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Study Two-Photon Processes in Peripheral Heavy 
Ion Collisionsπ+

π−

Z1Z2 → pi+π−+ Z1Z2

Z1

Z2

(Zα)2FA(q2)

α→ L

π+

π−

Z1Z2 → pi+π−+ Z1Z2

Z1

Z2

(Zα)2FA(q2)

α→ L

π+

γ∗

π−

Z1Z2 → π+π−+ Z1 + Z2

Z1

Z2

(Zα)2FA(q2)

π+

γ∗

π−

Z1Z2 → π+π−+ Z1 + Z2

Z1

Z2

(Zα)2FA(q2)

π+

γ∗

π−

Z1Z2 → π+π−+ Z1 + Z2

Z1

Z2

(Zα)FA(q2)

X

Crucial test: γγ → π0π0

π+

γ∗

π−

Z1Z2 → π+π−+ Z1 + Z2

Z1Z2 → X + Z1 + Z2

Z1

Exclusive Channels 

C=+ Resonances 
Hard and Soft Inclusive Channels, Jets

Total Photon-Photon Cross Section

X =

γγ → ηc, ηb, Z
0, W+W−, H0, · · ·

Frame independent

x1 x,#k⊥

1− x

1− x1

#k⊥1

Pomeron, Odderon Exchange

High masses accessible at the LHC

Heavy Quarks
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Elastic  Scattering of Heavy Ions
π+

π−

Z1Z2 → pi+π−+ Z1Z2

Z1

Z2

(Zα)2FA(q2)

α→ L

π+

π−

Z1Z2 → pi+π−+ Z1Z2

Z1

Z2

(Zα)2FA(q2)

α→ L

π+

γ∗

π−

Z1Z2 → π+π−+ Z1 + Z2

Z1

Z2

(Zα)2FA(q2)

π+

γ∗

π−

Z1Z2 → π+π−+ Z1 + Z2

Z1

Z2

(Zα)2FA(q2)

Coulomb scattering  of 
heavy charges

π+

γ∗

π−

Z1Z2 → π+π−+ Z1 + Z2

Z1

Z2

(Zα)2FA(q2)

π+

γ∗

π−

Z1Z2 → π+π−+ Z1 + Z2

Z1

Z2

(Zα)2FA(q2)

Effective Schrödinger potential

α(q2) = α(0)
1−Π(q2)

V (q2) = Z1Z2FA1
(q2)FA2

(q2)α(q2)
q2

VC = Z1Z2
α(q2)

q2
FA1

(q2)FA2
(q2)

VLL = Z2
1Z2

2α4T FA1
FA2

ū

For Zα ! 1

VLL = O(α)VC

1% correction at −t ∼ m2
"

Calculate Lippmann-Schwinger T Matrix from

Effective Schrödinger potential

α(q2) = α(0)
1−Π(q2)

Veff = VC + VLL

For Zα ! 1

VLL = O(α)VC

1% correction at −t ∼ m2
"

Calculate Lippmann-Schwinger T Matrix from

Effective Schrödinger potential

α(q2) = α(0)
1−Π(q2)

Π(q2)
QED Effective Charge

Q2 = −q2 = −t << M2
A

conformal invariance - AdS/CFT

ψp
3(xi,"k⊥i) # F2

p

M4

M2 =
∑

i
k2⊥i
xi

8C

1C

For Zα ! 1

VLL = O(α)VC

1% correction at −t ∼ m2
"

Calculate Lippmann-Schwinger T Matrix from

Effective Schrödinger potential

α(q2) = α(0)
1−Π(q2)

Veff = VC + VLL

VLL = O(α)VC

1% correction at −t ∼ m2
"

Calculate Lippmann-Schwinger T Matrix from

effective potential

α(q2) = α(0)
1−Π(q2)

Π(q2)
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Elastic  Scattering of Heavy Ions
π+

π−

Z1Z2 → pi+π−+ Z1Z2

Z1

Z2

(Zα)2FA(q2)

α→ L

π+

π−

Z1Z2 → pi+π−+ Z1Z2

Z1

Z2

(Zα)2FA(q2)

α→ L

π+

γ∗

π−

Z1Z2 → π+π−+ Z1 + Z2

Z1

Z2

(Zα)2FA(q2)

π+

γ∗

π−

Z1Z2 → π+π−+ Z1 + Z2

Z1

Z2

(Zα)2FA(q2)

Significant correction to 
Coulomb scattering from 
light-by-light scattering 

Effective Schrödinger potential

α(q2) = α(0)
1−Π(q2)

V (q2) = Z1Z2FA1
(q2)FA2

(q2)α(q2)
q2

ū

d

iAαsαP FA(t)

π+

γ∗

π−

Z1Z2 → π+π−+ Z1 + Z2

Z1

Z2

(Zα)2FA(q2)

π+

γ∗

π−

Z1Z2 → π+π−+ Z1 + Z2

Z1

Z2

(Zα)2FA(q2)

Effective Schrödinger potential

α(q2) = α(0)
1−Π(q2)

V (q2) = Z1Z2FA1
(q2)FA2

(q2)α(q2)
q2

VLL = Z2
1Z2

2α4T FA1
FA2

ū

d

Effective Schrödinger potential

α(q2) = α(0)
1−Π(q2)

V (q2) = Z1Z2FA1
(q2)FA2

(q2)α(q2)
q2

VC = Z1Z2
α(q2)

q2
FA1

(q2)FA2
(q2)

VLL = Z2
1Z2

2α4T FA1
FA2

ū

Effective Schrödinger potential

α(q2) = α(0)
1−Π(q2)

VC + VLL

V (q2) = Z1Z2FA1
(q2)FA2

(q2)α(q2)
q2

VC = Z1Z2
α(q2)

q2
FA1

(q2)FA2
(q2)

VLL = Z2
1Z2

2α4T FA1
FA2

For Zα ! 1

VLL = O(α)VC

1% correction

Effective Schrödinger potential

α(q2) = α(0)
1−Π(q2)

VC + VLL

V (q2) = Z1Z2FA1
(q2)FA2

(q2)α(q2)
q2

For Zα ! 1

VLL = O(α)VC

1% correction at −t ∼ m2
"

Effective Schrödinger potential

α(q2) = α(0)
1−Π(q2)

VC + VLL

V (q2) = Z1Z2FA1
(q2)FA2

(q2)α(q2)
q2

For Zα ! 1

VLL = O(α)VC

1% correction at −t ∼ m2
"

Effective Schrödinger potential

α(q2) = α(0)
1−Π(q2)

VC + VLL

V (q2) = Z1Z2FA1
(q2)FA2

(q2)α(q2)
q2
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Elastic  Scattering of Heavy Ions
π+

π−

Z1Z2 → pi+π−+ Z1Z2

Z1

Z2

(Zα)2FA(q2)

α→ L

π+

π−

Z1Z2 → pi+π−+ Z1Z2

Z1

Z2

(Zα)2FA(q2)

α→ L

Multiple Light-by-
Light scattering 

Effective Schrödinger potential

α(q2) = α(0)
1−Π(q2)

V (q2) = Z1Z2FA1
(q2)FA2

(q2)α(q2)
q2

VLL = Z2
1Z2

2α4T FA1
FA2

ū

d

Effective Schrödinger potential

α(q2) = α(0)
1−Π(q2)

V (q2) = Z1Z2FA1
(q2)FA2

(q2)α(q2)
q2

VC = Z1Z2
α(q2)

q2
FA1

(q2)FA2
(q2)

VLL = Z2
1Z2

2α4T FA1
FA2

ū

For Zα ! 1

VLL = O(α)VC

1% correction

Effective Schrödinger potential

α(q2) = α(0)
1−Π(q2)

VC + VLL

V (q2) = Z1Z2FA1
(q2)FA2

(q2)α(q2)
q2

For Zα ! 1

VLL = O(α)VC

1% correction at −t ∼ m2
"

Effective Schrödinger potential

α(q2) = α(0)
1−Π(q2)

VC + VLL

V (q2) = Z1Z2FA1
(q2)FA2

(q2)α(q2)
q2

For Zα ! 1

VLL = O(α)VC

1% correction at −t ∼ m2
"

Effective Schrödinger potential

α(q2) = α(0)
1−Π(q2)

VC + VLL

V (q2) = Z1Z2FA1
(q2)FA2

(q2)α(q2)
q2

All Orders:For Zα ! 1

VLL = O(α)VC

1% correction at −t ∼ m2
"

Calculate Lippmann-Schwinger T Matrix from

Effective Schrödinger potential

α(q2) = α(0)
1−Π(q2)

VC + VLL

For Zα ! 1

VLL = O(α)VC

1% correction at −t ∼ m2
"

Calculate Lippmann-Schwinger T Matrix from

Effective Schrödinger potential

α(q2) = α(0)
1−Π(q2)

Veff = VC + VLL

Cross graphs become 
eikonal at high mass
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Study Two-Photon Processes 
in Peripheral Heavy Ion Collisionsπ+

π−

Z1Z2 → pi+π−+ Z1Z2

Z1

Z2

(Zα)2FA(q2)

α→ L

π+

π−

Z1Z2 → pi+π−+ Z1Z2

Z1

Z2

(Zα)2FA(q2)

α→ L

π+

γ∗

π−

Z1Z2 → π+π−+ Z1 + Z2

Z1

Z2

(Zα)2FA(q2)

π+

γ∗

π−

Z1Z2 → π+π−+ Z1 + Z2

Z1

Z2

(Zα)2FA(q2)

π+

γ∗

π−

Z1Z2 → π+π−+ Z1 + Z2

Z1

Z2

(Zα)FA(q2)

X

Crucial test: γγ → π0π0

π+

γ∗

π−

Z1Z2 → π+π−+ Z1 + Z2

Z1Z2 → X + Z1 + Z2

Z1

Tag scattered nucleus

Tag scattered nucleus
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Study Jet Production in Peripheral Heavy Ion 
Collisionsπ+

π−

Z1Z2 → pi+π−+ Z1Z2

Z1

Z2

(Zα)2FA(q2)

α→ L

π+

π−

Z1Z2 → pi+π−+ Z1Z2

Z1

Z2

(Zα)2FA(q2)

α→ L

π+

γ∗

π−

Z1Z2 → π+π−+ Z1 + Z2

Z1

Z2

(Zα)2FA(q2)

π+

γ∗

π−

Z1Z2 → π+π−+ Z1 + Z2

Z1

Z2

(Zα)2FA(q2)

Crucial test: γγ → π0π0

π+

γ∗

π−

Z1Z2 → π+π−+ Z1 + Z2

Z1Z2 → Jet Jet + Z1 + Z2

Z1Z2 → X + Z1 + Z2

Crucial test: γγ → π0π0

π+

γ∗

π−

Z1Z2 → π+π−+ Z1 + Z2

Z1Z2 → Jet Jet + Z1 + Z2

σ(γγ → X) = NC
∑

e4qσ(γγ → µ+µ)

Z1Z2 → X + Z1 + Z2

Z1

q

q̄

Z2

Schwinger-Sommerfeld Correction

Z1Z2 → X + Z1 + Z2

Z1

q

q̄

Z2

Schwinger-Sommerfeld Correction

Rule out Han-Nambu 
quark charges
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Study Two-Photon Processes in Peripheral Heavy 
Ion Collisionsπ+

π−

Z1Z2 → pi+π−+ Z1Z2

Z1

Z2

(Zα)2FA(q2)

α→ L

π+

γ∗

π−

Z1Z2 → π+π−+ Z1 + Z2

Z1

Z2

(Zα)2FA(q2)

Nuclear Coherence for MX <
√

s
5A1/3

Light-Front Energy Denominator

M2
A −

M2
A+k2⊥
1−x − k2⊥

x = −k2⊥+x2M2
A

x(1−x)

dNγ

dxd2k⊥
$ Z2α

x
k2⊥

(k2⊥+x2M2
A)2

F2
A(k2⊥+ x2M2

A)

k⊥ < 1
RA

x < 1
RAMA

π+

π−

Z1Z2 → pi+π−+ Z1Z2

Z1

Z2

(Zα)2FA(q2)

α→ L

π+

γ∗

π−

Z1Z2 → π+π−+ Z1 + Z2

Z1

Z2

(Zα)2FA(q2)

X

Light-front energy denominator

Z1Z2 → π+π−+ Z1 + Z2

Z1Z2 → π0π0 + Z1 + Z2

Z1Z2 → V 0V 0 + Z1 + Z2

Z1Z2 → Jet Jet + Z1 + Z2

σ(γγ → X) = NC
∑

e4qσ(γγ → µ+µ)

Z1Z2 → X + Z1 + Z2

Z1

Frame independent

x1

1− x1

x = k+

P+ = k0+kz

P0+Pz

x2

1− x2

1− x = P ′0+P ′z
P0+Pz # 1− P ′z

MA

kz < 1
RA

x < 1
RAMA

M2
X = x1x2 × sA1A2

x1 ∼ x2

MX < 1
RAMN

√
sNN

dNγ
dx $ (πZ2α)F2

A(q2)1
x

Nuclear Coherence for MX <
√

s
5A1/3

Light-Front Energy Denominator

M2
A −

M2
A+k2⊥
1−x − k2⊥

x = −k2⊥+x2M2
A

x(1−x)

dNγ

dxd2k⊥
$ Z2α

x
k2⊥

(k2⊥+x2M2
A)2

F2
A(k2⊥+ x2M2

A)

k⊥ < 1
RA

x < 1
RAMA

Frame-Independent 
Coherence Condition

“Equivalent Photon Approximation”: 
PQCD Factorization

Light-Front Energy Denominator

M2
A −

M2
A+k2⊥
1−x − k2⊥

x = −k2⊥+x2M2
A

x(1−x)

dNγ

dxd2k⊥
# Z2α

x
k2⊥

(k2⊥+x2M2
A)2

F2
A(k2⊥+ x2M2

A)

dNγ

dxdk2⊥
# Z2α

πx
k2⊥

(k2⊥+x2M2
A)2

F2
A(k2⊥+ x2M2

A)

k⊥ < 1
RA

x < 1
RAMA
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Study Two-Photon Processes 
in Peripheral Heavy Ion Collisionsπ+

π−

Z1Z2 → pi+π−+ Z1Z2

Z1

Z2

(Zα)2FA(q2)

α→ L

π+

π−

Z1Z2 → pi+π−+ Z1Z2

Z1

Z2

(Zα)2FA(q2)

α→ L

π+

γ∗

π−

Z1Z2 → π+π−+ Z1 + Z2

Z1

Z2

(Zα)2FA(q2)

π+

γ∗

π−

Z1Z2 → π+π−+ Z1 + Z2

Z1

Z2

(Zα)2FA(q2)

π+

γ∗

π−

Z1Z2 → π+π−+ Z1 + Z2

Z1

Z2

(Zα)FA(q2)

x1

1− x1

x2

1− x2

1− x = P ′0+P ′z
P0+Pz # 1− P ′z

MA

in rest system Pz = 0, P0 = MA

in rest system

x1

1− x1

x2

1− x2

1− x = P ′0+P ′z
P0+Pz # 1− P ′z

MA

in rest system Pz = 0, P0 = MA

in rest system

kz < 1
RA

x < 1
RAMA

M2
X = x1x2 × sA1A2

x1 ∼ x2

MX < 1
RAMN

√
sNN

dNγ
dx $ (πZ2α)F2

A(q2)1
x

kz < 1
RA

x < 1
RAMA

M2
X = x1x2 × sA1A2

x1 ∼ x2

MX < 1
RAMN

√
sNN

dNγ
dx $ (πZ2α)F2

A(q2)1
x

kz < 1
RA

x < 1
RAMA

M2
X = x1x2 × sA1A2

x1 ∼ x2

MX < 1
RAMN

√
sNN

dNγ
dx $ (πZ2α)F2

A(q2)1
x

kz < 1
RA

x < 1
RAMA

M2
X = x1x2 × sA1A2

x1 ∼ x2

MX < 1
RAMN

√
sNN

dNγ
dx $ (πZ2α)F2

A(q2)1
x

Frame independent

x1

1− x1

x2

1− x2

1− x = P ′0+P ′z
P0+Pz # 1− P ′z

MA

in rest system Pz = 0, P0 = MA

1− x2

x2,!k⊥2

1− x = P ′0+P ′z
P0+Pz $ 1− P ′z

MA

in rest system Pz = 0, P0 = MA

in rest system

kz < 1
RA

x < 1
RAMA

1− x2

x2,!k⊥2

1− x = P ′0+P ′z
P0+Pz $ 1− P ′z

MA

in rest system Pz = 0, P0 = MA

in rest system

kz < 1
RA

x < 1
RAMA

Frame independent

x1 x,!k⊥

1− x

1− x1

!k⊥1

x = k+

P+ = k0+kz

P0+Pz

x2

1− x2

x2,!k⊥2

x1,!k⊥1

1− x = P ′0+P ′z
P0+Pz $ 1− P ′z

MA

in rest system Pz = 0, P0 = MA

in rest system

kz < 1
RA

Nuclear Coherence for MX <
√

s
5A1/3

Nuclear Coherence for

MX <
√

sNN

5A1/3 ∼ 0.5 TeV at the LHC

Light-Front Energy Denominator

M2
A −

M2
A+k2⊥
1−x − k2⊥

x = −k2⊥+x2M2
A

x(1−x)

dNγ

dxd2k⊥
% Z2α

x
k2⊥

(k2⊥+x2M2
A)2

F2
A(k2⊥+ x2M2

A)

Nuclear coherence for 

X
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Study Exclusive Two-Photon Processes in 
Peripheral Heavy Ion Collisions

π+

π−

Z1Z2 → pi+π−+ Z1Z2

Z1

Z2

(Zα)2FA(q2)

α→ L

π+

π−

Z1Z2 → pi+π−+ Z1Z2

Z1

Z2

(Zα)2FA(q2)

α→ L

π+

π−

Z1Z2 → pi+π−+ Z1Z2

Z1

Z2

(Zα)2FA(q2)

α→ L

π+

π−

Z1Z2 → pi+π−+ Z1Z2

Z1

Z2

(Zα)2FA(q2)

α→ L

π+

π−

Z1Z2 → π+π−+ Z1 + Z2

Z1

Z2

(Zα)2FA(q2)

α→ L

π+

γ∗

π−

Z1Z2 → π+π−+ Z1 + Z2

Z1

Z2

(Zα)2FA(q2)

π+

γ∗

π−

Z1Z2 → π+π−+ Z1 + Z2

Z1

Z2

(Zα)2FA(q2)

π+

γ∗

π−

Z1Z2 → π+π−+ Z1 + Z2

Z1

Z2

(Zα)FA(q2)

Each nucleus 
produces 

equivalent photon 
beam

+ higher-order Coulomb corrections 

Light-Front Energy Denominator

M2
A −

M2
A+k2⊥
1−x − k2⊥

x = −k2⊥+x2M2
A

x(1−x)

dNγ

dxd2k⊥
# Z2α

x
k2⊥

(k2⊥+x2M2
A)2

F2
A(k2⊥+ x2M2

A)

dNγ

dxdk2⊥
# Z2α

x
k2⊥

(k2⊥+x2M2
A)2

F2
A(k2⊥+ x2M2

A)

k⊥ < 1
RA

x < 1
RAMA
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Crucial test: γγ → π0π0

π+

γ∗

π−

Z1Z2 → π+π−+ Z1 + Z2

Z1

Z2
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Fig. 5. Cross section for (a) γγ→π+π−, (b) γγ→K+K− in the c.m. angular region
|cos θ∗| < 0.6 together with a W−6 dependence line derived from the fit of s|RM |.
(c) shows the cross section ratio. The solid line is the result of the fit for the data
above 3 GeV. The errors indicated by short ticks are statistical only.

6 Systematic errors

The dominant systematic errors are listed in Table 2. The uncertainty due
to trigger efficiency is estimated by comparing the yields of γγ → µ+µ− in
real and simulated data [9] after accounting for the background from e+e− →
µ+µ− nγ events (varying with W from 0.5–4.6%), which have the same topol-
ogy [13]. The uncertainty in the relative muon identification efficiency between
real and simulated data is used to determine the error associated with the
residual µ+µ− subtraction from the π+π− sample. We use an error of 100% of
the subtracted value for the non-exclusive background subtraction. We allow
the number of χcJ events to fluctuate by up to 20% of the measured excess to
estimate the error due to the χc subtraction that is applied for the energy bins
in the range 3.3 GeV < W < 3.6 GeV. The total W -dependent systematic
error is 10–33% (10–21%) for the γγ → π+π− (γγ → K+K−) cross section.

