCD

Stan Brodsky, SLAC

Coulomb Contribution to Díffractive Dýet Production
Electric Dipole
Contribution to Coulomb $\quad M \propto b_{\perp}$
Scattering

$Z \alpha s F_{A}(t)$
Photonic and Diffractive
Trento ECT*
Phenomena in QCD

THE k_{t} DEPENDENCE OF DI-J ETS YIELD

$$
\frac{d \sigma}{d k_{t}^{2}} \propto\left|\alpha_{s}\left(k_{t}^{2}\right) G\left(x, k_{t}^{2}\right)\right|^{2}\left|\frac{\partial^{2}}{\partial k_{t}^{2}} \psi\left(u, k_{t}\right)\right|^{2}
$$

W ith $\psi \sim \frac{\phi}{k_{t}^{2}}$, weak $\phi\left(k_{t}^{\sim}\right)$ and $\alpha_{s}\left(k_{t}^{2}\right)$ dependences and $G\left(x, k_{t}^{\sim}\right) \sim k_{t}^{2 / 2}: \frac{d \sigma}{d k_{t}} \sim k_{t}^{-}$

Photonic and Diffractive Phenomena in QCD

High Transverse momentum dependence consistent with PQCD, ERBL Evolution

Stan Brodsky, SLAC

Trento ECT* 36

Diffractive Dissociation of a Pion into Dijets

 $\pi A \rightarrow J e t J e t A^{\prime}$- E789 Fermilab Experiment Ashery et al
- 500 GeV pions collide on nuclei keeping it intact
- Measure momentum of two jets
- Study momentum distributions of pion LF wavefunction

\mathbf{X} distribution of diffractive dijets from the platinum target for $1.25 \leq k_{t} \leq 1.5 \mathrm{GeV} / c$ (left) and for $1.5 \leq k_{t} \leq 2.5 \mathrm{GeV} / c$ (right). The solid line is a fit to a combination of the asymptotic and CZ distribution amplitudes. The dashed line shows the contribution from the asymptotic function and the dotted line that of the CZ function.

> Narrowing of x distribution at higher jet transverse momentum ERBL evolution

Photonic and Diffractive Trento ECT* Phenomena in QCD

Stan Brodsky, SLAC

Diffractive Hadron-Hadron HardCollisions

- Single diffractive + high P_{T}
- Double diffractive + high P_{T}
- Heavy quarks diffractive
- Higgs Production!
- Lepton pair diffractive
- Nuclear dependence

Doubly diffractive Higgs production

$$
p p \rightarrow p+H+p
$$

Nucleus-Nucleus at the LHC

De Roeck, V.A. Khoze, A.D.Martin, R.Orava M.G.Ryskin,

Convolute with
$M \propto \frac{\partial^{2}}{\partial^{2} k_{\perp}} \psi_{\gamma^{*}}\left(x, k_{\perp}\right) \quad \phi(x, Q)=\int d^{2} k_{\perp} \Psi_{q \bar{q}}\left(x, \vec{k}_{\perp}\right)$
Photonic and Diffractive
Phenomena in QCD
Stan Brodsky, SLAC
Trento ECT*

Photon Diffractive Structure Function

Diffractive deep inelastic scattering on a photon target

Trento ECT*
Photonic and Diffractive
Phenomena in QCD
Stan Brodsky, SLAC

Trento ECT*
Photonic and Diffractive
Phenomena in QCD
Stan Brodsky, SLAC

Conventional wisdom:
Final-state interactions of struck quark can be neglected

Trento ECT*
Photonic and Diffractive
Phenomena in QCD

Initial and Final-State Interactions

- Diffractive Deep Inelastic Scattering -- Bjorken Scaling!
- Non-Unitary Correction to DIS: Structure functions are not probability distributions
- Nuclear Shadowing, Antishadowing
- T-Odd Single Spin Asymmetries -- Leading Twist -opposite sign in DY and DIS --
- DY $\cos 2 \phi$ correlation at leading twist from double ISI-- not given by standard PQCD factorization
- Wilson Line Effects nonzero even in LCG
- Must correct hard subprocesses for initial and final-state soft gluon attachments
Hoyer, Marchal, Peigne, Sannino, sjb Bodwin, Lepage, sjb

Photonic and Diffractive
Trento ECT* Phenomena in QCD

Stan Brodsky, SLAC

Final-State Interactions Produce Pseudo T-Odd (Sívers Effect)

- Leading-Twist Bjorken Scaling!
- Requires nonzero orbital angular momentum of quark! $\mathbf{i} \vec{S} \cdot \vec{p}{ }_{j e t} \times \vec{q}$
- Arises from the interference of Final-State QCD Coulomb phases in S- and P- waves; Wilson line effect; gauge independent
- Unexpected QCD Effect -- thought to be zero!
- Relate to the quark contribution to the target proton anomalous magnetic moment and final-state QCD phases
- QCD Coulomb phase at soft scale
- Measure in jet trigger or leading hadron

- Sum of Sivers Functions for all quarks and gluons vanishes.
(Zero gravito-anomalous magnetic moment: $\mathrm{B}(\mathrm{O})=0$)
Trento ECT*
Phenomena in QCD
Stan Brodsky, SLAC

Final-State Interactions Produce PseudoT-Odd (Sívers Effect)

- Leading-Twist Bjorken Scaling!
$\mathbf{i} \vec{S} \cdot \vec{p}_{j e t} \times \vec{q}$
- Requires nonzero orbital angular momentum of quark!
- Arises from the interference of Final-State QCD and QED Coulomb phases in S- and P- waves; Wilson line effect; gauge independent
- Many Tests in UPC at the LHC
- QCD Coulomb phase at soft scale
- Measure in jet trigger or leading hadron
- Lambda production

Predictionfor Single-Spin Asymmetry

Photonic and Diffractive Phenomena in QCD

Hwang, Schmidt, sjb

Stan Brodsky, SLAC

Trento ECT*

- Effect about equal for $\mathrm{K}^{-}=\mathrm{su}$ and $\pi^{-}=\mathrm{d} \overline{\mathrm{u}} \rightarrow$ note: same antiquark..
+ Effect seems larger for $\mathrm{K}^{+}=u \bar{s}$ than $\pi^{+}=\mathrm{u} \overline{\mathrm{d}}$ at $x \approx 0.1 \ldots$!
N. Makins

Trento ECT*

Schmidt, Lu:
pattern follows quark contributions
Photonic and Diffractive to anomalous moment
Phenomena in QCD
Stan Brodsky, SLAC

Sivers SSA cancels on an isospin zero target -gluon contribution to the Sivers asymmetry small small gluon contribution to orbital angular momentum of nucleon

> Gardner, sjb

Trento ECT*
Photonic and Diffractive
Phenomena in QCD
Stan Brodsky, SLAC

Predict Opposite Sign SSA in DY !

Single Spin Asymmetry In the Drell Yan Process
$\vec{S}_{p} \cdot \overrightarrow{\bar{p}} \times \vec{q}_{\gamma^{*}}$
Quarks Interact in the Initial State
Interference of Coulomb Phases for S and P states
Produce Single Spin Asymmetry [Siver's Effect]Proportional
to the Proton Anomalous Moment and α_{s}.
Opposite Sign to DIS! No Factorization
Photonic and Diffractive
Trento ECT*
Phenomena in QCD
Stan Brodsky, SLAC

DY $\cos 2 \phi$ correlation at leading twist from double ISI

Trento ECT*
Photonic and Diffractive
Phenomena in QCD

Double Initial-State Interactions generate anomalous $\cos 2 \phi$ Boer, Hwang, sib Drell-Yan planar correlations

$$
\begin{array}{r}
\frac{1}{\sigma} \frac{d \sigma}{d \Omega} \propto\left(1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{\nu}{2} \sin ^{2} \theta \cos 2 \phi\right) \\
\text { PQCD Factorization (Lam Tung): } 1-\lambda-2 \nu=0
\end{array}
$$

$\frac{\nu}{2} \propto h_{1}^{\perp}(\pi) h_{1}^{\perp}(N)$

Violates Lam-Tung relation!
Photonic and Diffractive
Trento ECT*
Phenomena in QCD

Model: Boer,
Stan Brodsky, SLAC

Anomalous effect from Double ISI in Massive Lepton Production

Boer, Hwang, sjb
$\cos 2 \phi$ correlation

- Leading Twist, valence quark dominated
- Violates Lam-Tung Relation!