11

PQCD, AdS/CFT:
Δσ(γγ→ π+π−,K+,K−)∼ 1/W 6

|cos(θCM)| < 0.6

s = E2
cm = W2 = Q2

Q4GMp(Q
2)

Q2FK(Q2)

FH(t) ∝ 1
tnH−1

MAB→CD(s, t) = F (θcm)
sntot−4

dσ
dt (s, t) = F (θcm)

s[2ntot−2]

γγ → π+π−

γγ → K+K−

s = E2
cm = W2 = Q2

Q4GMp(Q
2)

Q2FK(Q2)

FH(t) ∝ 1
tnH−1

MAB→CD(s, t) = F (θcm)
sntot−4

γγ → π+π−

γγ → K+K−

s = E2
cm = W2 = Q2

Q4GMp(Q
2)

Q2FK(Q2)

FH(t) ∝ 1
tnH−1

MAB→CD(s, t) = F (θcm)
sntot−4

Possible extension 
to very high 

invariant mass 
using LHC UPC
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A. Bozek ad, M. Bračko j,v,o, J. Brodzicka ad, A. Chen z,
B. G. Cheon d, R. Chistov n, Y. Choi ap, Y. K. Choi ap,
A. Chuvikov ak, J. Dalseno w, M. Danilov n, M. Dash bd,
A. Drutskoy f, S. Eidelman b, Y. Enari x, D. Epifanov b,

S. Fratina o, N. Gabyshev b, A. Garmash ak, T. Gershon j,
G. Gokhroo ar, K. Hayasaka x, H. Hayashii y, Y. Hoshi at,
S. Hou z, W.-S. Hou ac, T. Iijima x, A. Imoto y, K. Inami x,

A. Ishikawa j, R. Itoh j, M. Iwasaki av, Y. Iwasaki j,
J. H. Kang be, J. S. Kang q, S. U. Kataoka y, N. Katayama j,

H. Kawai c, T. Kawasaki af, H. R. Khan aw, H. Kichimi j,
H. J. Kim s, J. H. Kim ap, S. K. Kim ao, S. M. Kim ap,
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Fig. 4. Angular dependence of the cross section, σ−1
0 dσ/d|cos θ∗|, for

the π+π−(closed circles) and K+K−(open circles) processes. The curves are
1.227 × sin−4 θ∗. The errors are statistical only.

dσ

d|cos θ∗|(W, |cos θ∗|; γγ → X ) =
∆N(W , |cos θ∗|; e+e− → e+e−X )

Lγγ(W )∆W ∆|cos θ∗|ε(W , |cos θ∗|)∫Ldt
(2)

where N and ε denote the number of the signal events and a product of de-
tection and trigger efficiencies, respectively;

∫Ldt is the integrated luminosity,
and Lγγ is the luminosity function, defined as Lγγ(W ) = dσ

dW
(W ; e+e− →

e+e−X)/σ(W ; γγ→X).

The efficiencies ε(W, |cos θ∗|) for γγ → π+π− and γγ → K+K− are obtained
from a full Monte Carlo simulation [11], using the TREPS [12] program for
the event generation as well as the luminosity function determination. The
trigger efficiency is determined from the trigger simulator. The typical value
of the trigger efficiency is ∼ 93% for events in the acceptance.

The efficiency-corrected measured differential cross sections for γγ → π+π−

and γγ → K+K−, normalized to the partial cross section σ0 for |cosθ∗| < 0.6,
are shown in Fig. 4 for each 100 MeV wide W bin. The partial cross sections
σ0 for both processes, integrated over the above scattering angle range, are
shown in Fig. 5 (along with their ratio) and itemized in Table 1.
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Abstract

We have measured π+π− and K+K− production in two-photon collisions using
87.7 fb−1 of data collected with the Belle detector at the asymmetric energy e+e−

collider KEKB. The cross sections are measured to high precision in the two-photon
center-of-mass energy (W ) range between 2.4GeV < W < 4.1GeV and angular
region |cos θ∗| < 0.6. The cross section ratio σ(γγ → K+K−)/σ(γγ → π+π−) is
measured to be 0.89 ± 0.04(stat.) ± 0.15(syst.) in the range of 3.0GeV < W <
4.1GeV, where the ratio is energy independent. We observe a sin−4 θ∗ behavior of
the cross section in the same W range. Production of χc0 and χc2 mesons is observed
in both γγ → π+π− and γγ → K+K− modes.

Key words: two-photon collisions, mesons, QCD, charmonium
PACS: 12.38Qk, 13.25.Gv, 13.66.Bc, 13.85.Lg

1 Introduction

Exclusive processes with hadronic final states test various model calculations
motivated by perturbative or non-perturbative QCD. Two-photon production
of exclusive hadronic final states is particularly attractive due to the absence of
strong interactions in the initial state and the possibility of calculating γγ →
qq amplitudes. The perturbative QCD calculation by Brodsky and Lepage
(BL) [1] is based on factorization of the amplitude into a hard scattering
amplitude for γγ → qq̄qq̄ and a single-meson distribution amplitude. Their
prediction gives the dependence on the center-of-mass (c.m.) energy W (≡√

s)
and scattering angle θ∗ for γγ → M+M− processes

dσ

d|cos θ∗|(γγ → M+M−) ≈ 16πα2

s

|FM(s)|2
sin4 θ∗

, (1)

where M represents a meson and FM denotes its electromagnetic form factor.
Vogt [2], based on the perturbative approach, claimed a need for soft contribu-
tions, as his result for the hard contribution was well below the experimental
cross section obtained by CLEO [3].

Diehl, Kroll and Vogt (DKV) proposed [4] the soft handbag contribution to
two-photon annihilation into pion or kaon pairs at large energy and momentum
transfers, in which the amplitude is expressed by a hard γγ → qq subprocess
and a form factor describing the soft transition from qq to the meson pair.

1 on leave from Nova Gorica Polytechnic, Nova Gorica, Slovenia

4
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Lepage & sjb

14

Schwinger Sommerfeld Correction

(a): φπ(x) ∝ x(1− x)

(b): φπ(x) ∝ [x(1− x)]1/4

(c): φπ(x) ∝ δ(x− 1/2)

2πη
e2πη−1

η = πZα
β

Schwinger Sommerfeld Correction

(a): φπ(x) ∝ x(1− x)

(b): φπ(x) ∝ [x(1− x)]1/4

(c): φπ(x) ∝ δ(x− 1/2)

2πη
e2πη−1

η = πZα
β

Schwinger Sommerfeld Correction

(a): φπ(x) ∝ x(1− x)

(b): φπ(x) ∝ [x(1− x)]1/4

(c): φπ(x) ∝ δ(x− 1/2)

2πη
e2πη−1

η = πZα
β

Schwinger Sommerfeld Correction

(a): φπ(x) ∝ x(1− x)

(b): φπ(x) ∝ [x(1− x)]1/4

φ
AdS/QCD
π (x) ∝ [x(1− x)]1/2

(c): φπ(x) ∝ δ(x− 1/2)

2πη
e2πη−1

η = πZα
β

Neutral pair  angular distribution
sensitive to AdS/CFT distribution!

de Teramond & sjb
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Final-State Coulomb Corrections 

π+

π−

Z1Z2 → pi+π−+ Z1Z2

Z1

Z2

(Zα)2FA(q2)

α→ L

π+

π−

Z1Z2 → pi+π−+ Z1Z2

Z1

Z2

(Zα)2FA(q2)

α→ L

π+

π−

Z1Z2 → pi+π−+ Z1Z2

Z1

Z2

(Zα)2FA(q2)

α→ L

π+

π−

Z1Z2 → pi+π−+ Z1Z2

Z1

Z2

(Zα)2FA(q2)

α→ L

π+

π−

Z1Z2 → π+π−+ Z1 + Z2

Z1

Z2

(Zα)2FA(q2)

α→ L

π+

γ∗

π−

Z1Z2 → π+π−+ Z1 + Z2

Z1

Z2

(Zα)2FA(q2)

π+

γ∗

π−

Z1Z2 → π+π−+ Z1 + Z2

Z1

Z2

(Zα)2FA(q2)

Schwinger - Sommerfeld 
Correction

Coulombic final-state interaction
 between outgoing nuclei 

and produced charged particles

Z2

Schwinger-Sommerfeld Correction

Coulombic interaction between nuclei and pro-
duced charged particles

2πη
e2πη−1

η = πZα
β

σ → σ ×Πi$=j
2πηij

e
2πηij−1

ηij =
πZiqjα

βij

(a): φπ(x) ∝ x(1− x)

(b): φπ(x) ∝ [x(1− x)]1/4

φ
AdS/QCD
π (x) ∝ [x(1− x)]1/2

(c): φπ(x) ∝ δ(x− 1/2)

2πη
e2πη−1

Strong final-state interactions 
at small relative velocity



 Stan Brodsky,  SLAC Trento ECT* 
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Schwinger-Sommerfeld 
Correction

• Final-state Coulombic interactions of nuclei with 
charged hadrons distort trajectories

• Not unitarity

• Generate charge asymmetries and single-spin 
asymmetries -- opposite charges attract

• Use QED lepton production as reference

ηij =
πZiqjα

βij

(a): φπ(x) ∝ x(1− x)

(b): φπ(x) ∝ [x(1− x)]1/4

φ
AdS/QCD
π (x) ∝ [x(1− x)]1/2

(c): φπ(x) ∝ δ(x− 1/2)

2πη
e2πη−1

Z2

Schwinger-Sommerfeld Correction

Coulombic interaction between nuclei and pro-
duced charged particles

2πη
e2πη−1

η = πZα
β

σ → σ ×Πi$=j
2πηij

e
2πηij−1
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Study Two-Photon Processes in Peripheral Heavy 
Ion Collisionsπ+

π−

Z1Z2 → pi+π−+ Z1Z2

Z1

Z2

(Zα)2FA(q2)

α→ L

π+

π−

Z1Z2 → pi+π−+ Z1Z2

Z1

Z2

(Zα)2FA(q2)

α→ L

π+

γ∗

π−

Z1Z2 → π+π−+ Z1 + Z2

Z1

Z2

(Zα)2FA(q2)

X

Crucial test: γγ → π0π0

π+

γ∗

π−

Z1Z2 → π+π−+ Z1 + Z2

Z1Z2 → X + Z1 + Z2

Z1

Pomeron Exchange

Real part interferes with 
Coulomb exchange
Charge asymmetries 

Single-Spin Asymmetries

iAαsαP FA(t)

α ∼ 1/3 to α = 1.

X =

γγ → ηc, ηb, Z
0, W+W−, H0, · · ·

Frame independent

x1 x,$k⊥

1− x

iAαsαP FA(t)

α ∼ 1/3 to α = 1.

X =

γγ → ηc, ηb, Z
0, W+W−, H0, · · ·

Frame independent

x1 x,$k⊥

1− x

iAαsαP FA(t)

ZαsFA(t)

α ∼ 1/3 to α = 1.

X =

γγ → ηc, ηb, Z
0, W+W−, H0, · · ·

Frame independent

x1 x,$k⊥
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Study Doubly Diffractive C= - Vector Meson 
Photoproduction in Peripheral Heavy Ion Collisionsπ+

π−

Z1Z2 → pi+π−+ Z1Z2

Z1

Z2

(Zα)2FA(q2)

α→ L

π+

π−

Z1Z2 → pi+π−+ Z1Z2

Z1

Z2

(Zα)2FA(q2)

α→ L

π+

γ∗

π−

Z1Z2 → π+π−+ Z1 + Z2

Z1

Z2

(Zα)2FA(q2)

π+

γ∗

π−

Z1Z2 → π+π−+ Z1 + Z2

Z1

Z2

(Zα)2FA(q2)

π+

γ∗

π−

Z1Z2 → π+π−+ Z1 + Z2

Z1

Z2

(Zα)FA(q2)

Z1Z2 → π+π−+ Z1 + Z2

Z1Z2 → V 0V 0 + Z1 + Z2

Z1Z2 → Jet Jet + Z1 + Z2

σ(γγ → X) = NC
∑

e4qσ(γγ → µ+µ)

Z1Z2 → X + Z1 + Z2

Z1

q

Nuclear Coherence for MX <
√

s
5A1/3

V 0

dNγ
dx " (πZ2α)F2

A(q2)1
x

Crucial test: γγ → π0π0

π+

γ∗

π−

Nuclear Coherence for MX <
√

s
5A1/3

V 0

dNγ
dx " (πZ2α)F2

A(q2)1
x

Crucial test: γγ → π0π0

π+

γ∗

π−

Study QCD 
Pomeron Exchange
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Study Doubly  C=+ Meson Production in 
Peripheral Heavy Ion Collisionsπ+

π−

Z1Z2 → pi+π−+ Z1Z2

Z1

Z2

(Zα)2FA(q2)

α→ L

π+

π−

Z1Z2 → pi+π−+ Z1Z2

Z1

Z2

(Zα)2FA(q2)

α→ L

π+

γ∗

π−

Z1Z2 → π+π−+ Z1 + Z2

Z1

Z2

(Zα)2FA(q2)

π+

γ∗

π−

Z1Z2 → π+π−+ Z1 + Z2

Z1

Z2

(Zα)2FA(q2)

π+

γ∗

π−

Z1Z2 → π+π−+ Z1 + Z2

Z1

Z2

(Zα)FA(q2)
Study QCD 

Odderon Exchange

Z1Z2 → π+π−+ Z1 + Z2

Z1Z2 → π0π0 + Z1 + Z2

Z1Z2 → V 0V 0 + Z1 + Z2

Z1Z2 → Jet Jet + Z1 + Z2

σ(γγ → X) = NC
∑

e4qσ(γγ → µ+µ)

Z1Z2 → X + Z1 + Z2

Z1

Nuclear Coherence for MX <
√

s
5A1/3

V 0

π0

dNγ
dx " (πZ2α)F2

A(q2)1
x

Crucial test: γγ → π0π0

π+

γ∗

Nuclear Coherence for MX <
√

s
5A1/3

V 0

π0

dNγ
dx " (πZ2α)F2

A(q2)1
x

Crucial test: γγ → π0π0

π+

γ∗
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• Three-Gluon Exchange, C= -,  J=1, Nearly Real Phase

• Interference of 2-gluon and 3-gluon exchange leads to matter/
antimatter asymmetries

• Asymmetry in jet  asymmetry in 

• Analogous to lepton energy and angle asymmetry

• Pion Asymmetry in 

γp→ cc̄p

γp→ π+π−p
γZ→ e+e−Z

The Odderon

e-p collider test

Odderon: Another source of 
antishadowing

Merino, Rathsman, sjb

BFKL

20
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• Measure Light-Front Wavefunctions

• Test AdS/CFT predictions

• Novel Aspects of Hadron Wavefunctions: 
Intrinsic Charm, Hidden Color, Color 
Transparency/Opaqueness

• Diffractive Di-Jet, Tri-Jet Production

• Nuclear Shadowing and Antishadowing

• Novel QCD Mechanism for Higgs Production

Use Diffraction to Resolve 
Hadron Substructure

21
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Diffractive Dissociation of Pion  
into Quark Jets

Measure Light-Front Wavefunction of Pion

Minimal momentum transfer to nucleus
Nucleus left Intact!

E791 Ashery et al.

22

M ∝ ∂2

∂2k⊥
ψπ(x, k⊥)

F2
A(q2⊥) ∼ e−

1
3R2

Aq2⊥

∆Pz =
M2

final−M2
initial

2ELab

LIoffe = 1
∆Pz

∼ 2Elab
M2

qq̄

For Eπ
Lab = 500GeV,

M2
qq̄ < 50GeV2
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Coulomb- or Hadron -Dissociate 
Proton to Three Jets

Measure Ψqqq(xi,!k⊥i) valence wavefunction of proton

Frankfurt
Miller

Strikman

23

Polarized proton: Spin correlations
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Diffractive Dissociation of 
Proton  into Quark Jets

Measure Light-Front Wavefunction of proton
Minimal momentum transfer to nucleus

Nucleus left Intact

24

Frankfurt, Miller, Strikman

x3,!k⊥3

M ∝ ∑
ij

∂2

∂k⊥i∂k⊥j
ψp
3(xi, k⊥i)

For Zα # 1

VLL = O(α)VC

1% correction at −t ∼ m2
%

Calculate Lippmann-Schwinger T Matrix from

Effective Schrödinger potential

p

x3,!k⊥3

M ∝ ∑
ij

∂2

∂k⊥i∂k⊥j
ψp
3(xi, k⊥i)

For Zα # 1

VLL = O(α)VC

1% correction at −t ∼ m2
%

Calculate Lippmann-Schwinger T Matrix from

conformal invariance - AdS/CFT

ψp
3(xi,"k⊥i) " F2

p

M4

M2 =
∑

i
k2⊥i
xi

p

x3,"k⊥3

M ∝ ∑3
ij

∂2

∂"k⊥i∂"k⊥j
ψp
3(xi,"k⊥i)

conformal invariance - AdS/CFT

ψp
3(xi,"k⊥i) " F2

p

M4

M2 =
∑

i
k2⊥i
xi

p

x3,"k⊥3

M ∝ ∑3
ij

∂2

∂"k⊥i∂"k⊥j
ψp
3(xi,"k⊥i)

conformal invariance - AdS/CFT

ψp
3(xi,"k⊥i) " F2

p

M4

M2 =
∑

i
k2⊥i
xi

p

x3,"k⊥3

M ∝ ∑3
ij

∂2

∂"k⊥i∂"k⊥j
ψp
3(xi,"k⊥i)

conformal invariance - AdS/CFT

ψp
3(xi,"k⊥i) " F2

p

M4

M2 =
∑

i
k2⊥i
xi

p

x3,"k⊥3

M ∝ ∑3
ij

∂2

∂"k⊥i∂"k⊥j
ψp
3(xi,"k⊥i)

LHC with forward acceptance
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conformal invariance - AdS/CFT

ψp
3(xi,"k⊥i) " F2

p

M4

M2 =
∑

i
k2⊥i
xi

8C

1C

XA

XB

p

x3,!k⊥3

M ∝ ∑3
ij

∂2

∂!k⊥i∂!k⊥j
ψp
3(xi,!k⊥i)

For Zα # 1

VLL = O(α)VC

conformal invariance - AdS/CFT

ψp
3(xi,"k⊥i) " F2

p

M4

M2 =
∑

i
k2⊥i
xi

8C

1C

XA

conformal invariance - AdS/CFT

ψp
3(xi,"k⊥i) " F2

p

M4

M2 =
∑

i
k2⊥i
xi

8C

1C

XA

N

M ∝ i s α2
s bπ⊥ bN⊥

σ ∝ α4
s (bπ⊥)2 (bN⊥)2

M ∝ b⊥

M ∝ s

q

q̄

Target left intact Diffraction, Rapidity gap

A

25

A

d

conformal invariance - AdS/CFT

ψp
3(xi,"k⊥i) " F2

p

M4

M2 =
∑

i
k2⊥i
xi

8C

1C

XA

conformal invariance - AdS/CFT

ψp
3(xi,"k⊥i) " F2

p

M4

M2 =
∑

i
k2⊥i
xi

8C

1C

XA

Rapidity gap between high 
transverse momentum clusters

Diffractive dissociation of color-octet 
deuteron to two high tranverse 

momentum clusters
Hidden Color Fock State
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Fluctuation of a Pion to a 
Compact Color Dipole State

Color-Transparent Fock State For High Transverse 
Momentum Di-Jets

Same Fock State 
Determines Weak 

Decay
26
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Key Ingredients in Ashery Experiment

q

q̄

g

π

q

q̄

g

π

q

q̄

g

π
q

q̄

g

π

q

q̄

g

π

q

q̄

g

π

M ∝ b⊥

q

q̄

g

π

Local gauge-theory interactions 
measure transverse size of color dipole
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Key Ingredients in Ashery Experiment

Small color-dipole moment pion not absorbed; 
interacts with each nucleon coherently 

QCD COLOR Transparency

q

q̄

g

π
q

q̄

g

π

q

q̄

g

π
N

M ∝ i s α2
s bπ⊥ bN⊥

σ ∝ α4
s (bπ⊥)2 (bN⊥)2

M ∝ b⊥

M ∝ s

q

q̄

Target left intact

Brodsky Mueller
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Table 1

The exponent in σ ∝ Aα , experimental results for coherent dissociation and the color-transparency (CT) predictions [69]

kt bin (GeV/c) α #αstat #αsys #α α(CT)

1.25–1.5 1.64 ±0.05 +0.04–0.11 +0.06–0.12 1.25

1.5–2.0 1.52 ±0.09 ±0.08 ±0.12 1.45

2.0–2.5 1.55 ±0.11 ±0.12 ±0.16 1.60

Fig. 14. q2t distributions of dijets with 1.5 ≤ kt ≤ 2.0 GeV/c for the platinum and carbon targets. The lines are fits of the

MC simulations to the data: coherent nuclear dissociation (dotted line), coherent nucleon/incoherent nuclear dissociation

(dashed line), background (dashed–dotted line) and total fit (solid line).

note also that in their more recent work [70] the authors carried out more detailed calculations

and predicted a value α = 1.54.

This process was calculated also by Nikolaev et al. [74] who include higher twist corrections.

They calculate the α dependence and their results are very similar to those shown in Table 1 as
derived from [69].