- Not obtained from standard PQCD subprocess analysis
- Normalized to the square of the single spin asymmetry in semiinclusive DIS
- No polarization required
- Challenge to standard picture of PQCD Factorization

DDIS

- In a large fraction ($\sim 10-15 \%$) of DIS events, the proton escapes intact, keeping a large fraction of its initial momentum
- This leaves a large rapidity gap between the proton and the produced particles
- The t-channel exchange must be color singlet "Pomeron structure function"

Diffractive Deep Inelastic Lepton-Proton Scattering

Final-State Interaction Produces Diffractive DIS

Quark Rescattering

Hoyer, Marchal, Peigne, Sannino, SJB (BHMPS)

Enberg, Hoyer, Ingelman, SJB

Hwang, Schmidt, SJB

Trento ECT*
Photonic and Diffractive Phenomena in QCD

Stan Brodsky, SLAC

QCD Mechanism for Rapidity Gaps

Trento ECT*
Photonic and Diffractive
Phenomena in QCD
Stan Brodsky, SLAC

Final-State Interactions in QCD

Feynman Gauge
Light-Cone Gauge
Result is Gauge Independent FSI nonzero even ín LCG

Conventional Model:
Pomeron acts as constituent of proton

Need Final-State Interactions !

Trento ECT*
Photonic and Diffractive
Phenomena in QCD

Integration over on-shell domain produces phase i Need Imaginary Phase to Generate Pomeron Exchange
Need Imaginary Phase to Generate T-Odd Single-Spin Asymmetry

Physics of FSI not in (Real) Wavefunction of Target

The Pomeron formalism

Cross section for Diffractive DIS:

$$
\frac{d \sigma}{d x d Q^{2} d x_{\mathbb{P}} d t}=\frac{4 \pi \alpha^{2}}{\beta Q^{4}}\left(1-y+\frac{y^{2}}{2}\right) F_{2}^{D(4)}
$$

Assuming DIS on a hadronic "pomeron" radiated from the proton, the diffractive structure function is Regge factorized

$$
\begin{aligned}
& F_{2}^{D(4)}\left(x, Q^{2}, x_{\mathbb{P}}, t\right)= \\
& \underbrace{f\left(x_{\mathbb{P}}, t\right)}_{\mathbb{P} \text { flux }} \underbrace{F_{2}^{P}\left(\beta, Q^{2}\right)}_{\mathbb{P} \text { structure }}
\end{aligned}
$$

The pomeron flux is taken from Regge theory

Trento ECT*

- Rescattering gluons have small momenta
$\Rightarrow \beta$ dependence of diffractive PDFs arises from underlying (nonperturbative) $g \rightarrow \mathrm{q} \overline{\mathrm{q}}$ and $g \rightarrow g g$

- Effective \mathbb{P} distribution and quark structure function:

$$
\begin{aligned}
f_{\mathbb{P} / p}\left(x_{\mathbb{P}}\right) & \propto g\left(x_{\mathbb{P}}, Q_{0}^{2}\right) \\
f_{q / \mathbb{P}}\left(\beta, Q_{0}^{2}\right) & \propto \beta^{2}+(1-\beta)^{2}
\end{aligned}
$$

- Diffractive amplitudes from rescattering are dominantly imaginary - as expected for diffraction (Ingelman-Schlein \mathbb{P} model has real amplitudes)

The Pomeron formalism

F_{2}^{D} is fitted to HERA data \longrightarrow good description

Lines given by fit with NLO QCD evolution

Trento ECT*
Stan Brodsky, SLAC

Consequences for DDIS

- Underlying hard scattering sub-process is the same in diffractive and non-diffractive events
- Same Q^{2} dependence of diffractive and inclusive PDFs (remember: hard radiation not resolved)
- and same energy (W or x_{B}) dependence
$\Rightarrow \frac{\sigma_{\text {diff }}}{\sigma_{\text {tot }}}$ independent of x_{B} and Q^{2} (as in data)
Also describes: vector meson leptoproduction BGMFS
- Note:
- In pomeron models the ratio depends on $x_{B}^{1-\alpha_{\mathbb{P}}}$ which is ruled out
- In a two-gluon model with two hard gluons, the diffractive cross section depends on $\left[f_{g / p}\left(x_{B}, Q^{2}\right)\right]^{2}$

ZEUS data on cross section ratios

Predict: Reduced DDIS/DIS for Heavy Quarks

Kopeliovitch, Schmidt, sjb

Trento ECT*
Photonic and Diffractive
Phenomena in QCD
Stan Brodsky, SLAC

Dipole models

Many models are based on using the dipole frame
\rightarrow Use proton's rest frame, or more generally, a frame where the photon has very large lightcone q^{+} momentum

Then the photon fluctuates into a color dipole before hitting the proton

At small x_{B} the fluctuation is very long-lived and the $q \bar{q}$ pair of the dipole is transversely frozen during the interaction.

Very useful in small-x physics!

Kopeliovitch, Bartels

Trento ECT*
Phenomena in QCD
Stan Brodsky, SLAC

Rescattering toy model

BHMPS: Toy model - scalar abelian gauge theory:

$x_{B} \rightarrow 0$: on-shell intermediate states \rightarrow imag. 2-gluon ampl. as required for pomeron from crossing symmetry

$$
\propto g^{2} K_{0}\left(m r_{\perp}\right) \log \left(\frac{\left|\boldsymbol{R}_{\perp}+\boldsymbol{r}_{\perp}\right|}{\left|\boldsymbol{R}_{\perp}\right|}\right)
$$

$$
\propto i g^{4} K_{0}\left(m r_{\perp}\right)\left[\log \left(\frac{\left|\boldsymbol{R}_{\perp}+\boldsymbol{r}_{\perp}\right|}{\left|\boldsymbol{R}_{\perp}\right|}\right)\right]^{2}
$$

Rescattering factorizes in coordinate space!

Photonic and Diffractive
Trento ECT* Phenomena in QCD

$$
Q^{4} \frac{d \sigma}{d Q^{2} d x_{B}}=\frac{\alpha_{\mathrm{em}}}{16 \pi^{2}} \frac{1-y}{y^{2}} \frac{1}{2 M \nu} \int \frac{d p_{2}^{-}}{p_{2}^{-}} d^{2} \vec{r}_{T} d^{2} \vec{R}_{T}|\tilde{M}|^{2}
$$

where

$$
\left|\tilde{M}\left(p_{2}^{-}, \vec{r}_{T}, \vec{R}_{T}\right)\right|=\left|\frac{\sin \left[g^{2} W\left(\vec{r}_{T}, \vec{R}_{T}\right) / 2\right]}{g^{2} W\left(\vec{r}_{T}, \vec{R}_{T}\right) / 2} \tilde{A}\left(p_{2}^{-}, \vec{r}_{T}, \vec{R}_{T}\right)\right|
$$

is the resummed result. The Born amplitüde is

$$
\tilde{A}\left(p_{2}^{-}, \vec{r}_{T}, \vec{R}_{T}\right)=2 e g^{2} M Q p_{2}^{-} V\left(m_{\|} r_{T}\right) W\left(\vec{r}_{T}, \vec{R}_{T}\right)
$$

$$
V\left(m r_{T}\right) \equiv \int \frac{d^{2} \vec{p}_{T}}{(2 \pi)^{2}} \frac{e^{i \vec{r}_{T} \cdot \vec{p}_{T}}}{p_{T}^{2}+m^{2}}=\frac{1}{2 \pi} K_{0}\left(m r_{T}\right)
$$

The rescattering effect of the dipole of the $q \bar{q}$ is controlled by

$$
W\left(\vec{r}_{T}, \vec{R}_{T}\right) \equiv \int \frac{d^{2} \vec{k}_{T}}{(2 \pi)^{2}} \frac{1-e^{i \vec{r}_{T} \cdot \vec{k}_{T}}}{k_{T}^{2}} e^{i \vec{R}_{T} \cdot \vec{k}_{T}}=\frac{1}{2 \pi} \log \left(\frac{\left|\vec{R}_{T}+\vec{r}_{T}\right|}{R_{T}}\right) .
$$

Precursor of $\mathcal{N u c l e a r ~ S h a d o w i n g ~}$

Same result obtained in Lab or Parton $q^{+=o}$ Frame

$+$

Sum Eikonal Interactions
Similar to Color-Dipole Model

Final-state interactions included
Photonic and Diffractive
Trento ECT* Phenomena in QCD

Stan Brodsky, SLAC

Nuclear Shadowing and Anti-Shadowing in QCD

- Relation to Diffractive DIS and Final-State Interactions
- Novel Color Effects
- Non-Universality of Antishadowing
- Implications for NuTeV
I. Schmidt, J. J. Yang, and SJB "Nuclear Antishadowing in Neutrino Deep Inelastic Scattering," Phys. Rev. D 70, 116003 (2004) [arXiv:hep-ph/0409279].
H. J. Lu and SJB "Shadowing And Antishadowing Of Nuclear Structure Functions,"

Jian-Jun Yang
Ivan Schmidt
Hung Jung Lu
sjb Phys. Rev. Lett. 64, 1342 (1990).