In summary of this section we may conclude that color transparency was well demonstrated

in vector meson electroproduction and in diffractive dissociation of the pion to dijets. It was not

unambiguously verified for the proton. It is important to understand the experimental results for

the proton: why (e, e′ p) experiments show no sign of CT and why (p, 2p) experiments show a

rise and fall of transparency, strongly deviating from Glauber calculations and at the same time

not reproducing the expected CT signature. It can be expected that if the effect exists in the qq̄

system it should also exist for the qqq system. One could argue that the probability to find a qq̄ at

short distances is higher than that to find a qqq in short distances. If we interpret these systems as

the valence components of their respective LCWFs, this may indicate that the contribution of the

valence component to the total LCWF may be different for mesons and baryons. The difficulties

encountered in understanding the anomalous spin effects in pp scattering [25,26] leave this as an

open question. For observation of CT with protons there might also be the problem of choosing

the sensitive process: reaction, momentum transfer etc. that would select a proton in a PLC

state and the observable that would identify it as such. It may be that diffractive dissociation

of protons or perhaps baryon photoproduction would show this effect. Following the example

Nuclear coherence Nuclear coherence

F2
A(q2⊥) ∼ e−

1
3R2

Aq2⊥

∆Pz =
M2

final−M2
initial

2ELab

LIoffe = 1
∆Pz

∼ 2Elab
M2

qq̄

For Eπ
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M2
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LIoffe > 4fm ∼ RA
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E791 Collaboration, E. Aitala et al., Phys. Rev. Lett. 86, 4773 (2001)

A-Dependence results: σ ∝ Aα

kt range (GeV/c) α α (CT)

1.25 < kt < 1.5 1.64 +0.06 -0.12 1.25

1.5 < kt < 2.0 1.52 ± 0.12 1.45

2.0 < kt < 2.5 1.55 ± 0.16 1.60

α (Incoh.) = 0.70 ± 0.1

Conventional Glauber 
Theory Ruled Out ! 

30

Ashery E791: 
Measure of pion LFWF in diffractive dijet production 

Confirmation of color transparency, 
gauge theory of strong interactions 

Theory predictions;
Frankfurt, Miller, Strikman

Factor of 7

 Is there an 
additional 

contribution from 
Coulomb exchange?
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Coulomb Contribution to Diffractive Dijet Production 
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ū

d

iAαsαP FA(t)

ZαsFA(t)

α ∼ 1/3 to α = 1.

X =

γγ → ηc, ηb, Z
0, W+W−, H0, · · ·

ū
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Color Transparency

• Fundamental test of gauge theory in hadron physics

• Small color dipole moments interact weakly in nuclei

• Complete coherence at high energies

• Clear Demonstration of CT from Diffractive Di-Jets

A. H. Mueller,  sjb
Bertsch, Gunion, Goldhaber, sjb
Frankfurt, Miller, Strikman
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Key Ingredients in Ashery Experiment

Two-gluon exchange measures the second derivative of the pion
light-front wavefunction
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Fig. 23. The Acceptance-corrected u distributions of diffractive dijets obtained by applying correction to the E791

results [96]. The distributions are for 1.25 ≤ kt ≤ 1.5 GeV/c (left) and for 1.5 ≤ kt ≤ 2.5 GeV/c (right). The

solid line is a fit to a combination of Gegenbauer polynomials, Eq. (49).

were very stable. The fact that a4 "= 0, which seems to be essential for a reasonable fit, indicates

a distribution amplitude that is different from φCZ as defined in Eq. (37) which contains only a
a2 term [32].

3.3.4. Transverse momentum distribution

As discussed in Section 2.3, derivation of the cross section for diffractive dissociation [69]

is based on the double-differentiation of the LCWF with respect to kt (Eq. (26)). More

specifically:

dσ

dk2t
∝ |αs(k2t )xNG(u, k2t )|2

∣∣∣∣ ∂2

∂k2t
ψ(u, kt )

∣∣∣∣2 , (50)

with xN = 2k2t /s and GN the gluon distribution function in the nucleon. This double-

differentiation leads to a prediction of the kt dependence of the cross section. By comparing the

measured and predicted kt distributions it is possible to test to what extent the assumptions used

in deriving the cross section are correct with sensitivity to both the LCWF and the interaction.

When applying Eq. (26) to the pion LCWF given by Eq. (46) the differentiation with respect to

kt does not modify the u-dependence if k
2
t $ µ2. An additional kt dependence comes from the

gluon distribution in the nucleon. With αs(k
2
t )xNG(u, k2t ) ∼ k

1
2
t [97] this yields:

M(N) ∝ xNGN

k4t
,

dσ

dk2t
∝ (xNGN )2

k8t
,

dσ

dkt
∝ k−6

t (51)

and the u-dependence is the same as for φ2(u), Eq. (27). The experimental results are shown in
Fig. 24 where they are compared with several fits. An attempt to fit the data over the whole kt
range to a power-law dependence: dσ

dkt
∝ knt resulted in n = −9.2 ± 0.4(stat) ± 0.3(sys), much

larger than expected from Eq. (51). This result is dominated by the low kt high statistics region.

It can be seen that for the larger kt the slope changes and when only the kt > 1.8 GeV region is

fit to a power-law the result is n = −6.5 ± 2.0, consistent with the predictions, Fig. 24(a, b).
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Fig. 25. Diagram of diffractive dissociation of a pion to two jets used for the calculations by Chernyak [103] and by

Braun et al. [102,106].

3.3.5. Has E791 measured the pion distribution amplitude?

Following publication of the E791 results [96] several theoretical papers were published

discussing the question of whether they can indeed be taken as measurement of the pion

distribution amplitude. The subject was also discussed in several conferences [104]. We bring

here a brief summary of the main points that were raised and add some comments. The main

questions that were discussed are:

• Is the cross section for the process indeed proportional to φ(u)2 as claimed in Eq. (27) [69]?
• Are the results precise enough to distinguish between φAsy(u) and other forms of φ(u)?

Nikolaev et al. [74] calculate the cross section for diffractive dissociation of pions to dijets

using pQCD methods. They show that the cross section is proportional to φ2(u) and to the

unintegrated gluon structure function of the nucleon. They disagree with Frankfurt et al. [69] who

used the integrated gluon structure function. They calculate higher-twist effects which contain

some u-dependence but show that in nuclear medium they are suppressed. As a result, when the

measurements are done in a heavy nuclear target the cross section is proportional to φ(u)2 and
can be used to determine it. Hence their response to the first question is positive. Concerning the

shape of φ(u) they propose a soft model distribution amplitude that has a different mathematical

form than that of φAsy(u) but has a very similar u-dependence. Because of this similarity they
conclude that the E791 results are consistent with their calculations as well. They are also able

to reproduce the kt and A dependence observed in the experiment.

V. Chernyak [103–105] calculates the process described in Fig. 25. The lower blob in the

diagram represents the skewed gluon distribution of the nucleon. The upper blob represents the

hard kernel of the amplitude that consists of 31 connected Born diagrams. Nuclear effects and

the quark transverse momenta are ignored. Calculations of these diagrams lead to an expression

for the amplitude which is not proportional to φ(u) but rather to a sum of four integrals over

φ(u) multiplied by expressions that contain u-dependence. His conclusion is that the cross
section depends on φ2(u) in a complicated way hence measurement of the cross section cannot

provide a measurement of φ2(u). Chernyak disagrees with the authors of [74] as they ignore

the contributions where the jet momenta differ significantly from the quark momenta. He agrees

that making this assumption will lead to proportionality of the cross section and φ2(u). He also

disagrees with the authors of [69] that ignored contributions from diagrams that are, according

to their evaluation of the E791 conditions, suppressed by Sudakov form factors. Following these

arguments Chernyak applies his calculations to φAsy(u) and to φCZ(u) which he evolves to the

scale of 2 GeV. He does it by treating the pion as free qq̄ and does not use the logarithmic

gluons 
measure 
size of 
color 
dipole

x

x

1-x
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Coulomb Contribution to Diffractive Dijet Production 
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D. Ashery, Tel Aviv University

THE kt DEPENDENCE OF DI-JETS YIELD
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πA→ JetJetA′

ψπ
qq̄(x,!k⊥)

D. Ashery, Tel Aviv University

THE qq̄ MOMENTUM WAVE FUNCTION

MEASURED BY DI-JETS

Fermilab E791 Collaboration, PRL 86, 4768 (2001)

1.5GeV/c ≤ kt ≤ 2.5GeV/c; Q2 ∼ 16 (GeV/c)2 : φ2 > 0.9φ2
Asy

1.25GeV/c ≤ kt ≤ 1.5GeV/c; Q2 ∼ 8 (GeV/c)2 :

φ2 contains contributions from CZ or other non-perturbative wave functions

x

Diffractive Dissociation of a 
Pion into Dijets

• E789 Fermilab Experiment 
Ashery et al

• 500 GeV pions collide on 
nuclei keeping it intact

• Measure momentum of two 
jets

• Study momentum distributions 
of pion LF wavefunction
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Fig. 22. The u distribution of diffractive dijets from the platinum target for 1.25 ≤ kt ≤ 1.5 GeV/c (left) and for

1.5 ≤ kt ≤ 2.5 GeV/c (right). The solid line is a fit to a combination of the asymptotic and CZ distribution amplitudes.

The dashed line shows the contribution from the asymptotic function and the dotted line that of the CZ function.

They were identified through the e−bq2t dependence of their yield (q2t is the square of the trans-
verse momentum transferred to the nucleus and b = 〈R2〉

3
where R is the nuclear radius).

For measurement of the wave function the most forward events (q2t < 0.015 GeV/c2) from
the platinum target were used, see Fig. 14. For these events, the value of u was computed from

the measured longitudinal momenta of the jets. The analysis was carried out in two windows of

transverse momentum kt : 1.25 GeV/c ≤ kt ≤ 1.5 GeV/c and 1.5 GeV/c ≤ kt ≤ 2.5 GeV/c.

The resulting u distributions are shown in Fig. 22. In order to get a measure of the correspondence

between the experimental results and the calculated distribution amplitudes, the results were fit

with a linear combination of squares of the two distribution amplitudes after smearing, as shown

on the right side of Fig. 21. This assumes an incoherent combination of the two distribution

amplitudes and that the evolution of the Chernyak–Zhitnitsky function is slow (as stated in [32]).

The results for the higher kt window show that the asymptotic distribution amplitude describes

the data very well. Hence, for kt > 1.5 GeV/c, which translates to Q2 ∼ 10 (GeV/c)2, the
pQCD approach that led to construction of the asymptotic distribution amplitude is reasonable.

The distribution in the lower window is consistent with a significant contribution from the

Chernyak–Zhitnitsky distribution amplitude or may indicate contributions due to other non-

perturbative effects.

The quantity measured in this experiment, the distribution of longitudinal momentumwithin a

kt window, is not exactly the distribution amplitude. The latter is an integral over kt with a lower

limit of zero, covering the low Q2 non-perturbative region (Eq. (4)). The results can be regarded

instead as representing the square of the light-conewave function averaged over kt in the window:

ψ2
qq̄(u, 〈kt 〉). With the measured kt -dependence described in Section 3.3.4 the average values are

〈kt 〉 = 1.34 GeV/c and 1.75 GeV/c for the low and high kt windows, respectively:ψ
2
qq̄(u, 1.34)

and ψ2
qq̄(u, 1.75) were measured. Alternatively, the results for each window can be related to the

difference of distribution amplitudes:∣∣∣∣∫ k2

k1

ψ(u, kt )d
2kt

∣∣∣∣2 = |φ(u, k2) − φ(u, k1)|2. (48)
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Fig. 22. The u distribution of diffractive dijets from the platinum target for 1.25 ≤ kt ≤ 1.5 GeV/c (left) and for

1.5 ≤ kt ≤ 2.5 GeV/c (right). The solid line is a fit to a combination of the asymptotic and CZ distribution amplitudes.

The dashed line shows the contribution from the asymptotic function and the dotted line that of the CZ function.

They were identified through the e−bq2t dependence of their yield (q2t is the square of the trans-
verse momentum transferred to the nucleus and b = 〈R2〉

3
where R is the nuclear radius).

For measurement of the wave function the most forward events (q2t < 0.015 GeV/c2) from
the platinum target were used, see Fig. 14. For these events, the value of u was computed from

the measured longitudinal momenta of the jets. The analysis was carried out in two windows of

transverse momentum kt : 1.25 GeV/c ≤ kt ≤ 1.5 GeV/c and 1.5 GeV/c ≤ kt ≤ 2.5 GeV/c.

The resulting u distributions are shown in Fig. 22. In order to get a measure of the correspondence

between the experimental results and the calculated distribution amplitudes, the results were fit

with a linear combination of squares of the two distribution amplitudes after smearing, as shown

on the right side of Fig. 21. This assumes an incoherent combination of the two distribution

amplitudes and that the evolution of the Chernyak–Zhitnitsky function is slow (as stated in [32]).

The results for the higher kt window show that the asymptotic distribution amplitude describes

the data very well. Hence, for kt > 1.5 GeV/c, which translates to Q2 ∼ 10 (GeV/c)2, the
pQCD approach that led to construction of the asymptotic distribution amplitude is reasonable.

The distribution in the lower window is consistent with a significant contribution from the

Chernyak–Zhitnitsky distribution amplitude or may indicate contributions due to other non-

perturbative effects.

The quantity measured in this experiment, the distribution of longitudinal momentumwithin a

kt window, is not exactly the distribution amplitude. The latter is an integral over kt with a lower

limit of zero, covering the low Q2 non-perturbative region (Eq. (4)). The results can be regarded

instead as representing the square of the light-conewave function averaged over kt in the window:

ψ2
qq̄(u, 〈kt 〉). With the measured kt -dependence described in Section 3.3.4 the average values are

〈kt 〉 = 1.34 GeV/c and 1.75 GeV/c for the low and high kt windows, respectively:ψ
2
qq̄(u, 1.34)

and ψ2
qq̄(u, 1.75) were measured. Alternatively, the results for each window can be related to the

difference of distribution amplitudes:∣∣∣∣∫ k2

k1

ψ(u, kt )d
2kt

∣∣∣∣2 = |φ(u, k2) − φ(u, k1)|2. (48)

x x

x

Narrowing of x distribution at higher jet transverse momentum 
ERBL evolution
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Prediction from AdS/CFT: Meson LFWF
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 Diffractive Hadron-Hadron 
Hard Collisions

• Single diffractive + high PT 

• Double diffractive + high PT  

• Heavy quarks diffractive

• Higgs Production!

• Lepton pair diffractive

• Nuclear dependence
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Doubly diffractive Higgs production

pp → p + H + p

H, Z0, ηb

b⊥ ∼ 1/Q

Must have ∆Lz = ±1 to have nonzero F2

Use charge radius R2 = −6F ′1(0)

and anomalous moment κ = F2(0)

to determine < L2
z >q∼ 0.15.

pp → p + H + p

H, Z0, ηb

b⊥ ∼ 1/Q

Must have ∆Lz = ±1 to have nonzero F2

Use charge radius R2 = −6F ′1(0)

and anomalous moment κ = F2(0)

to determine < L2
z >q∼ 0.15.

pp → p + H + p

H, Z0, ηb

b⊥ ∼ 1/Q

Must have ∆Lz = ±1 to have nonzero F2

Use charge radius R2 = −6F ′1(0)

and anomalous moment κ = F2(0)

to determine < L2
z >q∼ 0.15.

pp → p + H + p

H, Z0, ηb

b⊥ ∼ 1/Q

Must have ∆Lz = ±1 to have nonzero F2

Use charge radius R2 = −6F ′1(0)

and anomalous moment κ = F2(0)

to determine < L2
z >q∼ 0.15.

pp → p + H + p

H, Z0, ηb

b⊥ ∼ 1/Q

Must have ∆Lz = ±1 to have nonzero F2

Use charge radius R2 = −6F ′1(0)

and anomalous moment κ = F2(0)

to determine < L2
z >q∼ 0.15.

pp → p + H + p

H, Z0, ηb

b⊥ ∼ 1/Q

Must have ∆Lz = ±1 to have nonzero F2

Use charge radius R2 = −6F ′1(0)

and anomalous moment κ = F2(0)

to determine < L2
z >q∼ 0.15.

De Roeck, V.A. Khoze, A.D.Martin, R.Orava M.G.Ryskin,
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Large –q2  =  Q2

V 

x

1–x

p p'

p p'
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!"
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Diffractive Vector Meson 
Leptoproduction

φ(x,Q) =
R
d2k⊥Ψqq̄(x,!k⊥)

φ(x,Q) =
R
d2k⊥Ψqq̄(x,!k⊥)

Gunion, Frankfurt, Mueller, Strikman, sjb

M ∝ ∂2

∂2k⊥
ψπ(x, k⊥)

M ∝ ∂2

∂2k⊥
ψγ∗(x, k⊥)

F2
A(q2⊥) ∼ e−

1
3R2

Aq2⊥

∆Pz =
M2

final−M2
initial

2ELab

LIoffe = 1
∆Pz

∼ 2Elab
M2

qq̄

For Eπ
Lab = 500GeV,

Convolute with
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e+

γ∗

e+e− → "V jet X

Infamous J/ψ → ρπ decay:

Violates hadron helicity conservation

ψ′ → ρπ and ψ′′ → ρπ suppressed

Is there an Υ → ρπ puzzle?

εµνστ εµV pν
V pσ

jet qτ

e+

Photon Diffractive Structure Function

X

k2 ∼ 0

F γ
2 (x, q2)

q2a, q2b

C = + gluonia

Related to anomalous magnitude of

γ∗ → J/ψ + ηc

T ∝ αP (k2
g )

e-

Diffractive deep inelastic scattering 
on a photon target

γ∗γ → V 0X

"ερ · "q × "pρ

ρ0 → π+π−

X

∆++

∆−

T (γ∗ → H+H−γ)

γ∗γ → V 0X

"ερ · "q × "pρ

ρ0 → π+π−

X

∆++

∆−

T (γ∗ → H+H−γ)

43

rapidity gap



 
Photonic and Diffractive 

Phenomena in QCD Trento ECT*  Stan Brodsky,  SLAC

p d g

γ*

g

jet

u

u

eʼ
e

3-2006
8735A1

p d g

γ*

g

jet

u

u

eʼ
e

3-2006
8735A1

p d g

γ*

g

jet

u

u

eʼ
e

3-2006
8735A1

p d g

γ*

g

jet

u

u

eʼ
e

3-2006
8735A1

p d g

γ*

g

jet

u

u

eʼ
e

3-2006
8735A1

p d g

γ*

g

jet

u

u

eʼ
e

3-2006
8735A1

p d g

γ*

g

jet

u

u

eʼ
e

3-2006
8735A1

p d g

γ*

g

jet

u

u

eʼ
e

3-2006
8735A1

Deep Inelastic Electron-Proton Scattering
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DGLAP Evolution
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Conventional wisdom:  
Final-state interactions of struck quark can be neglected
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Initial- and Final-State Interactions

• Diffractive Deep Inelastic Scattering -- Bjorken Scaling!

• Non-Unitary Correction to DIS:  Structure functions are not 
probability distributions

• Nuclear Shadowing, Antishadowing

• T-Odd Single Spin Asymmetries -- Leading Twist  --            
opposite sign in DY and DIS  -- 

•  DY               correlation at leading twist from double ISI-- not 
given by standard PQCD factorization 

• Wilson Line Effects nonzero even in LCG

• Must correct hard subprocesses for initial and final-state soft gluon 
attachments

the differential cross section is written as

1

!

d!

d"
!
3

4#

1

$"3

#! 1"$ cos2%"& sin2% cos'"
(

2
sin2% cos 2' " .

)1*

These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not
satisfied by the experimental data ,13,14-. The Drell-Yan
data show remarkably large values of ( , reaching values of
about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *

d"dx1dx2d
2q!

!
.2

3Q2 0
a , ā

ea
2# A)y *F , f 1 f̄ 1-

"B)y *cos)2'*F $ )2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.

BOER, BRODSKY, AND HWANG PHYSICAL REVIEW D 67, 054003 )2003*

054003-2

Bodwin, Lepage, sjbHoyer, Marchal, Peigne, Sannino, sjb
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T-OddPseudo-

11-2001 
8624A06

S

current 
quark jet

final state 
interaction

spectator 
system

proton

e– 

!*

e– 

quark

Single-spin 
asymmetries Leading Twist 

Sivers Effect

!Sp ·!q×!pq

D. S. Hwang, 
I. A. Schmidt, 

sjb

Light-Front Wavefunction  
S and P- Waves

QCD S- and P-
Coulomb Phases
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Final-State Interactions Produce 
Pseudo T-Odd  (Sivers Effect)

• Leading-Twist Bjorken Scaling!

• Requires nonzero orbital angular momentum of quark!

• Arises from the interference of Final-State QCD                                                  
Coulomb phases in S- and P- waves; Wilson line effect; gauge 
independent

• Unexpected QCD Effect -- thought to be zero!

• Relate to the quark contribution to the target proton                                        
anomalous magnetic moment and final-state QCD phases

• QCD Coulomb phase at soft scale

• Measure in jet trigger or leading hadron

• Sum of Sivers Functions for all quarks and gluons vanishes.                                 
(Zero gravito-anomalous magnetic moment: B(0)= 0)

!S ·!p jet×!q

!S ·!p jet×!qi

11-2001 
8624A06

S

current 
quark jet

final state 
interaction

spectator 
system

proton

e– 

!*

e– 

quark
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Final-State Interactions Produce 
Pseudo T-Odd  (Sivers Effect)

• Leading-Twist Bjorken Scaling!

• Requires nonzero orbital angular momentum of quark!

• Arises from the interference of Final-State QCD and QED                                                  
Coulomb phases in S- and P- waves; Wilson line effect; gauge 
independent

• Many Tests in UPC at the LHC

• QCD Coulomb phase at soft scale

• Measure in jet trigger or leading hadron

• Lambda production

!S ·!p jet×!q

!S ·!p jet×!qi
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N.C.R. Makins, NNPSS, July 28, 2006
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The Leading-Twist Sivers Function: Can it Exist in DIS?

A T-odd function like f⊥1T must arise from
interference ... but a distribution function

is just a forward scattering amplitude,
how can it contain an interference?

q

P

2

~
q q

P P

Im

Brodsky, Hwang, & Schmidt 2002

can interfere

with

and produce
a T-odd effect!

(also need Lz != 0)

It looks like higher-twist ... but no , these are soft gluons
= “gauge links” required for color gauge invariance

Such soft-gluon reinteractions with the soft wavefunction are

final (or initial) state interactions ... and may be

process dependent ! new universality issues e.g. Drell-Yan

Gamberg: Hermes
data compatible with BHS 

model
Schmidt, Lu: Hermes

charge pattern follow quark 
contributions to anomalous 

moment
51
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! significant antiquark Sivers functions? and strongly flavor-dependent?  

Effect about equal for K– = su and !– = du ! note: same antiquark ...–

Effect seems larger for K+ = us than !+ = ud at x " 0.1 ... !+

Large 2005 data set 

still to be added!

N. Makins Schmidt, Lu: 
pattern follows quark contributions 

to anomalous moment

52



 
Photonic and Diffractive 

Phenomena in QCD Trento ECT*  Stan Brodsky,  SLAC

C
o

ll
A

-0.05

0

0.05

0.1

x 

-210 -110

S
iv

A

-0.1

-0.05

0

0.05

z 

0.2 0.4 0.6 0.8

 (GeV/c)h

T
p

0.5 1 1.5

Figure 22: Overall results for Collins asymmetry (top) and Sivers asymmetry (bottom) against

x, z and ph
T for all positive (full circles) and all negative hadrons (open circles) from 2002, 2003,

and 2004 data. Error bars are statistical only. In all the plots the open circles are slightly shifted

horizontally with respect to the measured value.

This was not the case in so far. Three global analyses have been performed with the

published data, trying to derive bounds on the transversity distributions and the Collins frag-

mentation functions. In Ref. [46] the Soffer bound |∆T q| = (q + ∆q)/2 was used, a fit of the
HERMES data set was performed, and the Collins functions were extracted. Two different sce-

narios for favoured and unfavoured Collins fragmentation functions were considered, but the

fits always favoured a relation ∆0
T D1 ∼ −∆0

T D2. The comparison of the fit results with the

COMPASS data shows a fair agreement, as apparent from Fig. 23, although the data do not

exhibit the trend with x which is suggested by the model. The upper and lower curves in the
figures correspond to the 1-σ errors of the fitted parameters.

In Ref. [27] a chiral quark-soliton model was used for the transversity distributions, and

the Collins fragmentation function was derived from a fit to the HERMES data, which do not

constrain the ∆T d distribution. A comparison with the present COMPASS results shows again
a fair agreement (Fig. 24). The upper and lower curves in the figures correspond to the uncer-

tainty in the Collins fragmentation functions as obtained from the fit. Independent extraction

of the Collins function was performed by fitting the BELLE data. The result was found to be

compatible with the one obtained fitting the HERMES data.

Similar results were obtained in Ref. [47]. Two different scenarios were used for transver-

sity, either ∆T q = ∆q, or the Soffer bound, and the Collins fragmentation functions were ex-
tracted from a fit to the HERMES data. The fits were very good in both cases. The extracted
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EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN–PH–EP/2006–031

September 21, 2006

A new measurement of the Collins and Sivers
asymmetries on a transversely polarised deuteron

target

The COMPASS Collaboration

Abstract

New high precision measurements of the Collins and Sivers asymmetries of charged hadrons

produced in deep-inelastic scattering of muons on a transversely polarised 6LiD target are

presented. The data were taken in 2003 and 2004 with the COMPASS spectrometer using

the muon beam of the CERN SPS at 160 GeV/c. Both the Collins and Sivers asymmetries

turn out to be compatible with zero, within the present statistical errors, which are more

than a factor of 2 smaller than those of the published COMPASS results from the 2002 data.

The final results from the 2002, 2003 and 2004 runs are compared with naive expectations

and with existing model calculations.

Keywords: transversity, deuteron, transverse single-spin asymmetry, Collins asymmetry,

Sivers asymmetry, COMPASS

PACS 13.60.-r, 13.88.+e, 14.20.Dh, 14.65.-q

(Submitted to Nuclear Physics B)

Sivers SSA cancels on an isospin zero target -- 
gluon contribution to the Sivers asymmetry small

small gluon contribution to orbital angular momentum of nucleon

Gardner, sjb

hep-ex/0610068
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Single Spin Asymmetry In the Drell Yan Process
!Sp ·!p×!qγ∗
Quarks Interact in the Initial State
Interference of Coulomb Phases for S and P states
Produce Single Spin Asymmetry [Siver’s Effect]Proportional

to the Proton Anomalous Moment and αs.
Opposite Sign to DIS! No Factorization

Collins; 
Hwang, Schmidt. 

sjb

Predict Opposite Sign SSA in DY !
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 DY               correlation at leading twist from double ISI

the differential cross section is written as

1

!

d!

d"
!
3

4#

1

$"3

#! 1"$ cos2%"& sin2% cos'"
(

2
sin2% cos 2' " .

)1*

These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not
satisfied by the experimental data ,13,14-. The Drell-Yan
data show remarkably large values of ( , reaching values of
about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *

d"dx1dx2d
2q!

!
.2

3Q2 0
a , ā

ea
2# A)y *F , f 1 f̄ 1-

"B)y *cos)2'*F $ )2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.
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ANOMALOUS DRELL-YAN ASYMMETRY FROM

HADRONIC OR QCD VACUUM EFFECTS ∗

DANIËL BOER

Dept. of Physics and Astronomy,
Vrije Universiteit Amsterdam,

De Boelelaan 1081, 1081 HV Amsterdam,

The Netherlands
E-mail: D.Boer@few.vu.nl

The anomalously large cos(2φ) asymmetry measured in the Drell-Yan process is
discussed. Possible origins of this large deviation from the Lam-Tung relation are
considered with emphasis on the comparison of two particular proposals: one that
suggests it arises from a QCD vacuum effect and one that suggests it is a hadronic
effect. Experimental signatures distinguishing these effects are discussed.

1. Introduction

Azimuthal asymmetries in the unpolarized Drell-Yan (DY) process differ-
ential cross section arise only in the following way

1

σ

dσ

dΩ
∝

(
1 + λ cos2 θ + µ sin 2θ cosφ +

ν

2
sin2 θ cos 2φ

)
, (1)

where φ is the angle between the lepton and hadron planes in the lepton
center of mass frame (see Fig. 3 of Ref.1). In the parton model (order α0

s)
quark-antiquark annihilation yields λ = 1, µ = ν = 0. The leading order
(LO) perturbative QCD corrections (order α1

s) lead to µ "= 0, ν "= 0 and
λ "= 1, such that the so-called Lam-Tung relation 1 − λ − 2ν = 0 holds.
Beyond LO, small deviations from the Lam-Tung relation will arise. If one
defines the quantity κ ≡ − 1

4 (1 − λ − 2ν) as a measure of the deviation

from the Lam-Tung relation, it has been calculated2,3 that at order α2
s κ

is small and negative: −κ <
∼ 0.01, for values of the muon pair’s transverse

momentum QT of up to 3 GeV/c.
Surprisingly, the data is incompatible with the Lam-Tung relation and

with its small order-α2
s modification as well3. These data from CERN’s

NA10 Collaboration4,5 and Fermilab’s E615 Collaboration6 are for π−N →
µ+µ−X , with N = D and W . The π−-beam energies range from 140 GeV

∗Talk presented at the International Workshop on Transverse Polarization Phenomena
in Hard Processes (Transversity 2005), Villa Olmo, Como, Italy, September 7-10, 2005

1

4

Nachtmann & Mirkes3 demonstrated that the diagonal elements H11 and
H22 can give rise to a deviation from the Lam-Tung relation:

κ ≡ −
1

4
(1 − λ − 2ν) ≈

〈
H22 − H11

1 + H33

〉
. (5)

A simple assumption for the transverse momentum dependence of (H22 −
H11)/(1 + H33) produced a good fit to the data:

κ = κ0
Q4

T

Q4
T + m4

T

, with κ0 = 0.17 and mT = 1.5 GeV. (6)

Note that for this Ansatz κ approaches a constant value (κ0) for large QT .
In other words, the vacuum effect could persist out to large values of QT .
The Q2 dependence of the vacuum effect is not known, but there is also no
reason to assume that the spin correlation due to the QCD vacuum effect
has to decrease with increasing Q2.

3. Explanation as a hadronic effect

Usually if one assumes that factorization of soft and hard energy scales in
a hard scattering process occurs, one implicitly also assumes factorization
of the spin density matrix. In the present section this will indeed be as-
sumed, but another common assumption will be dropped, namely that of
collinear factorization. It will be investigated what happens if one allows for
transverse momentum dependent parton distributions (TMDs). The spin
density matrix of a noncollinear quark inside an unpolarized hadron can
be nontrivial. In other words, the transverse polarization of a noncollinear
quark inside an unpolarized hadron in principle can have a preferred direc-
tion and the TMD describing that situation is called h⊥

1
10. As pointed out

in Ref.1 nonzero h⊥
1 leads to a deviation from Lam-Tung relation. It offers

a parton model explanation of the DY data (i.e. with λ = 1 and µ = 0):
κ = ν

2 ∝ h⊥
1 (π)h⊥

1 (N) . In this way a good fit to data was obtained
by assuming Gaussian transverse momentum dependence. The reason for
this choice of transverse momentum dependence is that in order to be con-
sistent with the factorization of the cross section in terms of TMDs, the
transverse momentum of partons should not introduce another large scale.
Therefore, explaining the Lam-Tung relation within this framework neces-
sarily implies that κ = ν

2 → 0 for large QT . This offers a possible way to
distinguish between the hadronic effect and the QCD vacuum effect.

It may be good to mention that not only a fit of h⊥
1 to data has been

made (under certain assumptions), also several model calculations of h⊥
1

5

and some of its resulting asymmetries have been performed11,12,13, based
on the recent insight that T-odd TMDs like h⊥

1 arise from the gauge link.
In order to see the parton model expectation κ = ν

2 → 0 at large QT in
the data, one has to keep in mind that the pQCD contributions (that grow
as QT increases) will have to be subtracted. For κ perturbative corrections
arise at order α2

s, but for ν already at order αs. To be specific, at large QT

hard gluon radiation (to first order in αs) gives rise to14

ν(QT ) =
Q2

T

Q2 + 3
2Q2

T

. (7)

Due to this growing large-QT perturbative contribution the fall-off of the
h⊥

1 contribution will not be visible directly from the behavior of ν at large
QT . Therefore, in order to use ν as function of QT to differentiate between
effects, it is necessary to subtract the calculable pQCD contributions. In
Fig. 3 an illustration of this point is given. The dashed curve corresponds

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 1 2 3 4 5 6 7 8
QT

Figure 3. Impression of possible contributions to ν as function of QT compared to DY
data of NA10 (for Q = 8 GeV). Dashed curve: contribution from perturbative one-gluon
radiation. Dotted curve: contribution from a nonzero h⊥

1 . Solid curve: their sum.

to the contribution of Eq. (7) at Q = 8 GeV. The dotted line is a pos-
sible, parton model level, contribution from h⊥

1 with Gaussian transverse
momentum dependence. Together these contributions yield the solid curve
(although strictly speaking it is not the case that one can simply add them,
since one is a noncollinear parton model contribution expected to be valid
for small QT and the other is an order-αs result within collinear factor-
ization expected to be valid at large QT ). The data are from the NA10
Collaboration for a pion beam energy of 194 GeV/c 5.

The Q2 dependence of the h⊥
1 contribution is not known to date. Only

the effect of resummation of soft gluon radiation on the h⊥
1 contribution to

function. Here we do not intend to give a full demonstration

of this in the Drell-Yan process; a generalized factorization

theorem which includes transverse momentum dependent

functions and initial- or final-state interactions remains to be

proven !27". Instead we present how to arrive at an effective
# from initial- and/or final-state interactions and use this

effective # in Fig. 2. Also, for simplicity we will perform

the explicit calculation in QED. Our analysis can be gener-

alized to the corresponding calculation in QCD. The final-

state interaction from gluon exchange has the strength

!e1e2!/4$→CF%s(&
2), where ei are the photon couplings to

the quark and diquark.

The diagram in Fig. 3 coincides with Fig. 6'a( of Ref. !28"
used for the evaluation of a twist-4 contribution ()1/Q2) to

the unpolarized Drell-Yan cross section. The differences

compared to Ref. !28" are that in the present case there is
nonzero transverse momentum of the partons, and the as-

sumption that the matrix elements are nonvanishing in case

the gluon has a vanishing light-cone momentum fraction 'but
nonzero transverse momentum(. This results in an unsup-
pressed asymmetry which is a function of the transverse mo-

mentum Q! of the lepton pair with respect to the initial

hadrons. If this transverse momentum is integrated over, then

the unsuppressed asymmetry will average to zero and the

diagrams will only contribute at order 1/Q2 as in Ref. !28".

First we will calculate the # matrix to lowest order

'called #L
%*) in the quark-scalar diquark model which was

used in Ref. !7". 'Although the model is based on a point-like
coupling of a scalar diquark to elementary fermions, it can be

softened to simulate a hadronic bound state by differentiating

the wave function formally with respect to a parameter such

as the proton mass.( As indicated earlier, no nonzero f 1T
! and

h1
! will arise from #L

%* . Next we will include an additional

gluon exchange to model the initial- and/or final-state inter-

actions 'relevant for timelike or spacelike processes( to cal-
culate # I/F

%* and do obtain nonzero values for f 1T
! and h1

! .

Our results agree with those recently obtained in the same

model by Goldstein and Gamberg !12". We can then obtain
an expression for the cos 2+ asymmetry from Eq. '16( and
perform a numerical estimation of the asymmetry.

A. ! matrix in the lowest order „!
L

"#…
As indicated in Fig. 4 the initial proton has its momentum

given by P&!(P",P#,P!)!(P
",M 2/P" ,0!), and the fi-

nal diquark P!&!(P!",P!#,P!! )!„P"(1#,),(-2

"r!
2 )/P"(1#,),r!…. We use the convention a$!a0$a3,

a•b!1/2 (a"b#"a#b")#a!•b! .
We will first calculate the # matrix to lowest order (#L

%*)

in the quark-scalar diquark model used in Ref. !7". By cal-
culation of Fig. 4 one readily obtains

#L
%*!ag2" ū'P ,S (

r”"m

r2#m2#*" r”"m

r2#m2
u'P ,S (#%

1

P"'1#,(

!ag2! ū'P ,S ('r”"m ("*!'r”"m (u'P ,S ("%
1

P"'1#,(

%$ 1

,$M 2#
m2"r!

2

,
#

-2"r!
2

1#, % % 2

, '17(

with a constant a!1/!2(2$)3" . The normalization is fixed
by the condition

& d,d2r! f 1', ,r!(!1. '18(

In Eq. '17( we used the relation

FIG. 2. The leading-order contribution to the Drell-Yan process.

FIG. 3. The initial-state interaction contribution to the Drell-Yan

process.

FIG. 4. Diagram which gives the lowest order # 'called #L
%*).
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the differential cross section is written as

1

!

d!

d"
!
3

4#

1

$"3

#! 1"$ cos2%"& sin2% cos'"
(

2
sin2% cos 2' " .

)1*

These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not
satisfied by the experimental data ,13,14-. The Drell-Yan
data show remarkably large values of ( , reaching values of
about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *

d"dx1dx2d
2q!

!
.2

3Q2 0
a , ā

ea
2# A)y *F , f 1 f̄ 1-

"B)y *cos)2'*F $ )2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.
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Drell-Yan planar correlations

Double ISI

Hard gluon radiatio!
ν(QT )

Q = 8GeV

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) " constant at small Q2.

Q4F1(Q2) " constant

If αs(Q∗2) " constant

ν(QT )

Q = 8GeV

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) " constant at small Q2.

Q4F1(Q2) " constant

If αs(Q∗2) " constant

ν(QT )

Q = 8GeV

πN → µ+µ−X NA10

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) # constant at small Q2.

Q4F1(Q2) # constant

Violates Lam-Tung relation!
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ANOMALOUS DRELL-YAN ASYMMETRY FROM

HADRONIC OR QCD VACUUM EFFECTS ∗

DANIËL BOER

Dept. of Physics and Astronomy,
Vrije Universiteit Amsterdam,

De Boelelaan 1081, 1081 HV Amsterdam,

The Netherlands
E-mail: D.Boer@few.vu.nl

The anomalously large cos(2φ) asymmetry measured in the Drell-Yan process is
discussed. Possible origins of this large deviation from the Lam-Tung relation are
considered with emphasis on the comparison of two particular proposals: one that
suggests it arises from a QCD vacuum effect and one that suggests it is a hadronic
effect. Experimental signatures distinguishing these effects are discussed.

1. Introduction

Azimuthal asymmetries in the unpolarized Drell-Yan (DY) process differ-
ential cross section arise only in the following way

1

σ

dσ

dΩ
∝

(
1 + λ cos2 θ + µ sin 2θ cosφ +

ν

2
sin2 θ cos 2φ

)
, (1)

where φ is the angle between the lepton and hadron planes in the lepton
center of mass frame (see Fig. 3 of Ref.1). In the parton model (order α0

s)
quark-antiquark annihilation yields λ = 1, µ = ν = 0. The leading order
(LO) perturbative QCD corrections (order α1

s) lead to µ "= 0, ν "= 0 and
λ "= 1, such that the so-called Lam-Tung relation 1 − λ − 2ν = 0 holds.
Beyond LO, small deviations from the Lam-Tung relation will arise. If one
defines the quantity κ ≡ − 1

4 (1 − λ − 2ν) as a measure of the deviation

from the Lam-Tung relation, it has been calculated2,3 that at order α2
s κ

is small and negative: −κ <
∼ 0.01, for values of the muon pair’s transverse

momentum QT of up to 3 GeV/c.
Surprisingly, the data is incompatible with the Lam-Tung relation and

with its small order-α2
s modification as well3. These data from CERN’s

NA10 Collaboration4,5 and Fermilab’s E615 Collaboration6 are for π−N →
µ+µ−X , with N = D and W . The π−-beam energies range from 140 GeV

∗Talk presented at the International Workshop on Transverse Polarization Phenomena
in Hard Processes (Transversity 2005), Villa Olmo, Como, Italy, September 7-10, 2005
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PQCD Factorization (Lam Tung):

Model: Boer,
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Anomalous effect from Double ISI in 
Massive Lepton Production

• Leading Twist, valence quark dominated

• Violates Lam-Tung Relation!

• Not obtained from standard PQCD subprocess analysis

• Normalized to the square of the single spin asymmetry in semi-
inclusive DIS

• No polarization required 

• Challenge to standard picture of PQCD Factorization

Boer, Hwang, sjb
ν(QT )

cos 2φ correlation

Q = 8GeV

πN → µ+µ−X NA10

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) # constant at small Q2.
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Fig. 4. Fraction r of events with a large rapidity gap, 

qmax < 1.5, as a function of Q2 A for two ranges of XDA. No 
acceptance corrections have been applied. 

small compared to WDA and is typically smaller than 

10 GeV. The events span the range of  WDA from 60 

to 270 GeV. For  WDA > 150 GeV these events are 

well separated from the rest of  the sample. In this 

region, acceptance corrections have little dependence 

on W and the contr ibut ion of  these events to the deep 

inelastic cross section is, within errors, constant with 

WDA, as expected for a diffractive type of  interaction 

(see fig. 3b). At smaller values of  WDA, the acceptance 

for these events decreases since the final state hadronic 

system is boosted in the forward direction. 

In fig. 3c we present the dis tr ibut ion of  Mx for 

events with r/max< 1.5 and WOA > 150 GeV. The dis- 

t r ibution is not corrected for detector or acceptance ef- 

fects. Although this acceptance could be model  depen- 

dent, the three models  we have checked [ 13,14,16 ] 

predict  a flat acceptance with Mx for Mx > 4 GeV. 

We observe a spectrum which, given our resolution, 

the uncertainty about the acceptance and the large sta- 

tistical errors, is compat ible  with a 1/MZx dependence,  

shown as the solid curve. 

The fraction of  events with a large rapidi ty gap, pre- 

sented as a function of  Q~A in fig. 4 for two selected 

bins of  XOA, is, within errors, independent  of  Q2. The 

Q2 dependence is little affected by acceptance correc- 

tions. In QCD terminology, leading twist contribu- 

tions to structure functions show little (at most loga- 

r i thmic)  dependence on Q2 at fixed x, whereas higher 

twist terms fall as a power of  Q2. Since the proton 

structure function determined for our DIS data  sam- 

ple shows a leading twist behavior  [29], the produc- 

t ion mechanism responsible for the large rapidity gap 

events is also likely to be a leading twist effect. The 

decrease with x is partly due to acceptance, since for 

larger values of x the final hadronic state is boosted 

in the direction of  the proton so that such events will 

not be identified as having a large rapidi ty  gap in our 

detector. 