Photonic and Diffractive
Trento ECT* Phenomena in QCD

Stan Brodsky, SLAC

Stodolsky
 Pumplin, sjb
 Gribov

Nuclear Shadowing in QCD

$+$
 $+\ldots$

Shadowing depends on understanding diffraction in DIS
Nuclear Shadowing not included in nuclear LFWF !
Dynamical effect due to virtual photon interacting in nucleus

Photonic and Diffractive
Trento ECT*
Phenomena in QCD
Stan Brodsky, SLAC

The one-step and two-step processes in DIS on a nucleus.

Coherence at small Bjorken x_{B} :
$1 / M x_{B}=2 \nu / Q^{2} \geq L_{A}$.

If the scattering on nucleon N_{1} is via pomeron exchange, the one-step and two-step amplitudes are opposite in phase, thus diminishing the \bar{q} flux reaching N_{2}.
\rightarrow Shadowing of the DIS nuclear structure functions.

Observed HERA DDIS produces nuclear shadowing

Trento ECT*
Photonic and Diffractive
Phenomena in QCD
Stan Brodsky, SLAC

Non-singlet $10^{-2} \quad 10^{-1}$ Reggeon

 ExchangeTrento ECT*

Photonic and Diffractive Phenomena in QCD

Stan Brodsky, SLAC

Reggeon

Exchange

Phase of two-step amplitude relative to one step:
$\frac{1}{\sqrt{2}}(1-i) \times i=\frac{1}{\sqrt{2}}(i+1)$
Constructive Interference

Depends on quark flavor!

Thus antishadowing is not universal
Different for couplings of $\gamma^{*}, Z^{0}, W^{ \pm}$

The one-step and two-step processes in DIS on a nucleus.

If the scattering on nucleon N_{1} is via $C=-$ Reggeon or Odderon exchange, the one-step and two-step amplitudes are constructive in phase, enhancing the \bar{q} flux reaching N_{2}
\rightarrow Antishadowing of the
DIS nuclear structure functions

> H. J. Lu, sjb
> Schmidt, Yang, sjb

Photonic and Diffractive
Phenomena in QCD
Stan Brodsky, SLAC
Trento ECT*

Predicted nuclear shadowing and and antishadowing at $Q^{2}=1 \mathrm{GeV}^{2}$

Trento ECT*
Photonic and Diffractive
Phenomena in QCD
82
S. J. Brodsky, I. Schmidt and J. J. Yang,
"Nuclear Antishadowing in
Neutrino Deep Inelastic Scattering,"
Phys. Rev. D 70, 116003 (2004)
[arXiv:hep-ph/0409279].
Stan Brodsky, SLAC

Shadowing and \mathcal{A} ntisfadowing in Lepton- \mathcal{N} ucleus Scattering

- Shadowing: Destructive Interference
of Two-Step and One-Step Processes
Pomeron Exchange
- Antishadowing: Constructive Interference of Two-Step and One-Step Processes! Reggeon and Odderon Exchange
- Antishadowing is Not Universal! Electromagnetic and weak currents: different nuclear effects! Potentially significant for NuTeV Anomaly\}

Trento ECT*
Photonic and Diffractive
Phenomena in QCD
Stan Brodsky, SLAC

Shadowing and Antishadowing of DIS Structure Functions

S. J. Brodsky, I. Schmidt and J. J. Yang,
"Nuclear Antishadowing in
Neutrino Deep Inelastic Scattering,"
Phys. Rev. D 70, 116003 (2004)
[arXiv:hep-ph/0409279].

Photonic and Diffractive
Stan Brodsky, SLAC

Phenomena in QCD
84

Nuclear Effect not Universal !

Trento ECT*
Photonic and Diffractive Phenomena in QCD

Stan Brodsky, SLAC

Photonic and Diffractive
Phenomena in QCD
Stan Brodsky, SLAC
Trento ECT*

$$
\left|p, S_{z}>=\sum_{n=3} \Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; \vec{k}_{\perp_{i}}, \lambda_{i}>
$$

sum over states with $n=3,4, \ldots$ constituents

The Light Front Fock State Wavefunctions

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

are boost invariant; they are independent of the hadron's energy and momentum P^{μ}.

The light-cone momentum fraction

$$
x_{i}=\frac{k_{i}^{+}}{p^{+}}=\frac{k_{i}^{0}+k_{i}^{z}}{P^{0}+P^{z}}
$$

are boost invariant.

$$
\sum_{i}^{n} k_{i}^{+}=P^{+}, \sum_{i}^{n} x_{i}=1, \sum_{i}^{n} \vec{k}_{i}^{\perp}=\overrightarrow{0}^{\perp} .
$$

Intrinsic heavy quarks, $\quad \bar{s}(x) \neq s(x)$

Fixed LF time

Trento ECT*
Photonic and Diffractive Phenomena in QCD

Stan Brodsky, SLAC

Measure c (x) in Deep Inelastic Lepton-Proton Scattering

Trento ECT*
Photonic and Diffractive
Phenomena in QCD
Stan Brodsky, SLAC

Intrinsic Heavy-Quark Fock States

- Rigorous prediction of QCD, OPE
- Color-Octet Fock State

- Probability $P_{Q \bar{Q}} \propto \frac{1}{M_{Q}^{2}} \quad P_{Q \bar{Q} Q \bar{Q}} \sim \alpha_{s}^{2} P_{Q \bar{Q}} \quad P_{c \bar{c} / p} \simeq 1 \%$
- Large Effect at high x
- Greatly increases kinematics of colliders such as Higgs production (Kopeliovich, Schmidt, Soffer, sjb)
- Severely underestimated in conventional parameterizations of heavy quark distributions (Pumplin)
- Many empirical tests

Photonic and Diffractive
Trento ECT*
Phenomena in QCD
Stan Brodsky, SLAC

$\mid u u d c \bar{c}>$ Fluctuation in Proton
QCD: Probability $\frac{\sim \Lambda_{Q C D}^{2}}{M_{Q}^{2}}$
$\mid e^{+} e^{-} \ell^{+} \ell^{-}>$Fluctuation in Positronium QED: Probability $\frac{\sim\left(m_{\alpha} \alpha\right)^{4}}{M_{\ell}^{+}}$

OPE derivation - M.Polyakov et al.
$c \bar{c}$ in Color Octet

Distribution peaks at equal rapidity (velocity)
Therefore heavy particles carry the largest mo-

$$
\widehat{x}_{i}=\frac{m_{\perp i}}{\sum_{j}^{n} m_{\perp j}}
$$ mentum fractions

High xcharm!

Hoyer, Peterson, Sakai, sjb
Photonic and Diffractive
Trento ECT*
Phenomena in QCD
Stan Brodsky, SLAC

Leading Hadron Production from Intrinsic Charm

Coalescence of Comoving Charm and Valence Quarks
Produce $J / \psi, \Lambda_{c}$ and other Charm Hadrons at High x_{F}

SELEX $\Lambda_{c}{ }^{+}$Studies - Momentum Dependence

- Production similar for baryon, antibaryon from π beam at all x_{F}
- Baryon beams make antibaryons chiefly at small x_{F} but not large x_{F} : not simply fragmentation
- High statistics Σ data suggest cross section enhancement at very large X_{F} - idea originally from Pythia color drag.

SELEX Λ_{c}^{+}Studies $-\mathrm{p}_{\mathrm{T}}$ Dependence

- Λ_{c}^{+}production by Σ^{-}vs X_{F} shows harder spectrum at low $\mathrm{p}_{\mathrm{T}}{ }^{-}$ consistent with an intrinsic charm picture.
(Vogt, Brodsky and Hoyer, Nucl. Phys. B383,683 (1992))

Fig. 1. The differential distribution x_{F} for all D mesons having $x_{\mathrm{F}}>0$. Curve (a) is the two-component fit to the data as described in the text. Curve (b) is the prediction of the Lund fusion calculation. Curve (c) is the prediction of the bare QCD fusion calculation (δ-function fragmentation). Note that both theoretical curves have been normalised to the observed total cross section for $x_{\mathrm{F}}>0$.

Photonic and Diffractive Phenomena in QCD

Model similar to Intrinsic Charm

Predictions for Inclusive Charm ProductionDistributions

 at the ISR. Assumes active and spectator charm distribution in proton patterned on IC, plus coalescence of valence and charm quarks.V. D. Barger, F. Halzen and W. Y. Keung,
"The Central And Diffractive Components Of Charm Production,"

Phys. Rev. D 25, 112 (1982).
Photonic and Diffractive
Trento ECT*
Phenomena in QCD
Stan Brodsky, SLAC

S. Frixione, M. L. Mangano, P. Nason and G. Ridolfi, "Heavy-Quark Production,"
Adv. Ser. Direct. High Energy Phys. 15, 609
(1998) [arXiv:hep-ph/9702287].