8. Discussion and conclusions 

In a sample of  deep inelastic neutral current scatter- 

ing events, we have observed a class of  events with a 

large rapidi ty gap in the final hadronic state. The flat 

rapidi ty  distr ibution,  the lack of  W dependence and 

the shape of  the Mx distr ibution are suggestive of  a 

diffractive interaction between a highly virtual pho- 

ton and the proton, mediated by the exchange of  the 

pomeron [5 ]. The fact that the percentage of  events 

with a large rapidity gap shows only a weak depen- 

dence on Q2 points to a leading twist contribution to 

the proton structure function. 

For  the hypothesis that events with a large rapidi ty 

gap are produced by a diffractive mechanism, one 

expects such events to be accompanied by a quasi- 

elastically scattered proton. For  this type of  pro- 

cess the gap between the maximum rapidity of  the 

calorimeter  and the rapidi ty of  the scattered proton is 

about three units. The selection criteria, in part icular 

the requirement of  a rapidi ty gap in the detector of  

at least 2.8 units, l imit  the acceptance for diffractive- 

like events. Since we have made no corrections for 

acceptance, the 5.4% for DIS events with a large 

rapidity gap should be considered a lower l imit  for 

diffractively produced events. 
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Inclusive Diffraction at HERA

F.-P. Schillinga∗ (on behalf of the H1 and ZEUS collaborations) †

aDESY, Notkestr. 85, D-22603 Hamburg, Germany

New precision measurements of inclusive diffractive deep-inelastic ep scattering interactions, performed by the
H1 and ZEUS collaborations at the HERA collider, are discussed. A new set of diffractive parton distributions,
determined from recent high precision H1 data, is presented.

1. INTRODUCTION

One of the biggest challenges in our under-
standing of QCD is the nature of colour sin-
glet exchange or diffractive interactions. The
electron-proton collider HERA is an ideal place to
study hard diffractive processes in deep-inelastic
ep scattering (DIS). In such interactions, the
point-like virtual photon probes the structure of
colour singlet exchange, similarly to inclusive DIS
probing proton structure.

2

!

Figure 1: Illustration of
a diffractive DIS event.

At HERA,
around 10% of
low x events
are diffractive
[1]. Experimen-
tally, such events
are identified by
either tagging
the elastically
scattered pro-
ton in Roman
pot spectrometers
60− 100 m down-
stream from the
interaction point
or by asking for

a large rapidity gap without particle production
between the central hadronic system and the
proton beam direction.

A diagram of diffractive DIS is shown in Fig. 1.
A virtual photon coupling to the beam electron

∗e-mail address: fpschill@mail.desy.de
†Talk presented at 31st Intl. Conference on High Energy
Physics ICHEP 2002, Amsterdam

interacts diffractively with the proton through
the exchange of a colour singlet and produces a
hadronic system X with mass MX in the final
state. If the 4-momenta of the incoming (out-
going) electron and proton are labeled l (l′) and
p (p′) respectively, the following kinematic vari-
ables can be defined: Q2 = −q2 = −(l − l′)2, the
photon virtuality; β = Q2/q.(p − p′), the longi-
tudinal momentum fraction of the struck quark
relative to the diffractive exchange; xIP = q.(p −
p′)/q.p, the fractional proton momentum taken
by the diffractive exchange and t = (p− p′)2, the
4-momentum squared transferred at the proton
vertex. Bjorken-x is given by x = xIP β. For the
measurements presented here typical values of xIP

are < 0.05. y = Q2/sx denotes the inelasticity,
where s is the ep CMS energy.

A diffractive reduced cross section σD(4)
r can be

defined via

d4σep→eXp

dxIP dt dβ dQ2
=

4πα2

βQ4

(
1 − y +

y2

2

)
σD(4)

r (xIP , t, β, Q2) , (1)

which is related to the diffractive structure func-
tions FD

2 and the longitudinal FD
L by

σD
r = FD

2 −
y2

2(1 − y + y2

2 )
FD

L . (2)

Except at the highest y, σD
r = FD

2 to a very good
approximation. If the outgoing proton is not de-
tected, the measurements are integrated over t:

σD(3)
r =

∫
dt σD(4)

r .

10% to 15% 
of DIS 

events are 
diffractive !

Remarkable observation at HERA
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p

Final-State Interaction 
Produces Diffractive DIS 

Quark Rescattering 

Hoyer, Marchal, Peigne, Sannino, SJB (BHMPS)

Enberg, Hoyer, Ingelman, SJB

Hwang, Schmidt, SJB
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QCD Mechanism for Rapidity Gaps

Wilson Line: ψ(y)
Z y

0
dx eiA(x)·dx ψ(0)

P
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Feynman Gauge Light-Cone Gauge

Result is Gauge Independent 
FSI nonzero even in LCG

Final-State Interactions in QCD 
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Conventional
Model: 

Pomeron acts 
as constituent 

of proton 

Problem:  Wrong Phase

Real;  must be imaginary

Need Final-State Interactions !
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Integration over on-shell domain produces phase i
Need Imaginary Phase to Generate 

Pomeron Exchange
Need Imaginary Phase to Generate 

T-Odd Single-Spin Asymmetry

Physics of FSI not in  (Real) Wavefunction of Target
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S. J. Brodsky, P. Hoyer, N. Marchal, S. Peigne
and F. Sannino, Phys. Rev. D 65, 114025 (2002)
[arXiv:hep-ph/0104291].
S. J. Brodsky, R. Enberg, P. Hoyer and G. Ingel-
man, arXiv:hep-ph/0409119.
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Enberg, Hoyer, Ingelman, sjb
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Also describes: vector meson leptoproduction BGMFS
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Same W dependence
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Predict: Reduced DDIS/DIS for Heavy Quarks

See also: Bartels et al

Kopeliovitch, Schmidt, sjb

Higher Twist 
Diffraction Fraction

P ’

70

b⊥ = O(1/M)

σ(DDIS)
σ(DIS) " Λ2

QCD

M2
Q

s̄(x) #= s(x)

φM(x, Q0) ∝
√

x(1− x)

ψM(x, k2⊥)

µR

b⊥ = O(1/MQ)

σ(DDIS)
σ(DIS) " Λ2

QCD

M2
Q

s̄(x) #= s(x)

φM(x, Q0) ∝
√

x(1− x)

ψM(x, k2⊥)

µR

Q

Q̄

b⊥ = O(1/MQ)

σ(DDIS)
σ(DIS) " Λ2

QCD

M2
Q

s̄(x) #= s(x)

φM(x, Q0) ∝
√

x(1− x)

Q

Q̄

b⊥ = O(1/MQ)

σ(DDIS)
σ(DIS) " Λ2

QCD

M2
Q

s̄(x) #= s(x)

φM(x, Q0) ∝
√

x(1− x)
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Kopeliovitch, Bartels
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easily expressed in eikonal form in terms of transverse distances rT , RT conjugate to
p2T , kT . The DIS cross section can be expressed as

Q4 dσ

dQ2 dxB
=

αem

16π2

1 − y

y2

1

2Mν

∫ dp−2
p−2

d2%rT d2 %RT |M̃ |2 (3)

where

|M̃(p−2 ,%rT , %RT )| =

∣∣∣∣∣∣
sin

[
g2 W (%rT , %RT )/2

]
g2 W (%rT , %RT )/2

Ã(p−2 ,%rT , %RT )

∣∣∣∣∣∣ (4)

is the resummed result. The Born amplitude is

Ã(p−2 ,%rT , %RT ) = 2eg2MQp−2 V (m||rT )W (%rT , %RT ) (5)

where m2
|| = p−2 MxB + m2 and

V (m rT ) ≡
∫ d2%pT

(2π)2

ei!rT ·!pT

p2
T + m2

=
1

2π
K0(m rT ). (6)

The rescattering effect of the dipole of the qq is controlled by

W (%rT , %RT ) ≡
∫ d2%kT

(2π)2

1 − ei!rT ·!kT

k2
T

ei!RT ·!kT =
1

2π
log


 |%RT + %rT |

RT


 . (7)

The fact that the coefficient of Ã in Eq. (4) is less than unity for all %rT , %RT shows that
the rescattering corrections reduce the cross section in analogy to nuclear shadowing.

T(p)
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Figure 1: Two types of final state interactions. (a) Scattering of the antiquark (p2

line), which in the aligned jet kinematics is part of the target dynamics. (b) Scattering
of the current quark (p1 line). For each light-front time-ordered diagram, the poten-
tially on-shell intermediate states—corresponding to the zeroes of the denominators
Da, Db, Dc—are denoted by dashed lines.

A new understanding of the role of final-state interactions in deep inelastic scat-
tering has thus emerged. The final-state interactions from gluon exchange occurring

4

Precursor of Nuclear Shadowing BHMPS

FSI not 
Unitary 
Phase!
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Sum Eikonal Interactions
Similar to Color-Dipole Model

Same result obtained in Lab or Parton q+=0 Fram$

Final-state interactions included
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FIG. 2: (Color online) Comparison with experimental ratios
R = F A

2 /F D
2 . The ordinate indicates the fractional differences

between experimental data and theoretical values: (Rexp −

Rtheo)/Rtheo.
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FIG. 3: (Color online) Comparison with experimental data of
R = F A

2 /F C,Li
2

. The ratios (Rexp − Rtheo)/Rtheo are shown.

ters cannot be determined easily by the present data.
The χ2 analysis results are shown in comparison with

the data. First, χ2 values are listed for each nuclear
data set in Table III. The total χ2 divided by the degree
of freedom is 1.58. Comparison with the actual data is
shown in Figs. 2, 3, and 4 for the FA

2 /FD
2 , FA

2 /FC,Li
2 ,

and Drell-Yan (σpA
DY /σpA′

DY ) data, respectively. These ra-
tios are denoted Rexp for the experimental data and Rtheo

for the parametrization calculations. The deviation ra-
tios (Rexp−Rtheo)/Rtheo are shown in these figures. The
NPDFs are evolved to the experimental Q2 points, then
the ratios (Rexp − Rtheo)/Rtheo are calculated.
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FIG. 5: (Color online) Parametrization results are compared
with the data of F2 ratios F Ca

2 /F D
2 and Drell-Yan ratios

σpCa
DY /σpD

DY . The theoretical curves and uncertainties are cal-
culated at Q2=5 GeV2 for the F2 ratios and at Q2=50 GeV2

for the Drell-Yan ratios.

As examples, actual data are compared with the
parametrization results in Fig. 5 for the ratios FCa

2 /FD
2

and σpCa
DY /σpD

DY . The shaded areas indicate the ranges of
NPDF uncertainties, which are calculated at Q2=5 GeV2

for the F2 ratios and at Q2=50 GeV2 for the Drell-Yan
ratios. The experimental data are well reproduced by the
parametrization, and the the data errors agree roughly
with the uncertainty bands. We should note that the
parametrization curves and the uncertainties are calcu-
lated at at Q2=5 and 50 GeV2, whereas the data are
taken at various Q2 points. In Fig. 5, the smallest-
x data at x=0.0062 for FCa

2 /FD
2 seems to deviate from

the parametrization curve. However, the deviation comes
simply from a Q2 difference. In fact, if the theoretical ra-
tio is estimated at the experimental Q2 point, the data
point agrees with the parametrization as shown in Fig.
2.
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Anti-Shadowing

Shadowing
M. Hirai, S. Kumano and T. H. Nagai,
“Nuclear parton distribution functions
and their uncertainties,”
Phys. Rev. C 70, 044905 (2004)
[arXiv:hep-ph/0404093].
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Nuclear Shadowing and Anti-Shadowing in QCDNuclear Shadowing and Antishadowing in QCD

• Relation to Diffractive DIS and Final-State
Interactions

• Novel Color Effects

• Non-Universality of Antishadowing

• Implications for NuTeV

I. Schmidt, J. J. Yang, and SJB “Nuclear An-
tishadowing in Neutrino Deep Inelastic Scat-
tering,” Phys. Rev. D 70, 116003 (2004)
[arXiv:hep-ph/0409279].

H. J. Lu and SJB “Shadowing And Anti-
shadowing Of Nuclear Structure Functions,”
Phys. Rev. Lett. 64, 1342 (1990).

Jian-Jun Yang

Ivan Schmidt

Hung Jung Lu
sjb

76



 
Photonic and Diffractive 

Phenomena in QCD Trento ECT*  Stan Brodsky,  SLAC

Nuclear Shadowing in QCD 

Nuclear  Shadowing not included in nuclear LFWF ! 

 Dynamical effect due to virtual photon interacting in 
nucleus

Stodolsky
Pumplin, sjb

Gribov

Shadowing depends on understanding diffraction in DIS

77



 
Photonic and Diffractive 

Phenomena in QCD Trento ECT*  Stan Brodsky,  SLAC

The one-step and two-step processes in DIS
on a nucleus.

Coherence at small Bjorken xB :
1/MxB = 2ν/Q2 ≥ LA.

If the scattering on nucleon N1 is via pomeron
exchange, the one-step and two-step ampli-
tudes are opposite in phase, thus diminishing
the q flux reaching N2.

→ Shadowing of the DIS nuclear structure
functions.

  Observed HERA DDIS produces nuclear shadowing
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Non-singlet 
Reggeon 
Exchange

x0.5

Kuti-Weisskopf 
behavior
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Phase of two-step amplitude relative to one
step:

1√
2
(1− i)× i = 1√

2
(i + 1)

Constructive Interference

Depends on quark flavor!

Thus antishadowing is not universal

Different for couplings of γ∗, Z0, W±

Reggeon 
Exchange
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The one-step and two-step processes in DIS
on a nucleus.

If the scattering on nucleon N1 is via
C = − Reggeon or Odderon exchange,
the one-step and two-step amplitudes are
opposite in phase, enhancing
the q flux reaching N2

→ Antishadowing of the
DIS nuclear structure functions

   constructive in phase, enhancing

H. J. Lu, sjb
Schmidt, Yang, sjb
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Figure 9: The nuclear shadowing and antishadowing effects at 〈Q2〉 = 1 GeV2. The
experimental data are taken from Refs. [47, 48].

interactions.

3 Nuclear effects on extraction of sin
2 θW

The observables measured in neutrino DIS experiments are the ratios of neutral cur-

rent (NC) to charged current (CC) current events; these are related via Monte Carlo

simulations to sin2 θW . In order to examine the possible impact of nuclear shadowing

and antishadowing corrections on the extraction of sin2 θW , one is usually interested

in the following ratios

Rν
A =

σ(νµ + A → νµ + X)

σ(νµ + A → µ− + X)
, (38)

Rν
A =

σ(νµ + A → νµ + X)

σ(νµ + A → µ+ + X)
(39)

of NC to CC neutrino (anti-neutrino) cross sections for a nuclear target A. As is well

known, if nuclear effects are neglected for an isoscalar target, one can extract the

24

S. J. Brodsky, I. Schmidt and J. J. Yang,
“Nuclear Antishadowing in
Neutrino Deep Inelastic Scattering,”
Phys. Rev. D 70, 116003 (2004)
[arXiv:hep-ph/0409279].

82

Predicted nuclear shadowing and and antishadowing at 

< xF >= 0.33

Q2 = 1 GeV2

pp → p + H + p

H, Z0, ηb

b⊥ ∼ 1/Q

Must have ∆Lz = ±1 to have nonzero F2

Use charge radius R2 = −6F ′1(0)
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Shadowing and Antishadowing in Lepton-Nucleus Scattering

• Shadowing: Destructive Interference
of Two-Step and One-Step Processes
Pomeron Exchange

• Antishadowing: Constructive Interference
of Two-Step and One-Step Processes!
Reggeon and Odderon Exchange

• Antishadowing is Not Universal!
Electromagnetic and weak currents:
different nuclear effects !
Potentially significant for NuTeV Anomaly}
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Shadowing and Antishadowing  of DIS 
Structure Functions

S. J. Brodsky, I. Schmidt and J. J. Yang, “Nuclear Antishadowing in
Neutrino Deep Inelastic Scattering,” Phys. Rev. D 70, 116003 (2004)
[arXiv:hep-ph/0409279].

S. J. Brodsky, I. Schmidt and J. J. Yang,
“Nuclear Antishadowing in
Neutrino Deep Inelastic Scattering,”
Phys. Rev. D 70, 116003 (2004)
[arXiv:hep-ph/0409279].
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Nuclear Effect not Universal !
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Model 
predictions

etc

Bigger antishadowing for 

Different NC-CC effects only for 
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1) Coherence of multiscattering nuclear processes
Shadowing

Antishadowing

2) Different antishadowing for
Neutral currents

Charged currents

Electromagnetic currents

Estimate 20% effect on extraction of sin2 θW

for NuTeV

Need new experimental studies of
antishadowing in

• Parity-violating DIS

• Spin Dependent DIS

• Charged and Neutral Current DIS

Lu, Schmidt, Yang, sjb
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|p,Sz>=∑
n=3

ψn(xi, !k⊥i,λi)|n;k⊥i,λi>|p,Sz>=∑
n=3

Ψn(xi,!k⊥i,λi)|n;!k⊥i,λi>

|p,Sz>=∑
n=3

Ψn(xi,!k⊥i,λi)|n;!k⊥i,λi>

The Light Front Fock State Wavefunctions

Ψn(xi,!k⊥i,λi)

are boost invariant; they are independent of the hadron’s energy
and momentum Pµ.
The light-cone momentum fraction

xi =
k+
i
p+ =

k0i + kzi
P0+Pz

are boost invariant.
n

∑
i
k+
i = P+,

n

∑
i
xi = 1,

n

∑
i

!k⊥i =!0⊥.

sum over states with n=3, 4, ...constituents

Fixed LF time
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Intrinsic heavy quarks,    s̄(x) != s(x)

φM(x, Q0) ∝
√

x(1− x)

ψM(x, k2⊥)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q
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c

Hoyer, Peterson, SJB

Measure c(x) in Deep Inelastic 
Lepton-Proton Scattering

89

< xF >= 0.33

Minimize LF energy denominator

xi = m⊥i∑n
j m⊥j

m⊥i =
√

m2
i + k2⊥i

Same velocity; heavy constituents carry high-
est momentum fraction

Q2 = 1 GeV2

< xF >= 0.33

Minimize LF energy denominator

xi = m⊥i∑n
j m⊥j

m⊥i =
√

m2
i + k2⊥i

Same velocity; heavy constituents carry high-
est momentum fraction

Q2 = 1 GeV2

< xF >= 0.33

Minimize LF energy denominator

x̂i = m⊥i∑n
j m⊥j

m⊥i =
√

m2
i + k2⊥i

Same velocity; heavy constituents carry high-
est momentum fraction

Q2 = 1 GeV2
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Intrinsic Heavy-Quark Fock States

• Rigorous prediction of QCD, OPE

• Color-Octet Fock State 

• Probability

• Large Effect at high x

• Greatly increases kinematics of colliders  such as Higgs production 
(Kopeliovich, Schmidt, Soffer, sjb)

• Severely underestimated in conventional parameterizations of 
heavy quark distributions (Pumplin)

• Many empirical tests  

PQQ̄ ∝ 1
M2

Q

Pcc̄/p " 1%

Q

Q̄

b⊥ = O(1/MQ)

σ(DDIS)
σ(DIS) " Λ2

QCD

M2
Q

PQQ̄ ∝ 1
M2

Q

Pcc̄/p " 1%

Q

Q̄

b⊥ = O(1/MQ)

σ(DDIS)
σ(DIS) " Λ2

QCD

M2
Q

PQQ̄ ∝ 1
M2

Q

PQQ̄QQ̄ ∼ α2
sPQQ̄

Pcc̄/p # 1%

Q

Q̄

b⊥ = O(1/MQ)

Hoyer, Peterson, Sakai, sjb
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|uudcc̄> Fluctuation in Proton
QCD: Probability ∼Λ

2
QCD

M2
Q

|e+e−!+!− > Fluctuation in Positronium
QED: Probability ∼(meα)4

M4
!

Distribution peaks at equal rapidity (velocity)
Therefore heavy particles carry the largest mo-

mentum fractions

cc̄ in Color Octet

High x charm!

OPE derivation - M.Polyakov et al.

Hoyer, Peterson, Sakai, sjb
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< xF >= 0.33

Minimize LF energy denominator

x̂i = m⊥i∑n
j m⊥j

m⊥i =
√

m2
i + k2⊥i

Same velocity; heavy constituents carry high-
est momentum fraction

Q2 = 1 GeV2
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J. J. Aubert et al. [European Muon Collaboration], “Pro-
duction Of Charmed Particles In 250-Gev Mu+ - Iron In-
teractions,” Nucl. Phys. B 213, 31 (1983).