Photonic and Diffractive
Phenomena in QCD
Stan Brodsky, SLAC

- EMC data: $c\left(x, Q^{2}\right)>30 \times$ DGLAP $Q^{2}=75 \mathrm{GeV}^{2}, x=0.42$
- High $x_{F} p p \rightarrow J / \psi X$
- High $x_{F} p p \rightarrow J / \psi J / \psi X$
- High $x_{F} p p \rightarrow \wedge_{c} X$
- High $x_{F} p p \rightarrow \wedge_{b} X$
- High $x_{F} p p \rightarrow$ ($c c d$) X (SELEX)
C.H. Chang, J.P. Ma, C.F. Qiao and X.G.Wu, Hadronic production of the doubly charmed baryon $X i / c c$ with intrinsic charm," arXiv:hep-ph/o610205.

Photonic and Diffractive

$$
p p \rightarrow p \Lambda_{c} X
$$

Diffractive Dissociation of Intrinsic Charm

Production of a Double-Charm Baryon SELEX high $\mathbf{x}_{\mathbf{F}} \quad\left\langle x_{F}\right\rangle=0.33$

Trento ECT*
Photonic and Diffractive
Phenomena in QCD
Stan Brodsky, SLAC

Double Charm Baryons: SU(4)

BARYONS WITH LOWEST SPIN (J=1/2)

- QCD: isodoublet of (ccq) baryons
- Models agree: ground state ~ $3.5-3.6 \mathrm{GeV} / \mathrm{c}^{2}$
- Lattice concurs:

Flynn, et al., hep-lat/030710
\Longrightarrow

Features of First SELEX $\Xi_{\text {cc }}{ }^{+}$Observation

Phys Rev Lett 89 (2002)112001

First candidate for new baryon comes from baryon beam experiment:

- $(\mathrm{ccd})^{+} \rightarrow \Lambda_{c}^{+} \mathrm{K}^{-} \pi^{+}$Cabibbo-favored spectator mode
- mass agrees very well with potential models
- state seen from Σ^{-}, p but not π^{-}
- lifetime is very short $-<35 \mathrm{ps}$ at 90% confidence. Disagrees with prediction from HQ single charm lifetime hierarchy.

- Cross section is large! Involves 40% of SELEX Λ_{c}^{+}production.

Fragmentation predictions are 10,000 times smaller.

Application: New $\Xi_{\text {cc }}{ }^{+}$Decay Mode

$\Xi_{\mathrm{cc}}^{+} \rightarrow \mathrm{pD}^{+} \mathrm{K}^{-}$is quark rearrangement from $\Lambda_{c}{ }^{+} \mathrm{K}-\pi^{+}$

- Q-value of decay is smaller than that for $\Lambda_{\mathrm{c}}{ }^{+} \mathrm{K} \cdot \pi^{+} \Rightarrow$ low rate
- Check physics background with wrong sign $\mathrm{pD}-\mathrm{K}^{+}$- no peaks
- Event-mixed background (green) matches background fit to data (solid line) - confirms signal.
- Mass matches within 1 MeV of $\Lambda_{\mathrm{c}}{ }^{+} \mathrm{K}-\pi^{+}$value

Phys. Lett. B628(2005) 18

SELEX Summary II - Double Charm

- Double charm here to stay
- $\Xi_{\mathrm{cc}}{ }^{+}(3520)$ seen decaying into three different single charm states
- Double charm production comes only from baryon-baryon interactions with VERY large cross section - totally inconsistent with fragmentation production. SELEX cross section consistent with intrinsic charm prediction
- $\mathrm{Q}=2$ excited state shows chain decay via pion emission.
- Double charm baryons NOT seen in fragmentation processes at Belle, BaBar - consistent with SELEX baryon-only production.
- No report yet on the third double charm baryon, the $\Omega_{\mathrm{CC}}{ }^{+}$

SELEX is 10 years young and not yet ready to stop producing surprises.

Violation of factorization in charm hadroproduction.
P. Hoyer, M. Vanttinen (Helsinki U.) , U. Sukhatme (Illinois U., Chicago) . HU-TFT-90-14, May 1990. 7pp. Published in Phys.Lett.B246:217-220,1990

Trento ECT*
Photonic and Diffractive
Phenomena in QCD
Stan Brodsky, SLAC 106

Nuclear effects in Quarkonium production

$$
\mathrm{p}+\mathrm{A} \text { at } \mathrm{s}^{1 / 2}=38.8 \mathrm{GeV}
$$

M.Leitch

E772 data

$$
\sigma(p+A)=A^{\alpha} \sigma(p+N)
$$

Strong XF - dependence

Nuclear effects scale with x_{F}, not x_{2} !!!
Violation of factorization in charm hadroproduction.
P. Hoyer, M. Vanttinen (Helsinki U.), U. Sukhatme (Illinois U., Chicago) . HU-TFT-90-14, May 1990.7pp.

Published in Phys.Lett.B246:217-220,1990
Trento ECT*
Phenomena in QCD
Stan Brodsky, SLAC 107

- IC Explains Anomalous $\alpha\left(x_{F}\right)$ not $\alpha\left(x_{2}\right)$ dependence of $p A \rightarrow J / \psi X$ (Mueller, Gunion, Tang, SJB)
- Color Octet IC Explains $A^{2 / 3}$ behavior at high x_{F} (NA3, Fermilab) Color Opaqueness (Kopeliovitch, Schmidt, Soffer, SJB)
- IC Explains $J / \psi \rightarrow \rho \pi$ puzzle (Karliner, SJB)
- IC leads to new effects in B decay (Gardner, SJB)

Higgs production at $\mathbf{x}_{\mathrm{F}}=\mathbf{0 . 8}$

Photonic and Diffractive
$\underset{\text { IIO }}{\substack{\text { Phenomena } \\ \text { in } \\ \text { QCD }}}$

Stan Brodsky, SLAC
Trento ECT*

Nuclear Dependence of Quarkonium Production

NA3 data for $\frac{d \sigma}{d x_{F}}(p(\pi) A \rightarrow J / \psi X)$: hard A^{1} and "diffractive" $A^{2 / 3}$ components Diffractive contribution extends to large x_{F}
$A^{\alpha\left(x_{F}\right)}$ not $A^{\alpha\left(x_{2}\right)}$: PQCD Factorization Violated!

Production of Two Charmonia at High X_{F}

Excludes color drag model

$$
\pi A \rightarrow J / \psi J / \psi X
$$

Intrinsic charm contribution to double quarkonium hadroproduction *

$$
\text { R. Vogt }{ }^{\text {a }} \text {, S.J. Brodsky }{ }^{\text {b }}
$$

The probability distribution for a general n-parti intrinsic $c \bar{c}$ Fock state as a function of x and \boldsymbol{k}_{T} written as

$$
\begin{aligned}
& \frac{d P_{\mathrm{ic}}}{\prod_{i=1}^{n} d x_{i} d^{2} k_{T, i}} \\
& \quad=N_{n} \alpha_{s}^{4}\left(M_{c \bar{c}}\right) \frac{\delta\left(\sum_{i=1}^{n} k_{T, i}\right) \delta\left(1-\sum_{i=1}^{n} x_{i}\right)}{\left(m_{h}^{2}-\sum_{i=1}^{n}\left(m_{T, i}^{2} / x_{i}\right)\right)^{2}}
\end{aligned}
$$

Fig. 3. The $\psi \psi$ pair distributions are shown in (a) and (c) for the pion and proton projectiles. Similarly, the distributions of J / ψ 's from the pairs are shown in (b) and (d). Our calculations are compared with the $\pi^{-} N$ data at 150 and $280 \mathrm{GeV} / c$ [1]. The $x_{\phi \psi}$ distributions are normalized to the number of pairs from both pion beams (a) and the number of pairs from the 400 GeV proton measurement (c). The number of single J / ψ 's is twice the number of pairs.

NA3 Data

Production of a Double-Charm Baryon LHCb high x_{F}
Also: Charm-Bottom Hadrons, ...

Trento ECT*
Photonic and Diffractive
Phenomena in QCD
Stan Brodsky, SLAC

Diffractive Dissociation of Intrinsic Charm

Coalescence of Comoving Charm and Valence Quarks
Produce $J / \psi, \Lambda_{c}$ and other Charm Hadrons at High x_{F}

Diffractive Production of Charm Hadrons at the ISR

P. M. Chauvat et al. [R608 Collaboration],
"Production of Λ_{C} With Large x_{F} At The ISR,"
Phys. Lett. B 199, 304 (1987).
$p p \rightarrow p \Lambda_{C} X$

Trento ECT*
Photonic and Diffractive
Phenomena in QCD
Stan Brodsky, SLAC

Intrinsic Heavy-Quark Fock States

- Rigorous prediction of QCD, OPE
- Color-Octet Fock State

- Probability $P_{Q \bar{Q}} \propto \frac{1}{M_{Q}^{2}} \quad P_{Q \bar{Q} Q \bar{Q}} \sim \alpha_{s}^{2} P_{Q \bar{Q}} \quad P_{c \bar{c} / p} \simeq 1 \%$
- Large Effect at high x
- Greatly increases kinematics of colliders such as Higgs production (Kopeliovich, Schmidt, Soffer, sjb)
- Severely underestimated in conventional parameterizations of heavy quark distributions (Pumplin)
- Many empirical tests

Photonic and Diffractive
Trento ECT*
Phenomena in QCD
Stan Brodsky, SLAC

Intrinsic Charm Mechanism for Exclusive Diffraction Production

$$
\begin{gathered}
p p \rightarrow p+J / \psi+p \\
x_{J / \psi}=x_{c}+x_{\bar{c}}
\end{gathered}
$$

Kopeliovitch, Schmidt, Soffer, sjb

Intrinsic $c \bar{c}$ pair formed in color octet 8_{C} in proton wavefunction Large Color Dipole

Collision produces color-singlet J / ψ through color exchange

Photonic and Diffractive
Trento ECT*
$\underset{\text { II } 8}{\text { Phenomena in }} \mathbf{Q C D}$
RHIC Experiment
Stan Brodsky, SLAC

Intrinsic Charm Mechanism for Exclusive Diffractive High-X ${ }^{\text {F Higgs Production }}$

$$
p p \rightarrow p+H+p
$$

Also: intrinsic bottom, top

Kopeliovitch, Schmidt, Soffer, sjb

Higgs can have 80% of Proton Momentum!

Trento ECT*
Photonic and Diffractive
$\underset{\text { II9 }}{\text { Phenomena }}$
RHIC Experiment
Stan Brodsky, SLAC

Intrinsic Charm Mechanism for Exclusive Diffraction Production

Kopeliovitch, Schmidt, Soffer, sjb

Photonic and Diffractive Phenomena in QCD

Doubly diffractive Higgs production

$$
p p \rightarrow p+H+p
$$

Nucleus-Nucleus at the LHC

De Roeck, V.A. Khoze, A.D.Martin, R.Orava M.G.Ryskin,

"Dangling Glwons"

- Diffractive DIS
- Non-Unitary Correction to DIS: Structure functions are not probability distributions
- Nuclear Shadowing, Antishadowing
- Single Spin Asymmetries -- opposite sign in DY and DIS
- DY $\cos 2 \phi$ correlation at leading twist from double ISI-not given by standard PQCD factorization
- Wilson Line Effects persist even in LCG
- Must correct hard subprocesses for initial and final-state soft gluon attachments -- Ji gauge link, Kovchegov gauge

The odderon

- Three-Gluon Exchange, C=-, J=ı, Nearly Real Phase
- Interference of 2 -gluon and 3 -gluon exchange leads to matter/ antimatter asymmetries
- Asymmetry in jet asymmetry in $\gamma p \rightarrow c \bar{c} p \quad$ e- p collider test
- Analogous to lepton energy and angle asymmetry $\gamma Z \rightarrow e^{+} e^{-} Z$
- Pion Asymmetry in $\quad \gamma p \rightarrow \pi^{+} \pi^{-} p$

Pomeron

Odderon

Odderon: Another source of antisfiadowing

Photonic and Diffractive
Trento ECT* Phenomena in QCD 123

Hadron Dynamics at the Amplitude Level

- LFWFS are the universal hadronic amplitudes which underlie structure functions, GPDs, exclusive processes.
- Relation of spin, momentum, and other distributions to physics of the hadron itself.
- Connections between observables, orbital angular momentum
- Role of FSI and ISIs--Sivers effect

Dírac'sAmazing Idea:

 The "Front Form"
Evolve in

 light-front time!

Photonic and Diffractive
Trento ECT*
$\underset{\text { I25 }}{\text { Phenomena }}$ in QCD
Stan Brodsky, SLAC

Light-Front Wavefunctions

$$
P^{+}=P^{0}+P^{z}
$$

Fixed $\tau=t+z / c$

$$
\sum_{i}^{n} \vec{k}_{\perp i}=\overrightarrow{0}_{\perp}
$$

Invariant under boosts! Independent of \mathcal{P}^{μ}

Light-Front Wavefunctions

Dirac's Front Form: Fixed $\tau=t+z / c$

$$
\psi\left(x, k_{\perp}\right)
$$

Invariant under boosts. Independent of $\mathrm{P}^{\mu} \quad x_{i}=\frac{k_{i}^{+}}{P^{+}}$

$$
\mathrm{H}_{L F}^{Q C D}\left|\psi>=M^{2}\right| \psi>
$$

Remarkable new insights from AdS/CFT, the duality between conformal field theory and Anti-de Sitter Space

Light－Front QCD

Heisenberg Equation

$$
H_{L C}^{Q C D}\left|\Psi_{h}\right\rangle=\mathcal{M}_{h}^{2}\left|\Psi_{h}\right\rangle
$$

DLCQ

	n Sector	$\begin{gathered} 1 \\ q \bar{q} \end{gathered}$	$\begin{gathered} 2 \\ \mathrm{gg} \end{gathered}$	$\begin{gathered} 3 \\ q \bar{q} g \end{gathered}$	$\begin{gathered} 4 \\ q \bar{q} q \bar{q} \end{gathered}$	$\begin{gathered} 5 \\ g g g \end{gathered}$	$\begin{gathered} 6 \\ q \bar{q} g g \end{gathered}$	$\begin{gathered} 7 \\ q \bar{q} q \bar{q} 9 \end{gathered}$	$\begin{gathered} 8 \\ q \bar{q} q \bar{q} q \bar{q} \end{gathered}$	$\begin{gathered} 9 \\ g g g g \end{gathered}$	$\begin{gathered} 10 \\ 9 \bar{q} g g \mathrm{~g} \end{gathered}$	$\begin{gathered} 11 \\ q \bar{q} q \bar{q} g g \end{gathered}$	$\begin{gathered} 12 \\ q \bar{q} q \bar{q} q \bar{q} g \end{gathered}$	$\begin{gathered} 13 \\ q \bar{q} q \bar{q} q \bar{q} q \bar{व} \end{gathered}$
$\xrightarrow{2} 2^{k, \lambda}$	1 व̄	－	Im	－	过	－	Ta	－	－	－	－	－	－	－
	2 gg	T	W	\cdots	－	m	tor	－	－		－	－	－	－
（a）	$3 \quad 9 \bar{q} 9$	$3-$	＞	－	m	－m	mus	言	－	．	－	－	－	－
	4 qव̄ $q \bar{\square}$	3	．	\geqslant		．	－	－	臬	－	．	莨	－	－
	$5 \quad 9 \mathrm{ga}$	－	mon	－	．	S．	m	．	．	～us	m	．	－	－
	$6 \quad \mathrm{q} 9 \mathrm{gg}$	ut	J^{-}	3 mm	m	\％	\bar{I}	m	－	－	$-\xi$	碞	－	－
$\begin{array}{lll} \overline{\mathrm{k}}, \lambda^{\prime} & \mathrm{p}, \mathrm{~s} \\ & \text { (b) } \end{array}$	$7 \quad 9 \overline{9} 9 \overline{9} 9$	－	－	F	$3-$	．	\geqslant	5	4	．	工	－k	碞	－
	8 qव̄ $\bar{q} 9 \bar{q}$	－	－	－	3	－				－	．		－ξ_{2}	良
	9 g9gg	－	mum	－	．	3 mm	m	－	．	多	m	．	．	．
	10 qa ggg	－	．	m^{2}	－	$3{ }^{\sim}$	－	I－	\cdots	\geqslant		\cdots	－	－
$\overrightarrow{\overline{\mathrm{k}, \sigma^{\prime}}} \underbrace{}_{\mathrm{k}, \sigma}$	$11 \mathrm{qa} 9 \bar{q} 9 \mathrm{~g}$	－	－	．	3	．	3	3－		．	\％		m	－
$\begin{array}{ll}\text { k，} \sigma \quad \\ & \text {（c）}\end{array}$	12 q 9 q 9 q 9 g g	－	－	－	．			3	－	－	．	\geq		\cdots
	$13 \mathrm{q} q \bar{q} 9 \bar{q} q \bar{q} q \bar{q}$	－	－	－	－	－			$\frac{3}{3}$	－	－	．	y	
Trento ECT＊		CD		sis Pho P	fur onic eno	$\begin{aligned} & \text { Cti } \\ & \text { nd I } \\ & \text { ena } \end{aligned}$	rns ffrac QC	ive			Stan Brodsky，SLAC			$y, ~ s j b$ LAC

$$
\left|p, S_{z}>=\sum_{n=3} \Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; \vec{k}_{\perp_{i}}, \lambda_{i}>
$$

sum over states with $n=3,4, \ldots$ constituents

The Light Front Fock State Wavefunctions

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

Fixed LF time
Photonic and Diffractive
Trento ECT* Phenomena in QCD

Stan Brodsky, SLAC

'Tis a mistake / Time flies not It onfy hovers on the wing
 Once born the moment dies not 'tis an immortal thing