First Evidence for 
Intrinsic Charm

Measurement of Charm 
Structure  Function 

DGLAP / Photon-Gluon Fusion: factor of 30 too sma%

92

factor of 30 !
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Leading Hadron Production 
from Intrinsic Charm

Coalescence of Comoving Charm and Valence Quarks
Produce J/ψ, Λc and other Charm Hadrons at High xF

PX X

93
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SELEX Λc
+ Studies – Momentum Dependence

•  Production similar for 
baryon, antibaryon  from 
π beam at all xF

•  Baryon beams make 
antibaryons chiefly at 
small xF but not large xF: 
not simply fragmentation 

•  High statistics Σ data 
suggest cross section 
enhancement at very large 
xF – idea originally from 
Pythia color drag.
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SELEX Λc
+ Studies – pT Dependence

(Vogt, Brodsky and Hoyer, 
Nucl. Phys. B383,683 (1992))

•  Λc
+ production by Σ- vs xF 

shows harder spectrum at low pT - 

consistent with an intrinsic charm 

picture.
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M. Aguilar-Benitez et al.
[NA27 Collaboration],
“Inclusive Properties Of DMesons
Produced In 360-GeV πp Interactions,”
Phys. Lett. B 161, 400 (1985).

96



 
Photonic and Diffractive 

Phenomena in QCD Trento ECT*  Stan Brodsky,  SLAC

V. D. Barger, F. Halzen and W. Y. Keung,
“The Central And Diffractive Components Of Charm Pro-

duction,”
Phys. Rev. D 25, 112 (1982).

Predictions for Inclusive Charm ProductionDistributions
at the ISR. Assumes active and spectator charm distribution
in proton patterned on IC, plus coalescence of valence and
charm quarks.

Model similar to 
Intrinsic Char"
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S. Frixione et al . /Nuclear Physics B 431 (1994) 453-483 467 

104 . . . .  I . . . .  I . . . .  I . . . .  I . . . .  

So l id  : QCD NLO 

~ ~ _X : WAS2 data for D- mesons (~N) 

- ~ I 

10 2 

0 0.2 0 .4  0.6 0,8 

x r  

Fig. 12. Experimental  Xe distribution for D -  mesons, compared to the next-to-leading-order QCD prediction 

for charm quarks. 

Another nonperturbative effect that must be accounted for is the hadronization process. 

Thanks to the factorization theorem, this effect can be described by convoluting the 

partonic cross section with a fragmentation function, which we choose to be of the 

Peterson form [43]. This degrades the parent charm-quark momentum, and results in a 

softening of the PT distribution. 

Both effects are shown in Figs. 10, I l, for (k2T> = l GeV 2. Since our next-to-leading 

calculation already includes part of the effect of the evolution of the fragmentation 

function, our Peterson form should refer to hadron formation from a quark which has 

already evolved to small virtuality. In this case, an appropriate choice for the parameter 

ec that characterizes the Peterson fragmentation function is ec = 0.06. We have verified 

that the result does not change substantially if we use the smaller value ec = 0.04. 

From inspection of Figs. 10, I l, we can conclude that perturbative QCD, supplemented 

with some parametrization of the most important nonperturbative effects, leads to a 

prediction in qualitative agreement with the experimental single-inclusive p2 distribution 

measured by the WAS2 and E769 Collaborations. However, we have checked that, in 

order to reproduce the WA82 and E769 data, an average intrinsic transverse momentum 

<k2T) = 2 GeV 2 is needed. This value for <k2Tl is rather large, and we will comment in 

due time upon its effect on other observables. One may attempt to use larger values of 

the charm quark mass in order to get better agreement with data without the need for 

a large (k2>. In fact, a larger mc would harden the PT spectrum of the quark. As better 

data will become available, this will certainly be worth doing. 

In Figs. 12 and 13 we present the XF distributions measured by WA82 in 0rN 

collisions, for D -  and D + mesons respectively. Both distributions are compared with 

the same theoretical curve for charm quark, obtained with the purely perturbative next- 

to-leading order QCD calculation. We can see that the experimental data show a harder 

behaviour, and that the agreement with the theoretical distribution is satisfactory in the 

S. Frixione, M. L.Mangano, P. Nason and G. Ri-
dolfi, “Heavy-Quark Production,”
Adv. Ser. Direct. High Energy Phys. 15, 609

(1998) [arXiv:hep-ph/9702287].
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• EMC data: c(x, Q2) > 30×DGLAP
Q2 = 75 GeV2, x = 0.42

• High xF pp→ J/ψX

• High xF pp→ J/ψJ/ψX

• High xF pp→ ΛcX

• High xF pp→ ΛbX

• High xF pp→ Ξ(ccd)X (SELEX)

 C.H. Chang,  J.P. Ma,  C.F. Qiao and  X.G.Wu,
 Hadronic production of the doubly charmed baryon Xi/cc with 
intrinsic charm,’’  arXiv:hep-ph/0610205.
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p p→ pΛcX
Diffractive Dissociation of Intrinsic Charm
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Production of a Double-Charm Baryon

X

SELEX  high xF < xF >= 0.33

pp → p + H + p

H, Z0, ηb

b⊥ ∼ 1/Q

Must have ∆Lz = ±1 to have nonzero F2

Use charge radius R2 = −6F ′1(0)

and anomalous moment κ = F2(0)

101
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Double Charm Baryons: SU(4)

 QCD:  isodoublet
 of (ccq) baryons 

 Models agree:
 ground state ~
3.5-3.6 GeV/c2

 Lattice concurs:
 Flynn, et al., hep-lat/030710
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Features of First SELEX Ξcc
+ Observation

Phys Rev Lett 89 (2002)112001

First candidate for new baryon comes from 
baryon beam experiment:

•  (ccd)+→Λc
+ K- π+ Cabibbo-favored spectator 

mode

•  mass agrees very well with potential models

•  state seen from Σ−, p but not π− 

•  lifetime is very short –  < 35 ps at 90% 
confidence.  Disagrees with prediction from HQ 
single charm lifetime hierarchy.

•  Cross section is large!  Involves 40% of SELEX Λc
+ production.  

Fragmentation predictions are 10,000 times smaller.
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Application: New Ξcc
+ Decay Mode

Ξcc
+ → pD+K- is quark 

rearrangement from Λc
+K-π+ 

•  Q-value of decay is smaller than 
that for Λc

+K-π+ ⇒ low rate

•  Check physics background with 
wrong sign pD-K+ − no peaks

•  Event-mixed background (green) 
matches background fit to data 
(solid line) – confirms signal.

•  Mass matches within 1 MeV of 
Λc

+K-π+ value
Phys. Lett. B628(2005) 18
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SELEX Summary II – Double Charm
•  Double charm here to stay

• Ξcc
+(3520) seen decaying into three different single charm states

• Double charm production comes only from baryon-baryon 
interactions with VERY large cross section – totally inconsistent with 
fragmentation production. SELEX cross section consistent with 
intrinsic charm prediction

•  Q=2 excited state shows chain decay  via pion emission.

•  Double charm baryons NOT seen in fragmentation processes at 
Belle, BaBar – consistent with SELEX baryon-only production.

•  No report yet on the third double charm baryon, the ΩCC
+

SELEX is 10 years young and not yet ready to stop producing surprises.
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Remarkably Strong Nuclear 
Dependence for Fast Charmonium

M. Leitch

 Violation of factorization in charm hadroproduction.
P. Hoyer, M. Vanttinen (Helsinki U.) ,  U. Sukhatme (Illinois U., Chicago) . HU-TFT-90-14, May 1990. 7pp. 

 Published in Phys.Lett.B246:217-220,1990

Violation of PQCD Factorization!
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Nuclear effects in Quarkonium  production

p + A at s1/2 = 38.8 GeV

E772 data σ(p+A) = Aα σ(p+N)
Strong xF - dependence

Nuclear effects scale with xF, not x2 !!!

M.Leitch

 Violation of factorization in charm hadroproduction.
P. Hoyer, M. Vanttinen (Helsinki U.) ,  U. Sukhatme (Illinois U., Chicago) . HU-TFT-90-14, May 1990. 7pp. 

 Published in Phys.Lett.B246:217-220,1990
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• IC Explains Anomalous α(xF ) not α(x2)
dependence of pA→ J/ψX

(Mueller, Gunion, Tang, SJB)

• Color Octet IC Explains A2/3 behavior at
high xF (NA3, Fermilab)
(Kopeliovitch, Schmidt, Soffer, SJB)

• IC Explains J/ψ → ρπ puzzle
(Karliner, SJB)

• IC leads to new effects in B decay
(Gardner, SJB)

Color Opaqueness

Higgs production at xF = 0.8
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Coalescence of 
Color-Singlet Pair 

into Charmonium State

Scattering on 
Nucleon via one 

Gluon

Production 
of Color - 

Octet
 IC Fock 

State

109

In nuclear case, 
IC Fock state absorbed on front surface  
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A2/3  Component
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Symmetrize

March 9, 2005

NA3 data for dσ
dxF

(p(π)A→ J/ψX): hard A1 and “diffractive” A2/3 components

Diffractive contribution extends to large xF

Aα(xF ) not Aα(x2) : PQCD Factorization Violated!

1

Nuclear Dependence of 
Quarkonium 
Production
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Production of Two 
Charmonia at High xF

X

112

pp→ p + J/ψ + p

pp→ p + H + p

Also:

c

c̄

< xF >= 0.33

Minimize LF energy denominator

pp→ p + J/ψ + p

pp→ p + H + p

Also:

c

c̄

< xF >= 0.33

Minimize LF energy denominator

pp→ p + J/ψ + p

pp→ p + H + p

Also:

c

c̄

< xF >= 0.33

Minimize LF energy denominator

pp→ p + J/ψ + p

pp→ p + H + p

Also:

c

c̄

< xF >= 0.33

Minimize LF energy denominator
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0.0 0.5 1.0 

% 

Fig. 3. The fi# pair distributions are shown in (a) and (c) for the 

pion and proton projectiles. Similarly, the distributions of J/$‘s 

from the pairs are shown in (b) and (d). Our calculations are 

compared with the n-N data at 150 and 280 GeV/c [ I]. The 

x++, distributions are normalized to the number of pairs from both 

pion beams (a) and the number of pairs from the 400 GeV proton 

measurement (c) The number of single J/e’s is twice the number 

of pairs. 

x+ = ~it,/pt,~a~ in Fig. 3. The +$ pair distributions 

are shown in Fig. 3(a) and 3(c) and the associated 

the single J/I) distributions in pair events are shown 

in Fig. 3(b) and 3(d) . Both are normalized to the 

data with the single J/r/ normalization twice that of 

the pair. 

4. Other tests of the intrinsic heavy quark 

mechanism 

The intrinsic charm model provides a natural expla- 

nation of double J/e hadroproduction and thus gives 

strong phenomenological support for the presence of 

intrinsic heavy quark states in hadrons. While the gen- 

eral agreement with the intrinsic charm model is quite 

good, the excess events at medium xlfi~l suggests that 

intrinsic charm may not be the only @$ QCD produc- 

tion mechanism present or that the model parameteri- 

zation with a constant vertex function is too oversim- 

plified. The x,++,+ distributions can also be affected by 

the A dependence. Additional mechanisms, including 

an update of previous models [ 3-71, will be presented 

in a separate paper [ 81. 

The intrinsic heavy quark model can also be used to 

predict the features of heavier quarkonium hadropro- 

duction, such as YY, Y$, and (6~) (Eb) pairs. Using 

fib = 4.6 GeV, we find that the single Y and YY pair 

x distributions are similar to the equivalent I,& distri- 

butions. The average mass, (MYY), is 21.4 GeV for 

pion projectiles and 21.7 GeV for a proton, a few GeV 

above threshold, 2my = 18.9 GeV. The xy@ pair distri- 

butions are also similar to the +@ distributions but we 

note that (xy) = 0.44 and (xe) = 0.30 from a l&fcCbb) 

configuration and (xy) = 0.39 and (x$) = 0.27 from 

a luudc&) configuration. Here (MY@) = 14.9 GeV 

with a pion projectile and 15.2 GeV with a proton, 

again a few GeV above threshold, my + rn+ = 12.6 

GeV. 

It is clearly important for the double J/+ measure- 

ments to be repeated with higher statistics and also at 

higher energies. The same intrinsic Fock states will 

also lead to the production of multi-charmed baryons 

in the proton fragmentation region. It is also interesting 

to study the correlations of the heavy quarkonium pairs 

to search for possible new four-quark bound states and 

final state interactions generated by multiple gluon ex- 

change [ 71. It has been suggested that such QCD Van 

der Waals interactions could be anomalously strong at 

low relative rapidity [ 22,231. 

There are many ways in which the intrinsic heavy 

quark content of light hadrons can be tested. More 

measurements of the charm and bottom structure func- 

tions at large XF are needed to confirm the EMC data 

[ 151. Charm production in the proton fragmentation 

region in deep inelastic lepton-proton scattering is sen- 

sitive to the hidden charm in the proton wavefunction. 

The presence of intrinsic heavy quarks in the hadron 

wavefunction also enhances heavy flavor production 

in hadronic interactions near threshold. More gener- 

ally, the intrinsic heavy quark model leads to enhanced 

open and hidden heavy quark production and leading 

particle correlations at high XF in hadron collisions 

with a distinctive strongly-shadowed nuclear depen- 

dence characteristic of soft hadronic collisions. 
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[ 121. For soft interactions at momentum scale CL, the 

intrinsic heavy quark cross section is suppressed by a 

resolving factor cc &2/m; [ 131. 

There is substantial circumstantial evidence for the 

existence of intrinsic CL! states in light hadrons. For ex- 

ample, the charm structure function of the proton mea- 

sured by EMC is significantly larger than predicted by 

photon-gluon fusion at large XBj [ 151. Leading charm 

production in TN and hyperon-N collisions also re- 

quires a charm source beyond leading twist [ 13,161. 

The NA3 experiment has also shown that the single 

J/$ cross section at large XF is greater than expected 

from gg and q?j production [ 171. Additionally, intrin- 

sic charm may account for the anomalous longitudi- 

nal polarization of the J/+4 at large XF [ 181 seen in 

?rN -+ J/+X interactions. 

Over a sufficiently short time, the pion can contain 

Fock states of arbitrary complexity. For example, two 

intrinsic CC pairs may appear simultaneously in the 

quantum fluctuations of the projectile wavefunction 

and then, freed in an energetic interaction, coalesce 

to form a pair of I,!J’s. We shall estimate the creation 
-- 

probability of ~~vcccc) Fock states, where nv = &I for 

7~- and nv = uud for proton projectiles, assuming that 

all of the double J/I,~ events arise from these configu- 

rations. We then examine the x+$ and invariant mass 

distributions of the $$ pairs and the x,,+ distribution 

for the single $‘s arising from these Fock states. 

2. Intrinsic charm Fock states 

The probability distribution for a general n-particle 

intrinsic CC Fock state as a function of x and kr is 

written as 

(1) 

where N,, normalizes the Fock state probability. In 

the model, the vertex function in the intrinsic charm 

wavefunction is assumed to be relatively slowly vary- 

ing; the particle distributions are then controlled by the 

light-cone energy denominator and phase space. This 

form for the higher Fock wavefunctions generalizes 

for an arbitrary number of light and heavy quark com- 

ponents. The Fock states containing charmed quarks 

can be materialized by a soft collision in the target 

which brings the state on shell. The distribution of 

produced open and hidden charm states will reflect the 

underlying shape of the Fock state wavefunction. 

The invariant mass of a c.? pair, M,, from such a 

Fock state is 

(2) 

where n = 4 and 5 is the number of partons in the 

lowest lying meson and baryon intrinsic CC Fock states. 

The probability to produce a J/(/I from an intrinsic 

CT state is proportional to the fraction of intrinsic ci? 

production below the Or, threshold. The fraction of 

CC pairs with 2m, < MC? < 2rno is 

The ratio fc~jr is approximately 15% larger than fc~iP 

for 1.2 < m, < 1.8 GeV. However, not all c?‘s pro- 

duced below the DB threshold will produce a final- 

state J/S. We include two suppression factors to es- 

timate J/q5 production, one reflecting the number of 

quarkonium channels available with McT < 2rno and 

one for the c and C to coalesce with each other rather 

than combine with valence quarks to produce open 

charm states. The “channel” suppression factor, s, z 

0.3, is estimated from direct and indirect J/$ produc- 

tion, including x1 and xz radiative and +’ hadronic 

decays. The combinatoric “flavor” suppression factor, 

of, is l/2 for a IEdcC) state and l/4 for a IuudcC) 

state. In Fig. 1 we show the predicted fraction of $‘s 

produced from intrinsic CC pairs, 

f@lh = s,sf.fE/h ) (4) 

as a function of m,. We take m, = I .5 GeV, suggesting 

f ur  M 0.03 and f e j p M 0.014. 

ELSEVIER 

27 April 1995 

Physics Letters B 349 (1995) 569-575 

PHYSICS LETTERS B 

Intrinsic charm contribution to double quarkonium 

hadroproduction * 

R. Vogt a, S.J. Brodsky b 
a Nuclear Science Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720, USA 

and Institute for Nuclear Theory, University of Washington, Seattle, WA 98195, USA 

b Stanford Linear Accelerator Center; Stanford University, Stanford, CA 94309, USA 

Received 9 February 1995 

Editor: M. Dine 

Abstract 

Double J/e production has been observed by the NA3 collaboration in n-N and pN collisions with a cross section of 

the order of 20-30 pb. The +@ pairs measured in v- nucleus interactions at 150 and 280 GeV/c are observed to carry an 

anomalously large fraction of the projectile momentum in the laboratory frame, x~ > 0.6 at 150 GeV/c and > 0.4 at 280 

GeV/c. We postulate that these forward +@ pairs are created by the materialization of Fock states in the projectile containing 

two pairs of intrinsic CC quarks. We calculate the overlap of the charmonium states with the 1ii&ET) Fock state as described 

by the intrinsic charm model and find that the T-N -+ $9 longitudinal momentum and invariant mass distributions are both 

well reproduced. We also discuss double J/t,b production in pN interactions and the implications for other heavy quarkonium 

production channels in QCD. 

1. Introduction 

It is quite rare for two charmonium states to be pro- 

duced in the same hadronic collision. However, the 

NA3 collaboration has measured a double .I/$ pro- 

duction rate significantly above background in multi- 

muon events with T- beams at laboratory momentum 

150 and 280 GeV/c [ 11 and a 400 GeV/c proton beam 

[ 21. The integrated T-N ---) ++X production cross 

section, a+*, is 18 f 8 pb at 150 GeV/c and 30 f 10 

pb at 280 GeV/c, and the pN -t I&X cross section is 

*This work was supported in part by the Director, Office of 

Energy Research, Division of Nuclear Physics of the Office of 

High Energy and Nuclear Physics of the U.S. Department of 

Energy under Contract Numbers DE-ACO3-76SFOO98 and DE- 

ACO3-76SFUO515. 

27 f 10 pb. The relative double to single rate, a++ /a~, , 

is (3 f 1) x 10e4 for pion-induced production where 

a+ is the integrated single $ production cross section. 

A particularly surprising feature of the NA3 

T-N + t&X events is that the laboratory fraction 

of the projectile momentum carried by the #+ pair 

is always very large, x++ 2 0.6 at 150 GeV/c and 

xW 2 0.4 at 280 GeV/c. In some events, nearly 

all of the projectile momentum is carried by the I@++ 

system. In contrast, perturbative gg and 44 fusion 

processes are expected to produce central $$ pairs, 

centered around the mean value, (x~) = 0.4-0.5, in 

the laboratory [ 3-61. 

The average invariant mass of the pair, (M+e) = 7.4 

GeV, is well above the 2~9 threshold. In fact, all the 

events have MM > 6.7 GeV. The average transverse 

0370-2693/95/$09.50 @ 1995 Blsevier Science B.V. All rights reserved 

SSDI 0370-2693 (95)00306-l 

NA3 Data

πA→ J/ψJ/ψX

µ2
R = CQ2

ρ(Q2) = C0 + C1αs(µR) + C2α2
s(µR) + · · ·

σ = 1
2x−P+

γp→ µ+µ−p

Oberwölz

All events have xF
ψψ > 0.4 !

σ(pp→ cX) ∼ 1µb

113

Excludes color drag model
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Production of a Double-Charm Baryon

X

LHCb  high xF

p

p

Also: Charm-Bottom Hadrons, ...
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Diffractive Dissociation of 
Intrinsic Charm

Coalescence of Comoving Charm and Valence Quarks
Produce J/ψ, Λc and other Charm Hadrons at High xF

115
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 Diffractive Production of 
Charm Hadrons at the ISR 

Volume 199, number 2 PHYSICS LETTERS B 17 December 1987 
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Fig. 2. (a) Invariant mass of Asn+n+n - system with 0.5<Xr<0.9 and p,< 1.1 GeV/c (15 MeV bins); the curve is the sum of a third- 

order polynomial and a gaussian resolution function with a =  14 MeV. Note the suppressed zero on the vertical scale; (b) same as (a), 

but with additional selections on the decay angles of Ac and A~, (,~s .ti) <0 and (/~',,~) <0, as discussed in the text. 

and  several  newer  values:  2285.6_+ 1.1 M e V  (stat is-  

t ical  e r ror  on ly)  [9 ] ,  2289 + 2 M e V  [ 10] and  2284.7 

+ 2.3 M e V  [ 11 ]. We have,  in addi t ion ,  refit  the  mass  

spectra o f  the  R603  co l labora t ion  [ I ] and  f ind a va lue  

o f  2295 _+ 6 MeV.  Since  a m i n i m u m - b i a s  t r igger  was 

used  in ref. [1 ], this  la t te r  va lue  is in te res t ing  de- 

spi te  its larger  error.  