Montgomery

Hadrons Fluctuate in Particle Number

- Proton Fock States

$$
|u u d>,|u u d g>,|u u d s \bar{s}>,|u u d c \bar{c}>,| u u d b \bar{b}>\cdots
$$

- Strange and Anti-Strange Quarks not Symmetric $s(x) \neq \bar{s}(x)$
- "Intrinsic Charm": High momentum heavy quarks
- "Hidden Color": Deuteron not always $\mathrm{p}+\mathrm{n}$
- Orbital Angular Momentum Fluctuations Anomalous Magnetic Moment

Angular Momentum on the Light-Front

$$
\mathbf{A}^{+}=0 \text { gauge: }
$$

No unphysical degrees of freedom

$$
J^{z}=\sum_{i=1}^{n} s_{i}^{z}+\sum_{j=1}^{n-1} l_{j}^{z}
$$

$$
l_{j}^{z}=-\mathrm{i}\left(k_{j}^{1} \frac{\partial}{\partial k_{j}^{2}}-k_{j}^{2} \frac{\partial}{\partial k_{j}^{1}}\right)
$$

Conserved
LF Fock state by Fock State
n -I orbital angular momenta

Deep Inelastic Lepton Proton Scattering and LFWFs

Imaginary Part of Forward Virtual Compton Amplitude $q\left(x, Q^{2}\right)=\sum_{n} \int^{k_{\perp}^{2} \leq Q^{2} \perp} d^{2} k_{\perp}\left|\Psi_{n}\left(x, k_{\perp}\right)\right|^{2}$ $x=x_{q} \quad$ All spin, flavor distributions

Photonic and Diffractive Phenomena in QCD

Stan Brodsky, SLAC
Light-Front Wave Functions $\psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)$
Trento ECT*

Annihilation amplitude needed for Lorentz Invariance

A Unified Description of Hadron Structure

GPDs \& Deeply Virtual Exclusive Processes

"handbag" mechanism

Deeply Virtual Compton Scattering (DVCS)

x - longitudinal quark momentum fraction
2ξ - longitudinal momentum transfer

$\sqrt{-t}$ - Fourier conjugate
to transverse impact
parameter

$\sqrt{-t}$ - Fourier conjugate to transverse impact parameter
$H(x, \xi, t), E(x, \xi, t), \ldots$

$$
\xi=\frac{x_{B}}{2-x_{B}}
$$

Photonic and Diffractive
Trento ECT*
Phenomena in QCD
136
Stan Brodsky, SLAC

Deeply Virtual Compton Scattering

Gíven LFWFs, compute all GPDs!

ERBL Evolution

Trento ECT*

Large $-q^{2}=Q^{2}$

Photonic and Diffractive Phenomena in QCD

Liaht-Front Wave Function Overlap Representation

The Generalized Parton Distribution $E(x, \zeta, t)$

The generalized form factors in virtual Compton scattering $\gamma^{*}(q)+p(P) \rightarrow \gamma^{*}\left(q^{\prime}\right)+p\left(P^{\prime}\right)$ with $t=\Delta^{2}$ and
$\Delta=P-P^{\prime}=\left(\zeta P^{+}, \boldsymbol{\Delta}_{\perp},\left(t+\boldsymbol{\Delta}_{\perp}^{2}\right) / \zeta P^{+}\right)$, have been constructed in the light-front formalism. [brodsk, Dien, Hwang, 2001]
We find, under $\boldsymbol{q}_{\perp} \rightarrow \boldsymbol{\Delta}_{\perp}$, for $\zeta \leq x \leq 1$,

$$
\begin{aligned}
\frac{E(x, \zeta, 0)}{2 M}= & \sum_{a}(\sqrt{1-\zeta})^{1-n} \sum_{j} \delta\left(x-x_{j}\right) \int[\mathrm{d} x]\left[\mathrm{d}^{2} \mathbf{k}_{\perp}\right] \\
& \times \psi_{a}^{*}\left(x_{i}^{\prime}, \mathbf{k}_{\perp i}, \lambda_{i}\right) \mathbf{S}_{\perp} \cdot \mathbf{L}_{\perp}^{\mathbf{q}_{i}} \psi_{a}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right),
\end{aligned}
$$

with $x_{j}^{\prime}=\left(x_{j}-\zeta\right) /(1-\zeta)$ for the struck parton j and $x_{i}^{\prime}=x_{i} /(1-\zeta)$ for the spectator parton i.
The E distribution function is related to a $\mathbf{S}_{\perp} \cdot \mathbf{L}_{\perp} \boldsymbol{q}_{\perp}$ matrix element at finite ζ as well.

Can obtain 30 image of proton

$x<0.1 \quad x \sim 0.3 \quad x \sim 0.8$

find distributions of quarks w.rt. longitudinal momentum $\times P$ and transverse position b

We can also Fourier transform the skewness distribution

Trento ECT*
Photonic and Diffractive
$\underset{\text { I4O }}{\text { Phenomena }}$
Stan Brodsky, SLAC

Space-time picture of DVCS

$$
\sigma=\frac{1}{2} x^{-} P^{+}
$$

P. Hoyer

$$
x^{+}=\mathbf{x}_{\perp}=0
$$

The position of the struck quark differs by x^{-}in the two wave functions
Determine \mathbf{x}-distribution from FT of skewness,,$\quad \zeta=\frac{Q^{2}}{2 p \cdot q}$ the longitudinal momentum transfer

Photonic and Diffractive
Trento ECT*
Phenomena in I 4 I (CD
Stan Brodsky, SLAC

Fourier spectrum of the real part of the DVCS amplitude of an electron vs. σ for $M=0.51$ $\mathrm{MeV}, m=0.5 \mathrm{MeV}, \lambda=0.02 \mathrm{MeV}$, (a) when the electron helicity is not flipped; (b) when the helicity is flipped. The parameter t is in MeV^{2}.

$$
A\left(\sigma, \Delta_{\perp}\right)=\frac{1}{2 \pi} \int d \zeta e^{\frac{i}{2} \sigma \zeta} M\left(\zeta, \Delta_{\perp}\right)
$$

$$
\begin{aligned}
\sigma & =\frac{1}{2} x^{-} P^{+} \\
\zeta & =\frac{Q^{2}}{2 p \cdot q}
\end{aligned}
$$

Photonic and Diffractive Phenomena in QCD
Trento ECT*
PredictionsfromAdS/CFT

S. J. Brodsky ${ }^{a}$, D. Chakrabarti ${ }^{b}$, A. Harindranath ${ }^{c}$, A. Mukherjee ${ }^{d}$, J. P. Vary ${ }^{e, a, f}$

Hadron Optics

The Fourier Spectrum of the DVCS amplitude in σ space for different fixed values of

$$
\sigma=\frac{1}{2} x^{-} P^{+} \quad \zeta=\frac{Q^{2}}{2 p \cdot q}
$$

DVCS Amplitude using holographic QCD meson LFWF

$$
\wedge_{Q C D}=0.32
$$

GeV units
Photonic and Diffractive Phenomena in QCD
S. J. Brodsky ${ }^{a}$, D. Chakrabarti ${ }^{b}$, A. Harindranath ${ }^{c}$, A. Mukherjee ${ }^{d}$, J. P. Vary ${ }^{e, a, f}$

Hadron

 Optics from the Fourier Transform of $\mathcal{D V C S}$ amplitudes

Real part of the DVCS amplitude for the simulated meson-like bound state. The parameters are $M=150, m=\lambda=300 \mathrm{MeV}$. (a) Helicity non-flip amplitude vs. ζ, (b) Fourier spectrum of the same vs. σ, (c) Structure function vs. x. The parameter t is in MeV^{2}.

Photonic and Diffractive
Trento ECT*
Phenomena in QCD
Stan Brodsky, SLAC

LFWFS provide a fundamental description of hadron observables

- LFWFS underly structure functions and generalized parton distributions.
- Parton number not conserved: $\mathrm{n}=\mathrm{n}^{\prime} \& \mathrm{n}=\mathrm{n}^{\prime}+2$ at nonzero skewness
- GPDs are not densities or probability distributions
- Nonperturbative QCD: Lattice, DLCQ, Bethe-Salpeter, AdS/CFT

Exact formula for Paulí Form Factor

$$
\begin{aligned}
& \frac{F_{2}\left(q^{2}\right)}{2 M}=\sum_{a} \int[\mathrm{~d} x]\left[\mathrm{d}^{2} \mathbf{k}_{\perp}\right] \sum_{j} e_{j} \frac{1}{2} \times \\
& {\left[-\frac{1}{q^{L}} \psi_{a}^{\dagger *}\left(x_{i}, \mathbf{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{a}^{\downarrow}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right)+\frac{1}{q^{R}} \psi_{a}^{\downarrow *}\left(x_{i}, \mathbf{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{a}^{\uparrow}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right)\right]} \\
& \mathbf{k}_{\perp i}^{\prime}=\mathbf{k}_{\perp i}-x_{i} \mathbf{q}_{\perp} \quad \mathbf{k}_{\perp j}^{\prime}=\mathbf{k}_{\perp j}+\left(1-x_{j}\right) \mathbf{q}_{\perp}
\end{aligned}
$$

Must have $\Delta L_{z}= \pm 1$ to have nonzero F_{2}

LFWFs of Electron ($\mathrm{n}=2$)

Gives Schwinger Anomalous $\quad \alpha$ Moment 2π

$$
\begin{cases}\psi_{+\frac{1}{2}+1}^{\uparrow}\left(x, \vec{k}_{\perp}\right)=-\sqrt{2} \frac{\left(-\mathrm{k}^{1}+\mathrm{i} \mathrm{k}^{2}\right)}{\mathrm{x}(1-\mathrm{x})} \varphi, & L_{z}=-1 \\ \psi_{+\frac{1}{2}-1}^{\uparrow}\left(x, \vec{k}_{\perp}\right)=-\sqrt{2} \frac{\left(+\mathrm{k}^{1}+\mathrm{i} \mathrm{k}^{2}\right)}{1-\mathrm{x}} \varphi, & L_{z}=1 \\ \psi_{-\frac{1}{2}+1}^{\uparrow}\left(x, \vec{k}_{\perp}\right)=-\sqrt{2}\left(M-\frac{\mathrm{m}}{\mathrm{x}}\right) \varphi, & L_{z}=0 \\ \psi_{-\frac{1}{2}-1}^{\uparrow}\left(x, \vec{k}_{\perp}\right)=0, & \end{cases}
$$

where

$$
\varphi=\varphi\left(x, \vec{k}_{\perp}\right)=\frac{e / \sqrt{1-x}}{M^{2}-\left(\vec{k}_{\perp}^{2}+m^{2}\right) / x-\left(\vec{k}_{\perp}^{2}+\lambda^{2}\right) /(1-x)} .
$$

$$
\mathrm{M} \rightarrow \mathrm{~m}+\lambda^{\iota}
$$

Spin-I mass λ^{6}
Spin-i/2 mass m

$$
\left\{\begin{array}{l}
\psi_{+\frac{1}{2}+1}^{\downarrow}\left(x, \vec{k}_{\perp}\right)=0 \\
\psi_{+\frac{1}{2}-1}^{\downarrow}\left(x, \vec{k}_{\perp}\right)=-\sqrt{2}\left(M-\frac{\mathrm{m}}{\mathrm{x}}\right) \varphi \\
\psi_{-\frac{1}{2}+1}^{\downarrow}\left(x, \vec{k}_{\perp}\right)=-\sqrt{2} \frac{\left(-\mathrm{k}^{1}+\mathrm{i}^{2}\right)}{1-\mathrm{x}} \varphi \\
\psi_{-\frac{1}{2}-1}^{\downarrow}\left(x, \vec{k}_{\perp}\right)=-\sqrt{2} \frac{\left(+\mathrm{k}^{1}+\mathrm{i}^{2}\right)}{\mathrm{x}(1-\mathrm{x})} \varphi
\end{array}\right.
$$

Drell, sjb
Hwang, Schmidt, sjb

Photonic and Diffractive Phenomena in QCD

Anomalous gravitomagnetic moment B(o)

Equivalence theorem: $B(0)=0$

Anomalous moment and charge radius determines the orbital angular momentum of quarks in the proton
Use charge radius $R^{2}=-6 F_{1}^{\prime}(0)$ and anomalous moment $\kappa=F_{2}(0)$

$$
\text { to determine }<L_{z}^{2}>_{q} \sim 0.15
$$

C. E. Carlson and sjb
$S U(6)$ symmetry: $u^{\uparrow}:: u^{\downarrow}:: d^{\uparrow}:: d^{\downarrow}=5 / 3:: 1 / 3:: 1 / 3:: 2 / 3$.
$S^{z}=1 / 2, L^{z}=0$
$S^{z}=-1 / 2, L^{z}=+1$
$<L_{z}^{2}>_{d}=2<L_{z}^{2}>_{u} \quad<L_{z}^{2}>_{d}=2 / 9,<L_{z}^{2}>_{u}=1 / 9 \quad<L_{z}^{2}>_{q}=1 / 3$
If the valence state has a 45% probability, and the higher Fock states have no orbital $\quad<L_{z}^{2}>_{q}=0.15$. angular momentum

$$
<L_{z}^{2}>_{d}=0.10,<L_{z}^{2}>_{u}=0.05 \text {. (Reversed for the neutron.) }
$$

Photonic and Diffractive
Trento ECT*
Phenomena in QCD
Stan Brodsky, SLAC

$$
F_{3}\left(q^{2}\right)=F_{2}\left(q^{2}\right) \times \tan \phi
$$

Fock state by Fock state

Gardner, Hwang, sjb,

Advantages of Light-Front Quantization

- Frame independent; J_{z} kinematical
- Minkowski space; no fermion doubling
- Physical degrees of freedom; physical polarization
- Trivial vacuum; zero modes
- LF Quantization of Standard Model: Zero mode not vacuum expectation value
- $\mathbf{B (0)}=\mathbf{0}$; Exact formula for current matrix elements
- DLCQ; covariant truncation of Fock space
- LFWFs, spectra, physics at the amplitude level, phases \backslash
- AdS/CFT predictions

Photonic and Diffractive
Trento ECT*
Phenomena in QCD
Stan Brodsky, SLAC

Use Díffraction to Resolve Hadron Substructure

- Measure Light-Front Wavefunctions
- Test AdS/CFT predictions
- Novel Aspects of Hadron Wavefunctions: Intrinsic Charm, Hidden Color, Color Transparency/Opaqueness
- Diffractive Di-Jet, Tri-Jet Production
- Nuclear Shadowing and Antishadowing
- Novel QCD Mechanism for Higgs Production

Constituent Counting RuCes

 $$
\begin{array}{ll} \frac{d \sigma}{d t}(s, t)=\frac{F\left(\theta_{\mathrm{cm}}\right)}{s^{\left[n_{\mathrm{tot}}-2\right]}} & s=E_{\mathrm{cm}}^{2} \\ F_{H}\left(Q^{2}\right) \sim\left[\frac{1}{Q^{2}}\right]^{n_{H}-1} & -t=Q^{2} \end{array}
$$

Farrar \& sjb; Matveev et al
Conformat symmetry and PQCD predicts leading-twist power behavior

Characteristic scale of QCD: 300 MeV
Scaling cannot be postponed!
New J-PARC, GSI, J-Lab, Belle, Babar tests

Photonic and Diffractive Phenomena in QCD
Constituent Counting Rules

- Point-like quark and gluon constituents plus scale-invariant interactions
- Fall-off of Amplitude measures degree of compositeness (twist)
- Reflects near-Conformal Invariance of QCD
- PQCD: Logarithmic Modification by running coupling and ERBL Evolution

Lepage, sjb; Efremov, Radyushkin

- Angular and Spin Dependence -- Fundamental Wavefunctions: Hadron Distribution Amplitudes

$$
\phi_{H}\left(x_{i}, Q\right)
$$

Photonic and Diffractive
Trento ECT*
Phenomena in QCD
Stan Brodsky, SLAC

Test of PQCD Scaling

Constituent counting rules

Conformal invariance at high momentum transfers!

$$
\frac{d \sigma}{d t}(\gamma p \rightarrow M B)=\frac{F\left(\theta_{c m}\right)}{s^{7}}
$$

Photonic and Diffractive Phenomena in QCD

Stan Brodsky, SLAC

Quark-Counting

Photonic and Diffractive
Trento ECT* Phenomena in QCD

Stan Brodsky, SLAC

Conformal behavior: $Q^{2} F_{\pi}\left(Q^{2}\right) \rightarrow$ const

$$
Q^{4} F_{1}\left(Q^{2}\right) \rightarrow \text { const }
$$

Determination of the Charged Pion Form Factor at Q2=1.60 and 2.45 (GeV/c)2. By Fpi2 Collaboration (T. Horn et al.). Jul 2006. 4pp. e-Print Archive: nucl-ex/0607005

Generalized parton distributions from nucleon form-factor da M. Diehl (DESY) , Th. Feldmann (CERN), R. Jakob, P. Kroll (W DESY-04-146, CERN-PH-04-154, WUB-04-08, Aug 2004. 68pp.
Published in Eur.Phys.J.C39:1-39,2005
e-Print Archive: hep-ph/0408173

G. Huber

Quark-Counting: $\frac{d \sigma}{d t}(p p \rightarrow p p)=\frac{F\left(\theta_{C M}\right)}{s^{10}} \quad n=4 \times 3-2=10$

Trento ECT*
Photonic and Diffractive
Phenomena in QCD
Stan Brodsky, SLAC

Deuteron Photodisintegration

Why do dimensional counting rules work so well?