The  signal seen in fig. 2a is t r acked  as a f unc t i on  

o f  XF o f  the  As~+~+Tt - sys tem by p e r f o r m i n g  in- 

d e p e n d e n t  fits o f  the  type  used  in fig. 2 on  da ta  sam-  
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Fig. 3. Number of observed (uncorrected) Ac signal events versus Xv when Pt < 1.1 GeV/c. The solid and dashed curves are the expected 

distributions if the cross section da/&*:voc (1 -xv)"  with n=2 and 1, respectively. 
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P. M. Chauvat et al. [R608 Collaboration],
“Production of ΛC With Large xF At The ISR,”
Phys. Lett. B 199, 304 (1987).
pp→ pΛCX

u
u

u
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Intrinsic Heavy-Quark Fock States

• Rigorous prediction of QCD, OPE

• Color-Octet Fock State 

• Probability

• Large Effect at high x

• Greatly increases kinematics of colliders  such as Higgs production 
(Kopeliovich, Schmidt, Soffer, sjb)

• Severely underestimated in conventional parameterizations of 
heavy quark distributions (Pumplin)

• Many empirical tests  

PQQ̄ ∝ 1
M2

Q

Pcc̄/p " 1%

Q

Q̄

b⊥ = O(1/MQ)

σ(DDIS)
σ(DIS) " Λ2

QCD

M2
Q

PQQ̄ ∝ 1
M2

Q

Pcc̄/p " 1%

Q

Q̄

b⊥ = O(1/MQ)

σ(DDIS)
σ(DIS) " Λ2

QCD

M2
Q

PQQ̄ ∝ 1
M2

Q

PQQ̄QQ̄ ∼ α2
sPQQ̄

Pcc̄/p # 1%

Q

Q̄

b⊥ = O(1/MQ)

Hoyer, Peterson, Sakai, sjb
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Intrinsic Charm Mechanism for 
Exclusive Diffraction Production

xJ/ψ = xc+ xc̄

Intrinsic cc̄ pair formed in color octet 8C in pro-
ton wavefunction
Collision produces color-singlet J/ψ through

color exchange

Kopeliovitch, Schmidt, Soffer, sjb

RHIC Experiment

Large Color Dipole

118

pp→ p + J/ψ + p

< xF >= 0.33

Minimize LF energy denominator

x̂i = m⊥i∑n
j m⊥j

m⊥i =
√

m2
i + k2⊥i

Same velocity; heavy constituents carry high-
est momentum fraction
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Kopeliovitch, Schmidt, Soffer, sjb

RHIC Experiment

Intrinsic Charm Mechanism for 
Exclusive Di#activ$ 

High-XF Higgs Productio"

119

pp→ p + J/ψ + p

pp→ p + H + p

< xF >= 0.33

Minimize LF energy denominator

x̂i = m⊥i∑n
j m⊥j

m⊥i =
√

m2
i + k2⊥i

H

Higgs can have 80% of Proton Momentum!

Also: intrinsic bottom, top
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Intrinsic Charm Mechanism for 
Exclusive Diffraction Production

Kopeliovitch, Schmidt, Soffer, sjb

(Reversed for the neutron.)

[σ(DDIS)
σDIS ]L !

Λ2
QCD

Q2

xF

ν(QT )

cos 2φ correlation

Q = 8GeV

(Reversed for the neutron.)

[σ(DDIS)
σDIS ]L !

Λ2
QCD

Q2

xF

PIQ(xF )
PIQ

ν(QT )

cos 2φ correlation
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Doubly diffractive Higgs production

pp → p + H + p

H, Z0, ηb

b⊥ ∼ 1/Q

Must have ∆Lz = ±1 to have nonzero F2

Use charge radius R2 = −6F ′1(0)

and anomalous moment κ = F2(0)

to determine < L2
z >q∼ 0.15.

pp → p + H + p

H, Z0, ηb

b⊥ ∼ 1/Q

Must have ∆Lz = ±1 to have nonzero F2

Use charge radius R2 = −6F ′1(0)

and anomalous moment κ = F2(0)

to determine < L2
z >q∼ 0.15.

pp → p + H + p

H, Z0, ηb

b⊥ ∼ 1/Q

Must have ∆Lz = ±1 to have nonzero F2

Use charge radius R2 = −6F ′1(0)

and anomalous moment κ = F2(0)

to determine < L2
z >q∼ 0.15.

pp → p + H + p

H, Z0, ηb

b⊥ ∼ 1/Q

Must have ∆Lz = ±1 to have nonzero F2

Use charge radius R2 = −6F ′1(0)

and anomalous moment κ = F2(0)

to determine < L2
z >q∼ 0.15.

pp → p + H + p

H, Z0, ηb

b⊥ ∼ 1/Q

Must have ∆Lz = ±1 to have nonzero F2

Use charge radius R2 = −6F ′1(0)

and anomalous moment κ = F2(0)

to determine < L2
z >q∼ 0.15.

pp → p + H + p

H, Z0, ηb

b⊥ ∼ 1/Q

Must have ∆Lz = ±1 to have nonzero F2

Use charge radius R2 = −6F ′1(0)

and anomalous moment κ = F2(0)

to determine < L2
z >q∼ 0.15.

De Roeck, V.A. Khoze, A.D.Martin, R.Orava M.G.Ryskin,

121

Nucleus-Nucleus at the LHC



Photonic and Diffractive 
Phenomena in QCD  Stan Brodsky,  SLAC Trento ECT* 122

“Dangling Gluons”
• Diffractive DIS

• Non-Unitary Correction to DIS:  Structure functions are 
not probability distributions

• Nuclear Shadowing, Antishadowing

• Single Spin Asymmetries -- opposite sign in DY and DIS

•  DY               correlation at leading twist from double ISI-- 
not given by standard PQCD factorization 

• Wilson Line Effects persist even in LCG

• Must correct hard subprocesses for initial and final-state 
soft gluon attachments  --  Ji gauge link, Kovchegov gauge

the differential cross section is written as

1

!

d!

d"
!
3

4#

1

$"3

#! 1"$ cos2%"& sin2% cos'"
(

2
sin2% cos 2' " .

)1*

These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not
satisfied by the experimental data ,13,14-. The Drell-Yan
data show remarkably large values of ( , reaching values of
about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *

d"dx1dx2d
2q!

!
.2

3Q2 0
a , ā

ea
2# A)y *F , f 1 f̄ 1-

"B)y *cos)2'*F $ )2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.

BOER, BRODSKY, AND HWANG PHYSICAL REVIEW D 67, 054003 )2003*

054003-2
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• Three-Gluon Exchange, C= -,  J=1, Nearly Real Phase

• Interference of 2-gluon and 3-gluon exchange leads to matter/
antimatter asymmetries

• Asymmetry in jet  asymmetry in 

• Analogous to lepton energy and angle asymmetry

• Pion Asymmetry in 

γp→ cc̄p

γp→ π+π−p
γZ→ e+e−Z

The Odderon

e-p collider test

Odderon: Another source of 
antishadowing

Merino, Rathsman, sjb

BFKL

123
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Hadron Dynamics at the 
Amplitude Level

• LFWFS are the universal hadronic amplitudes which 
underlie structure functions, GPDs, exclusive processes.

• Relation of spin, momentum, and other distributions to  
physics of the hadron itself.

• Connections between observables, orbital angular 
momentum

• Role of FSI and ISIs--Sivers effect
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Dirac’s Amazing  Idea:
The “Front Form”

Fig. 1. Dirac’s three forms of Hamiltonian dynamics.

2.4. Forms of Hamiltonian dynamics

Obviously, one has many possibilities to parametrize space—time by introducing some general-
ized coordinates xJ (x). But one should exclude all those which are accessible by a Lorentz
transformation. Those are included anyway in a covariant formalism. This limits considerably the
freedom and excludes, for example, almost all rotation angles. Following Dirac [123] there are no
more than three basically different parametrizations. They are illustrated in Fig. 1, and cannot be
mapped on each other by a Lorentz transform. They differ by the hypersphere on which the fields
are initialized, and correspondingly one has different “times”. Each of these space—time parametriz-
ations has thus its own Hamiltonian, and correspondingly Dirac [123] speaks of the three forms of
Hamiltonian dynamics: The instant form is the familiar one, with its hypersphere given by t"0. In
the front form the hypersphere is a tangent plane to the light cone. In the point form the time-like
coordinate is identified with the eigentime of a physical system and the hypersphere has a shape of
a hyperboloid.

Which of the three forms should be prefered? The question is difficult to answer, in fact it is
ill-posed. In principle, all three forms should yield the same physical results, since physics should
not depend on how one parametrizes the space (and the time). If it depends on it, one has made
a mistake. But usually one adjusts parametrization to the nature of the physical problem to
simplify the amount of practical work. Since one knows so little on the typical solutions of a field
theory, it might well be worth the effort to admit also other than the conventional “instant” form.

The bulk of research on field theory implicitly uses the instant form, which we do not even
attempt to summarize. Although it is the conventional choice for quantizing field theory, it has

S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486 315

Instant Form Front Form 

z0 = 1
ΛQCD

z∆

∆ = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

σ = ct− z

z0 = 1
ΛQCD

z∆

∆ = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

σ = ct− z

Evolve in 
light-front time!

125
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General remarks about orbital angular mo-
mentum

!R⊥

xi
!R⊥+!b⊥i

∑n
i
!b⊥i = !0⊥

∑n
i xi = 1

∑n
i=1(xi

!P⊥+ !k⊥i) = !P⊥

xi
!P⊥+ !k⊥i

∑n
i

!k⊥i = !0⊥

∑n
i xi = 1

General remarks about orbital angular mo-
mentum

Ψn(xi,!k⊥i, λi)

∑n
i=1(xi

!R⊥+!b⊥i) = !R⊥

xi
!R⊥+!b⊥i

∑n
i
!b⊥i = !0⊥

∑n
i xi = 1

P+, !P+

xiP
+, xi

!P⊥+ !k⊥i

ẑ

!L = !R× !P

!Li = (xi
!R⊥+!b⊥i)× !P

!"i = !b⊥i × !k⊥i

!"i = !Li − xi
!R⊥ × !P = !b⊥i × !P

A(σ,∆⊥) = 1
2π

∫
dζe

i
2σζM(ζ,∆⊥)

P+, $P⊥

xiP
+, xi

$P⊥+ $k⊥i

ζ = Q2

2p·q

ẑ

$L = $R× $P

$Li = (xi
$R⊥+$b⊥i)× $P

Light-Front Wavefunctions

P+ = P0 + Pz

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u

ū

E′ = E − ν, &q

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u

Invariant under boosts!  Independent of Pμ 
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ψ(x,k⊥)
HQCD
LF |ψ>=M2|ψ>

Dirac’s Front Form: Fixed τ= t+ z/c

Light-Front Wavefunctions

xi =
k+
i

P+

0 < xi < 1

n∑
i=1

xi = 1

Remarkable new insights from AdS/CFT, the duality between    
conformal field theory and  Anti-de Sitter Space 

Invariant under boosts.   Independent of Pµ
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In terms of the hadron four-momentum P =
(P+, P−, !P⊥) with P± = P0 ± P3, the light-
front frame independent Hamiltonian for a
hadronic composite system HQCD

LC = PµPµ =
P−P+− !P2⊥, has eigenvalues given in terms of
the eigenmass M squared corresponding to
the mass spectrum of the color-singlet states
in QCD,

HQCD
LC |Ψh〉 =M2

h |Ψh〉

Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P
!

in LB-convention.

10. For the instantaneous fermion lines use the factor ¼
"

in Fig. 5 or Fig. 6, or the corresponding
tables in Section 4. For the instantaneous boson lines use the factor ¼

#
.

The light-cone Fock state representation can thus be used advantageously in perturbation
theory. The sum over intermediate Fock states is equivalent to summing all x!-ordered diagrams
and integrating over the transverse momentum and light-cone fractions x. Because of the restric-
tion to positive x, diagrams corresponding to vacuum fluctuations or those containing backward-
moving lines are eliminated.

3.4. Example 1: ¹he qqN -scattering amplitude

The simplest application of the above rules is the calculation of the electron—muon scattering
amplitude to lowest non-trivial order. But the quark—antiquark scattering is only marginally more
difficult. We thus imagine an initial (q, qN )-pair with different flavors fOfM to be scattered off each
other by exchanging a gluon.

Let us treat this problem as a pedagogical example to demonstrate the rules. Rule 1: There are
two time-ordered diagrams associated with this process. In the first one the gluon is emitted by the
quark and absorbed by the antiquark, and in the second it is emitted by the antiquark and
absorbed by the quark. For the first diagram, we assign the momenta required in rule 2 by giving
explicitly the initial and final Fock states

!q, qN "" 1

!n
$

%$

!
$!"

b!
$"

(k
&
, #

&
)d!

$"M
(k

&N
, #

&N
)!0" , (3.29)

!q$, qN $"" 1

!n
$

%$
!
$!"

b!
$"

(k$
&
, #$

&
)d!

$"M
(k$

&N
, #$

&N
)!0" , (3.30)

338 S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486

Fig. 2. The Hamiltonian matrix for a SU(N)-meson. The matrix elements are represented by energy diagrams. Within
each block they are all of the same type: either vertex, fork or seagull diagrams. Zero matrices are denoted by a dot ( ) ).
The single gluon is absent since it cannot be color neutral.

mass or momentum scale Q. The corresponding wavefunction will be indicated by corresponding
upper scripts,

!!""
!#"

(x
#
, k

!
, !

#
) or !!$"

!#"
(x

#
, k

!
, !

#
) . (3.15)

Consider a pion in QCD with momentum P"(P%, P
!
) as an example. It is described by

"# : P$" $
!
!%&
!d[%

!
]"n : x

#
P%, k

!#
#x

#
P
!
, !

#
$!

!#!(x#
, k

!#
, !

#
) , (3.16)

where the sum is over all Fock space sectors of Eq. (3.7). The ability to specify wavefunctions
simultaneously in any frame is a special feature of light-cone quantization. The light-cone
wavefunctions !

!#! do not depend on the total momentum, since x
#
is the longitudinal momentum

fraction carried by the i"# parton and k
!#

is its momentum “transverse” to the direction of the
meson; both of these are frame-independent quantities. They are the probability amplitudes to find
a Fock state of bare particles in the physical pion.

More generally, consider a meson in SU(N). The kernel of the integral equation (3.14) is
illustrated in Fig. 2 in terms of the block matrix &n : x

#
, k

!#
, !

#
"H"n' : x'

#
, k'

!#
, !'

#
$. The structure of this

matrix depends of course on the way one has arranged the Fock space, see Eq. (3.7). Note that most
of the block matrix elements vanish due to the nature of the light-cone interaction as defined in

S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486 333

Heisenberg Equation
Light-Front QCD

Pauli, Pinsky, sjb

DLCQ

Use AdS/QCD  basis functions
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|p,Sz>=∑
n=3

ψn(xi, !k⊥i,λi)|n;k⊥i,λi>|p,Sz>=∑
n=3

Ψn(xi,!k⊥i,λi)|n;!k⊥i,λi>

|p,Sz>=∑
n=3

Ψn(xi,!k⊥i,λi)|n;!k⊥i,λi>

The Light Front Fock State Wavefunctions

Ψn(xi,!k⊥i,λi)

are boost invariant; they are independent of the hadron’s energy
and momentum Pµ.
The light-cone momentum fraction

xi =
k+
i
p+ =

k0i + kzi
P0+Pz

are boost invariant.
n

∑
i
k+
i = P+,

n

∑
i
xi = 1,

n

∑
i

!k⊥i =!0⊥.

sum over states with n=3, 4, ...constituents

Fixed LF time
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‘Tis a mistake / Time flies not
It only hovers on the wing

Once born the moment dies not
‘tis an immortal thing

Montgomery
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|uud >, |uudg>, |uudss̄>, |uudcc̄>, |uudbb̄> · · ·

s(x) != s̄(x)

• Proton Fock States

• Strange and Anti-Strange Quarks not Symmetric

• “Intrinsic Charm”: High momentum heavy quarks

• “Hidden Color”: Deuteron  not  always  p +  n

• Orbital Angular Momentum Fluctuations - 
Anomalous Magnetic Moment

Hadrons Fluctuate in 
Particle Number
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S.J. Brodsky et al. / Nuclear Physics B 593 (2001) 311–335 331

moment vanishes [22]. The light-cone formalism also properly incorporatesWigner boosts.

Thus this model of composite systems can serve as a useful theoretical laboratory to

interrelate hadronic properties and check the consistency of formulae proposed for the

study of hadron substructure.

7. Spin and orbital angular momentum composition of light-cone wavefunctions

In general the light-cone wavefunctions satisfy conservation of the z projection of

angular momentum:

J z =
n∑

i=1
sz
i +

n−1∑
j=1

lzj . (62)

The sum over sz
i represents the contribution of the intrinsic spins of the n Fock state

constituents. The sum over orbital angular momenta lzj = −i(k1j ∂
∂k2j

− k2j
∂

∂k1j

)
derives from

the n−1 relative momenta. This excludes the contribution to the orbital angularmomentum
due to the motion of the center of mass, which is not an intrinsic property of the hadron.

We can see how the angular momentum sum rule Eq. (62) is satisfied for the

wavefunctions Eqs. (20) and (23) of the QED model system of two-particle Fock states.

In Table 1 we list the fermion constituent’s light-cone spin projection sz
f = 1

2
λf, the boson

constituent spin projection sz
b = λb, and the relative orbital angular momentum lz for each

contributing configuration of the QED model system wavefunction.

Table 1 is derived by calculating the matrix elements of the light-cone helicity operator

γ +γ 5 [29] and the relative orbital angular momentum operator−i(k1 ∂
∂k2

− k2 ∂
∂k1

)
[16,30,

31] in the light-cone representation. Each configuration satisfies the spin sum rule: J z =
sz
f + sz

b + lz.

For a better understanding of Table 1, we look at the non-relativistic and ultra-relativistic

limits. At the non-relativistic limit, the transversal motions of the constituent can be

neglected and we have only the | + 1
2
〉 → | − 1

2
+ 1〉 configuration which is the non-

relativistic quantum state for the spin-half system composed of a fermion and a spin-1

boson constituents. The fermion constituent has spin projection in the opposite direction

to the spin J z of the whole system. However, for ultra-relativistic binding in which the

transversal motions of the constituents are large compared to the fermion masses, the

Table 1

Spin decomposition of the J z = + 1
2
electron

Configuration Fermion spin sz
f

Boson spin sz
b

Orbital ang. mom. lz∣∣+ 1
2

〉 → ∣∣+ 1
2

+ 1〉 + 1
2

+1 −1∣∣+ 1
2

〉 → ∣∣− 1
2

+ 1〉 − 1
2

+1 0∣∣+ 1
2

〉 → ∣∣+ 1
2

− 1〉 + 1
2

−1 +1

Conserved 
LF Fock state by Fock State

S.J. Brodsky et al. / Nuclear Physics B 593 (2001) 311–335 331

moment vanishes [22]. The light-cone formalism also properly incorporatesWigner boosts.

Thus this model of composite systems can serve as a useful theoretical laboratory to

interrelate hadronic properties and check the consistency of formulae proposed for the

study of hadron substructure.

7. Spin and orbital angular momentum composition of light-cone wavefunctions

In general the light-cone wavefunctions satisfy conservation of the z projection of

angular momentum:

J z =
n∑

i=1
sz
i +

n−1∑
j=1

lzj . (62)

The sum over sz
i represents the contribution of the intrinsic spins of the n Fock state

constituents. The sum over orbital angular momenta lzj = −i(k1j ∂
∂k2j

− k2j
∂

∂k1j

)
derives from

the n−1 relative momenta. This excludes the contribution to the orbital angularmomentum
due to the motion of the center of mass, which is not an intrinsic property of the hadron.

We can see how the angular momentum sum rule Eq. (62) is satisfied for the

wavefunctions Eqs. (20) and (23) of the QED model system of two-particle Fock states.

In Table 1 we list the fermion constituent’s light-cone spin projection sz
f = 1

2
λf, the boson

constituent spin projection sz
b = λb, and the relative orbital angular momentum lz for each

contributing configuration of the QED model system wavefunction.

Table 1 is derived by calculating the matrix elements of the light-cone helicity operator

γ +γ 5 [29] and the relative orbital angular momentum operator−i(k1 ∂
∂k2

− k2 ∂
∂k1

)
[16,30,

31] in the light-cone representation. Each configuration satisfies the spin sum rule: J z =
sz
f + sz

b + lz.