- PQCD predicts log corrections from powers of α_{s}, logs, pinch contributions Lepage, sjb; Efremov, Radyushkin
- DSE: QCD coupling (mom scheme) has IR Fixed point!

Alkofer, Fischer, von Smekal et al.

- Lattice results show similar flat behavior Furui, Nakajima
- PQCD exclusive amplitudes dominated by integration regime where α_{s} is large and flat

Infrared-Finite QCD Coupling?

Lattice simulation (MILC)

Trento ECT*
Furui, Nakajima
DSE: Alkofer, Fischer, von Smekal et al.

Leading-Twist PQCD Factorization

$$
M=\int \prod d x_{i} d y_{i} \phi_{F}(x, \widetilde{Q}) \times T_{H}\left(x_{i}, y_{i}, \widetilde{Q}\right) \phi_{I}\left(y_{i}, Q\right)
$$

Exclusive

$$
\begin{aligned}
& \text { If } \alpha_{s}\left(\widetilde{Q}^{2}\right) \simeq \text { constant } \\
& Q^{4} F_{1}\left(Q^{2}\right) \simeq \text { constant }
\end{aligned}
$$

Photonic and Diffractive Phenomena in QCD

Stan Brodsky, SLAC 165

AdS/CFT and QCD

> Mapping of Poincare' and Conformal SO(4,2) symmetries of 3+1 space to AdS5 space

- Representation of Semi-Classical QCD
- Confinement at Long Distances and Conformal Behavior at short distances
- Non-Perturbative Derivation of Dimensional Counting Rules
- Hadron Spectra, Regge Trajectories, Light-Front Wavefunctions; QCD at the amplitude level
- Goal: A first approximant to physical QCD

Trento ECT*
Photonic and Diffractive
Phenomena in QCD

Identify hadron by its interpolating operator at z -- >o

Prediction from AdS/QCD

Only one parameter!

Entire light quark baryon spectrum

Fig: Predictions for the light baryon orbital spectrum for $\Lambda_{Q C D}=0.25 \mathrm{GeV}$. The $\mathbf{5 6}$ trajectory corresponds to L even $P=+$ states, and the 70 to L odd $P=-$ states.

Guy de Teramond SJB
Photonic and Diffractive
Trento ECT*
Phenomena in QCD
Stan Brodsky, SLAC

- $S U(6)$ multiplet structure for N and Δ orbital states, including internal spin S and L.

$S U(6)$	S	L	Baryon State
56	${ }^{\frac{1}{2}}$	0	$N^{\frac{1}{2}}{ }^{+}(939)$
	$\frac{3}{2}$	\bigcirc	$\Delta \frac{3}{2}^{+}(1232)$
70	$\frac{1}{2}$	1	$N^{\frac{1}{2}}{ }^{-}(1535) N^{\frac{3}{2}}{ }^{-}(1520)$
	$\frac{3}{2}$	1	$N \frac{1}{2}^{-}(1650) N^{\frac{3}{2}-}(1700) N \frac{5}{2}-(1675)$
	$\frac{1}{2}$	1	$\Delta \frac{1}{2}^{-}(1620) \Delta \frac{3}{2}^{-}(1700)$
56	$\frac{1}{2}$	2	$N{ }^{\frac{3}{2}+(1720)} N^{\frac{5}{2}}{ }^{+}(1680)$
	$\frac{3}{2}$	2	$\Delta \frac{1}{2}+(1910) \Delta \frac{3}{2}^{+}(1920) \Delta \frac{5}{2}^{+}(1905) \Delta \Delta^{+}{ }^{+}(1950)$
70	${ }^{\frac{1}{2}}$	3	$N^{\frac{5}{2}}{ }^{-} N^{\frac{7}{2}}{ }^{-}$
	$\frac{3}{2}$	3	$N{ }^{\frac{3}{2}}{ }^{-} N^{\frac{5}{2}}{ }^{-} N^{\frac{7}{2}}{ }^{-}(2190) N{ }^{\frac{9}{2}}{ }^{-}(2250)$
	$\frac{1}{2}$	3	$\Delta \frac{5}{2}{ }^{-}(1930) \Delta^{\frac{7}{2}}$
56	$\frac{1}{2}$	4	$N \frac{7^{+}}{}{ }^{+}{ }^{\frac{9}{2}}{ }^{+}(2220)$
	${ }^{\frac{3}{2}}$	4	$\Delta \frac{5}{2}^{+} \quad \Delta \frac{7}{2}^{+} \quad \Delta \frac{9}{2}{ }^{+} \quad \Delta \frac{11}{2}^{+}(2420)$
70	$\frac{1}{2}$	5	$\mathrm{Na}^{\frac{9}{-}}{ }^{\text {N }} \frac{11}{2}-$
	$\frac{3}{2}$	5	$N \mathrm{~T}^{-}{ }^{-} \quad N \frac{9}{2}^{-} \quad N \frac{11}{2}^{-}(2600) N{ }^{\frac{13}{2}}{ }^{-}$

Trento ECT*
Photonic and Diffractive
Phenomena in QCD
Stan Brodsky, SLAC

Space-like pion form factor in holographic model for $\Lambda_{Q C D}=0.2 \mathrm{GeV}$.

Data Compilation from Baldini, Kloe and Volmer

Trento ECT*
Photonic and Diffractive
Phenomena in QCD
Stan Brodsky, SLAC

Mapping between $L F(3+1)$ and $A d S_{5}$

$$
\begin{aligned}
& L F(3+1) A d S_{5} \\
& \psi\left(x, \vec{b}_{\perp}\right) \phi(z) \\
& \zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}} z \\
&\left(x, \vec{b}_{\perp}\right)=\sqrt{x(1-x) \phi(\zeta)}
\end{aligned}
$$

$\mathcal{M a p} \mathcal{A} d S / C \mathcal{F T}$ to $3+1 \mathcal{L \mathcal { F }}$ Theory

Effective radial equation:

$$
\begin{aligned}
{\left[-\frac{d^{2}}{d \zeta^{2}}+V(\zeta)\right] \phi(\zeta)=} & \mathcal{M}^{2} \phi(\zeta) \\
& \zeta^{2}=x(1-x) \mathbf{b}_{\perp}^{2} .
\end{aligned}
$$

Effective conformal potential:

$$
V(\zeta)=-\frac{1-4 L^{2}}{4 \zeta^{2}}
$$

General solution:

$$
\begin{gathered}
\widetilde{\psi}_{L, k}\left(x, \vec{b}_{\perp}\right)=B_{L, k} \sqrt{x(1-x)} \\
\left.J_{L}(\sqrt{x(1-x})\left|\vec{b}_{\perp}\right| \beta_{L, k} \Lambda_{\mathrm{QCD}}\right) \theta\left(\vec{b}_{\perp}^{2} \leq \frac{\Lambda_{\mathrm{QCD}}^{-2}}{x(1-x)}\right)
\end{gathered}
$$

Photonic and Diffractive
Trento ECT* Phenomena in QCD

Stan Brodsky, SLAC

Two parton LFWF bound state:

$$
\widetilde{\psi}_{\bar{q} q / \pi}(x, \zeta)=B_{L, k} \sqrt{x(1-x)} J_{L}\left(\zeta \beta_{L, k} \Lambda_{\mathrm{QCD}}\right) \theta\left(z \leq \Lambda_{\mathrm{QCD}}^{-1}\right)
$$

(a) ground state $L=0, k=1$, (b) first orbital $L=1, k=1$,
(c) first radial $L=0, k=2$.

$$
\zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}}
$$

Trento ECT*
Photonic and Diffractive Phenomena in QCD

Stan Brodsky, SLAC

Physics of Rescattering

- Diffractive DIS: New Insights into Final State Interactions in QCD
- Origin of Hard Pomeron
- Structure Functions not Probability Distributions!
- T-odd SSAs, Shadowing, Antishadowing
- Diffractive dijets/ trijets, doubly diffractive Higgs
- Novel Effects: Color Transparency, Color Opaqueness, Intrinsic Charm, Odderon

"Dangling Glwons"

- Diffractive DIS
- Non-Unitary Correction to DIS: Structure functions are not probability distributions
- Nuclear Shadowing, Antishadowing
- Single Spin Asymmetries -- opposite sign in DY and DIS
- DY $\cos 2 \phi$ correlation at leading twist from double ISI-not given by standard PQCD factorization
- Wilson Line Effects persist even in LCG
- Must correct hard subprocesses for initial and final-state soft gluon attachments -- Ji gauge link, Kovchegov gauge
- Although we know the QCD Lagrangian, we have only begun to understand its remarkable properties and features.
- Novel QCD Phenomena: diffraction, hidden color, color transparency, shadowing, antishadowing, intrinsic charm, anomalous heavy quark phenomena, anomalous spin effects, odderon, anomalous Regge behavior ...
- Remarkable Predictions of AdS/QCD

> Truth is stranger than fiction, but it is because Fiction is obliged to stick to possibilities. -Mark Twain