For a better understanding of Table 1, we look at the non-relativistic and ultra-relativistic

limits. At the non-relativistic limit, the transversal motions of the constituent can be

neglected and we have only the | + 1
2
〉 → | − 1

2
+ 1〉 configuration which is the non-

relativistic quantum state for the spin-half system composed of a fermion and a spin-1

boson constituents. The fermion constituent has spin projection in the opposite direction

to the spin J z of the whole system. However, for ultra-relativistic binding in which the

transversal motions of the constituents are large compared to the fermion masses, the

Table 1

Spin decomposition of the J z = + 1
2
electron

Configuration Fermion spin sz
f

Boson spin sz
b

Orbital ang. mom. lz∣∣+ 1
2

〉 → ∣∣+ 1
2

+ 1〉 + 1
2

+1 −1∣∣+ 1
2

〉 → ∣∣− 1
2

+ 1〉 − 1
2

+1 0∣∣+ 1
2

〉 → ∣∣+ 1
2

− 1〉 + 1
2

−1 +1

n-1 orbital angular momenta

Angular Momentum on the Light-Front

A+=0 gauge: No unphysical degrees of freedom
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Annihilation amplitude needed for Lorentz Invariance

n = n’ + 2

Exact Formula 
Hwang, SJB
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ERBL Evolution
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N-1N+1

N N

NN

Light-Front Wave Function Overlap Representation

See also: Diehl, Feldmann, Jakob, Kroll
DGLAP
region

DGLAP
region

ERBL
region

N=3 VALENCE QUARK ⇒ Light-cone Constituent quark model

N=5 VALENCE QUARK + QUARK SEA ⇒ Meson-Cloud model

Diehl, Hwang, sjb,  NPB596, 2001

Pasquini
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The Generalized Parton Distribution E(x , ζ, t)

The generalized form factors in virtual Compton scattering
γ∗(q) + p(P)→ γ∗(q′) + p(P ′) with t = ∆2 and
∆ = P − P ′ = (ζP+,∆⊥, (t + ∆2

⊥)/ζP+), have been constructed in the
light-front formalism. [Brodsky, Diehl, Hwang, 2001]

We find, under q⊥ → ∆⊥, for ζ ≤ x ≤ 1,

E(x , ζ, 0)

2M
=

∑
a

(
√

1− ζ)1−n
∑

j

δ(x − xj)

∫
[dx ][d2k⊥]

×ψ∗
a(x ′i , k⊥i ,λi)S⊥ · Lqj

⊥ψa(xi , k⊥i ,λi) ,

with x ′j = (xj − ζ)/(1− ζ) for the struck parton j and x ′i = xi/(1− ζ) for the
spectator parton i .
The E distribution function is related to a S⊥ · Lqj

⊥ matrix element at finite ζ as
well.

S. Gardner (Univ. of Kentucky) Spin-Flip Matrix Elements in Light-Front QCD Oberwölz, September, 2006 9
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We can also Fourier transform the skewness distribution
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γ
*

γ
*

x0
x3

FIGURE 10. The matrix element in the integrand of the parton distribution (8), i.e., the handbag diagram of Fig. 8 viewed in
coordinate space (rescattering is not shown). The position of the struck quark differs by x− in the two wave functions (whereas
x+ = x⊥ = 0).

The rhs. of this equation is essentially given by the F2 structure function. Thus we can study the A-dependence of the

parton distribution in coordinate space, defined as

qA(x−,Q2) ≡
∫ 1

0

dxB

xB
FD2 (xB,Q

2)RAF2(xB,Q
2)sin

(
1
2
mxBx

−)
(11)

where RAF2(xB,Q
2) is the experimentally measured ratio of nuclear to deuterium structure functions sketched in Fig. 9.

The corresponding ratio in coordinate space, defined as

RA(x−,Q2) ≡ qA(x−,Q2)

qD(x−,Q2)
(12)

can then be formed using data on structure functions and is shown in Fig. 11a.
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FIGURE 11. (a) The coordinate space ratio RA(x−,Q2) (12) obtained by Fourier transforming data on FA2 (xB,Q
2) structure

functions for A = He, C and Ca. (b) The momentum space ratio R̃C(xB,w,Q2 = 5 GeV2) for Carbon, obtained by Fourier
transforming a modified coordinate space distribution in which all nuclear effects are eliminated for x− < w.

Within the ca. 1% error bars [9] the ratio RA(x−,Q2) is consistent with having no A-dependence for x− <∼ 5 fm. At
longer distances x− > 5 (i.e., t = −z > 2.5 fm since x+ = 0) shadowing sets in. Thus viewed from coordinate space
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FIG. 2: Fourier spectrum of the real part of the DVCS amplitude of an electron vs. σ for M = 0.51
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helicity is flipped. The parameter t is in MeV2.

a proton wavefunction. Convolution of these wavefunctions in the same way as we have done

for the dressed electron wavefunctions will simulate the corresponding DVCS amplitudes for

bound state hadrons. One has to note that differentiation of the single particle wave function

yields zero and thus there is no 3 − 1 overlap contribution to the DVCS amplitude in this

hadron model. It is to be noted that in recent holographic models from AdS/CFT as well

[8] only valence LFWFs are constructed.

The equivalent but easier way is to differentiate the DVCS amplitude with respect to the

initial and final state masses. Here we calculate the quantity M 2
F

∂
∂M2

F

M2
I

∂
∂M2

I

Aij(MI , MF )

where MI , MF are the initial and final bound state masses. For numerical computation, we

use the discrete version of the differentiation

M2 ∂A

∂M2
= M̄2 A(M2

1 ) − A(M2
2 )

δM2
(14)

where M̄2 = (M2
1 +M2

2 )
2 and δM2 = (M2

1 − M2
2 ). We have taken MI1, MF1 = 150 + 1,

MI2, MF2 = 150− 1 MeV and fixed parameters M = 150 and m = λ = 300 MeV. In Figs. 3

and 4 we have shown the DVCS amplitude of the simulated hadron model, both as a function

of ζ and after taking the FT in ζ . In Fig. 4 (c), we have plotted the structure function F2(x)

in this model. The wave function is normalized to 1. There is another interesting aspect of

this model. The γ∗p → γp DVCS amplitude has both real [17] and imaginary parts [18]. If
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Fig. 1. Dirac’s three forms of Hamiltonian dynamics.

2.4. Forms of Hamiltonian dynamics

Obviously, one has many possibilities to parametrize space—time by introducing some general-
ized coordinates xJ (x). But one should exclude all those which are accessible by a Lorentz
transformation. Those are included anyway in a covariant formalism. This limits considerably the
freedom and excludes, for example, almost all rotation angles. Following Dirac [123] there are no
more than three basically different parametrizations. They are illustrated in Fig. 1, and cannot be
mapped on each other by a Lorentz transform. They differ by the hypersphere on which the fields
are initialized, and correspondingly one has different “times”. Each of these space—time parametriz-
ations has thus its own Hamiltonian, and correspondingly Dirac [123] speaks of the three forms of
Hamiltonian dynamics: The instant form is the familiar one, with its hypersphere given by t"0. In
the front form the hypersphere is a tangent plane to the light cone. In the point form the time-like
coordinate is identified with the eigentime of a physical system and the hypersphere has a shape of
a hyperboloid.

Which of the three forms should be prefered? The question is difficult to answer, in fact it is
ill-posed. In principle, all three forms should yield the same physical results, since physics should
not depend on how one parametrizes the space (and the time). If it depends on it, one has made
a mistake. But usually one adjusts parametrization to the nature of the physical problem to
simplify the amount of practical work. Since one knows so little on the typical solutions of a field
theory, it might well be worth the effort to admit also other than the conventional “instant” form.

The bulk of research on field theory implicitly uses the instant form, which we do not even
attempt to summarize. Although it is the conventional choice for quantizing field theory, it has

S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486 315
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FIG. 4: Real part of the DVCS amplitude for the simulated meson-like bound state. The parameters

are M = 150,m = λ = 300 MeV. (a) Helicity non-flip amplitude vs. ζ, (b) Fourier spectrum of

the same vs. σ, (c) Structure function vs. x. The parameter t is in MeV2.

wavefunction because of the momentum transferred to the quark in the hard Compton

scattering. The change in quark momentum along the longitudinal direction ζ can be Fourier

transformed to a boost-invariant distribution in the longitudinal light-front coordinate σ =

1
2y

−P+. In the case of the optical diffraction pattern obtained in a single-slit experiment,

the size of the central maximum is inversely proportional to the width of the slit. Deeply

virtual Compton scattering is analogous to the diffractive scattering of an electromagnetic

wave in optics, where the diffractive pattern in σ reflects the size of the scattering center in

units of the target’s Compton scale.
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For leptons, such as the electron or neutrino, it is convenient to employ the electron
mass for M , so that the magnetic moment is given in Bohr magnetons.

Now we turn to the evaluation of the helicity-conserving and helicity-flip vector-
current matrix elements in the light-front formalism. In the interaction picture, the
current Jµ(0) is represented as a bilinear product of free fields, so that it has an
elementary coupling to the constituent fields [13, 14, 15]. The Dirac form factor can
then be calculated from the expression

F1(q
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∑
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[dx][d2k⊥]
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j
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[
ψ↑∗

a (xi,k
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whereas the Pauli and electric dipole form factors are given by
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Drell, sjb

b⊥ ∼ 1/Q

Must have ∆Lz = ±1 to have nonzero F2

ν(QT )

cos 2φ correlation

Q = 8GeV

πN → µ+µ−X NA10

Conformal behavior: Q4F1(Q2)→ const

Exact formula for Pauli Form Factor

-
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2 QED Model (Perturbative)

ψ↑
+ 1

2 +1
(x,"k⊥) = −√

2 (−k1+ik2)
x(1−x) ϕ ,

ψ↑
+ 1

2 −1
(x,"k⊥) = −√

2 (+k1+ik2)
1−x ϕ ,

ψ↑
− 1

2 +1
(x,"k⊥) = −√

2(M − m
x ) ϕ ,

ψ↑
− 1

2 −1
(x,"k⊥) = 0 ,

(8)

where

ϕ = ϕ(x,"k⊥) =
e/
√

1 − x

M2 − ("k2⊥ + m2)/x − ("k2⊥ + λ2)/(1 − x)
. (9)



ψ↓
+ 1

2 +1
(x,"k⊥) = 0 ,

ψ↓
+ 1

2 −1
(x,"k⊥) = −√

2(M − m
x ) ϕ ,

ψ↓
− 1

2 +1
(x,"k⊥) = −√

2 (−k1+ik2)
1−x ϕ ,

ψ↓
− 1

2 −1
(x,"k⊥) = −√

2 (+k1+ik2)
x(1−x) ϕ .

(10)

q(x, Λ2)spin−1 diquark

=
∫ d2"k⊥dx

16π3
θ(Λ2 −M2) 2

[ "k2
⊥

x2(1 − x)2
+

"k2
⊥

(1 − x)2
+ (M − m

x
)2

]
|ϕ|2 ,

∆q(x, Λ2)spin−1 diquark

=
∫ d2"k⊥dx

16π3
θ(Λ2 −M2) 2

[ "k2
⊥

x2(1 − x)2
+

"k2
⊥

(1 − x)2
− (M − m

x
)2

]
|ϕ|2 ,

δq(x, Λ2)spin−1 diquark

=
∫ d2"k⊥dx

16π3
θ(Λ2 −M2) 4

[ "k2
⊥

x(1 − x)2

]
|ϕ|2 . (11)

3

LFWFs of Electron (n=2)

Hwang, Schmidt, sjb

Spin-1/2    
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3

Gives Schwinger 
Anomalous 

Moment

Drell, sjb

Lz = 1

Lz = −1

Lz = 0

α

2π

Lz = 1

Lz = −1

Lz = 0

α

2π

Lz = 1

Lz = −1

Lz = 0

α

2π

Jz = +
1

2

Lz = 1

Lz = −1

Lz = 0

α

2π

α

3π

− α

3π
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-

graviton

Anomalous gravitomagnetic moment  B(0)

B(0) = 0 Each Fock State

sum over constituents

Equivalence theorem:  B(0)=0
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Anomalous moment and charge radius 
determines the orbital angular momentum of 

quarks in the proton

b⊥ ∼ 1/Q

Must have ∆Lz = ±1 to have nonzero F2

Use charge radius F ′
1(0)

and anomalous moment F2(0)

to determine < L2
z >∼ 0.15.

SU(6) symmetry:

for the spin projection of

the valence quarks in a proton with Jz = 1/2:

u↑ :: u↓ :: d↑ :: d↓ = 5/3 :: 1/3 :: 1/3 :: 2/3.

Associate q↓ with Sz = −1, Lz = +1, and

q↓ with Sz = 1/2, Lz = 0,

then the down quark carries twice as much
orbital angular momentum as the two up
quarks:

for the spin projection of

the valence quarks in a proton with Jz = 1/2:

u↑ :: u↓ :: d↑ :: d↓ = 5/3 :: 1/3 :: 1/3 :: 2/3.

Associate q↓ with Sz = −1/2, Lz = +1, and

q↓ with Sz = 1/2, Lz = 0,

then the down quark carries twice as much
orbital angular momentum as the two up
quarks:

for the spin projection of

the valence quarks in a proton with Jz = 1/2:

u↑ :: u↓ :: d↑ :: d↓ = 5/3 :: 1/3 :: 1/3 :: 2/3.

Associate q↓ with Sz = −1/2, Lz = +1, and

q↓ with Sz = 1/2, Lz = 0,

then the down quark carries twice as much
orbital angular momentum as the two up
quarks:

b⊥ ∼ 1/Q

Must have ∆Lz = ±1 to have nonzero F2

Use charge radius R2 = −6F ′
1(0)

and anomalous moment κ = F2(0)

to determine < L2
z >∼ 0.15.

SU(6) symmetry:

Assume SU(6) assignments

< L2
z >d= 2 < L2

z >u .

This model also predicts < L2
z >q= 1/3

since 1/3 of the quarks have Sz = −1/2, Lz =
+1.

We also then have < L2
z >d= 2/9, < L2

z >u=
1/9.

However, the SU(6) model above assumes
that the proton only has a valence |uud >

Fock state.

< L2
z >d= 2 < L2

z >u .

This model also predicts < L2
z >q= 1/3

since 1/3 of the quarks have Sz = −1/2, Lz =
+1.

We also then have

< L2
z >d= 2/9, < L2

z >u= 1/9.

However, the SU(6) model above assumes
that the proton only has a valence |uud >
Fock state.

< L2
z >d= 2 < L2

z >u .

This model also predicts < L2
z >q= 1/3

since 1/3 of the quarks have Sz = −1/2, Lz =
+1.

We also then have

< L2
z >d= 2/9, < L2

z >u= 1/9.

However, the SU(6) model above assumes
that the proton only has a valence |uud >
Fock state.

If the valence state has a 45% probability,

and the higher Fock states have no orbital
angular momentum

(consistent with < L2
z >g= 0 as in my recent

paper with Gardner),

then there is consistency with your dynami-
cal result < L2

z >q= 0.15.

ν(QT )

If the valence state has a 45% probability,

and the higher Fock states have no orbital
angular momentum

(consistent with < L2
z >g= 0 as in my recent

paper with Gardner),

then there is consistency with your dynami-
cal result < L2

z >q= 0.15.

ν(QT )

If the valence state has a 45% probability,

and the higher Fock states have no orbital
angular momentum

(consistent with < L2
z >g= 0 as in my recent

paper with Gardner),

then there is consistency with your dynami-
cal result < L2

z >q= 0.15.

ν(QT )

C. E. Carlson and sjb
If the valence state has a 45% probability,

and the higher Fock states have no orbital
angular momentum

(consistent with < L2
z >g= 0 as in my recent

paper with Gardner),

then there is consistency with your dynami-
cal result < L2

z >q= 0.15.

< L2
z >d= 0.10, < L2

z >u= 0.05. (Reversed for the neutron.)

ν(QT )

cos 2φ correlation

Q = 8GeV

πN → µ+µ−X NA10

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

b⊥ ∼ 1/Q

Must have ∆Lz = ±1 to have nonzero F2

Use charge radius R2 = −6F ′
1(0)

and anomalous moment κ = F2(0)

to determine < L2
z >∼ 0.15.

SU(6) symmetry:

Assume SU(6) assignments

b⊥ ∼ 1/Q

Must have ∆Lz = ±1 to have nonzero F2

Use charge radius R2 = −6F ′
1(0)

and anomalous moment κ = F2(0)

to determine < L2
z >q∼ 0.15.

SU(6) symmetry:

Assume SU(6) assignments

151



 
Photonic and Diffractive 

Phenomena in QCD Trento ECT*  Stan Brodsky,  SLAC

F3(q
2) = F2(q

2)× tanφ

Fock state by Fock state

QCD → QED

in limit NC → 0

F3(q
2) = F2(q

2)× tanφ

Fock state by Fock state

QCD → QED

in limit NC → 0

Gardner, Hwang, sjb, 

CP-violating phas&
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Advantages of Light-Front Quantization 

• Frame independent;  Jz kinematical

• Minkowski space; no fermion doubling

• Physical degrees of freedom; physical polarization

• Trivial vacuum; zero modes

• LF Quantization of Standard Model: Zero mode not vacuum expectation 
value

• B(0) =0; Exact formula for current matrix elements

• DLCQ; covariant truncation of Fock space

• LFWFs, spectra, physics at the amplitude level, phases\

• AdS/CFT predictions
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• Measure Light-Front Wavefunctions

• Test AdS/CFT predictions

• Novel Aspects of Hadron Wavefunctions: 
Intrinsic Charm, Hidden Color, Color 
Transparency/Opaqueness

• Diffractive Di-Jet, Tri-Jet Production

• Nuclear Shadowing and Antishadowing

• Novel QCD Mechanism for Higgs Production

Use Diffraction to Resolve 
Hadron Substructure

154
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FH(t) ∝ 1
tnH−1

MAB→CD(s, t) = F (θcm)
sntot−4

dσ
dt (s, t) = F (θcm)

s[2ntot−2]

s = E2
cm

−t = Q2

φH(xi, Q)

ψ(x, k⊥)

FH(t) ∝ 1
tnH−1

MAB→CD(s, t) = F (θcm)
sntot−4

dσ
dt (s, t) = F (θcm)

s[2ntot−2]

s = E2
cm

−t = Q2

φH(xi, Q)

ψ(x, k⊥)

A

B

C

D

Constituent Counting Rules

FH(t) ∝ 1
tnH−1

MAB→CD(s, t) = F (θcm)
sntot−4

dσ
dt (s, t) = F (θcm)

s[ntot−2]

s = E2
cm

−t = Q2

φH(xi, Q)

ψ(x, k⊥)

[CF =
N2

C−1
2NC

]

FH(Q2)× [Q2]nH−1 ∼ constant

[Q2]nH−1FH(Q2) ∼ constant

FH(Q2) ∼ [ 1
Q2]

nH−1

fd(Q
2) ≡ Fd(Q

2)

Fp(
Q2
4 )Fp(

Q2
4 )

fd(Q
2) ∼ Fπ(Q2)

155

Conformal symmetry and PQCD predicts 
leading-twist power behavior

Characteristic scale of QCD: 300 MeV

Scaling cannot be postponed!

New  J-PARC, GSI, J-Lab, Belle, Babar tests

Farrar & sjb; Matveev et al
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• Point-like quark and gluon constituents plus scale-invariant 
interactions

• Fall-off of Amplitude measures degree of compositeness (twist)

• Reflects near-Conformal Invariance of QCD

• PQCD: Logarithmic Modification by running coupling                    
and ERBL Evolution

• Angular and Spin Dependence -- Fundamental Wavefunctions: 
Hadron Distribution Amplitudes
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s[2ntot−2]

s = E2
cm

−t = Q2

φH(xi, Q)

ψ(x, k⊥)

FH(t) ∝ 1
tnH−1

MAB→CD(s, t) = F (θcm)
sntot−4

dσ
dt (s, t) = F (θcm)

s[2ntot−2]

s = E2
cm

−t = Q2

φH(xi, Q)

ψ(x, k⊥)

FH(t) ∝ 1
tnH−1

MAB→CD(s, t) = F (θcm)
sntot−4

dσ
dt (s, t) = F (θcm)

s[2ntot−2]

s = E2
cm

−t = Q2

φH(xi, Q)

ψ(x, k⊥)

A

B

C

D

Lepage, sjb; Efremov, Radyushkin

Constituent Counting Rules

Farrar, sjb; Matveev et al

FH(t) ∝ 1
tnH−1

MAB→CD(s, t) = F (θcm)
sntot−4

dσ
dt (s, t) = F (θcm)

s[ntot−2]

s = E2
cm

−t = Q2

φH(xi, Q)

ψ(x, k⊥)

[CF =
N2

C−1
2NC

]

FH(Q2)× [Q2]nH−1 ∼ constant

[Q2]nH−1FH(Q2) ∼ constant

FH(Q2) ∼ [ 1
Q2]

nH−1

fd(Q
2) ≡ Fd(Q

2)

Fp(
Q2
4 )Fp(

Q2
4 )

fd(Q
2) ∼ Fπ(Q2)
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FIG. 3. The scaled differential cross section s7 dσ
dt versus center-of-mass energy for the

γp → π+n at θcm = 90◦. The data from JLab E94-104 are shown as solid circles. The er-
ror bars for the new data and for the Anderson et al. data [1], include statistical and systematic
uncertainties. Other data sets [26,27] are shown with only statistical errors. The open squares
in the lower plot were averaged from data at θcm = 85◦ and 95◦ [28]. The solid line was obtained
from the recent partial-wave analysis of single-pion photoproduction data [29] up to Eγ=2 GeV,
while the dashed line from the MAID analysis [30] up to Eγ=1.25 GeV.

10

Test of PQCD Scaling

PQCD and AdS/CFT:

sntot−2dσdt (A+B→C+D) =
FA+B→C+D(θCM)

s7dσdt (γp→ π+n) = F(θCM)
ntot = 1+3+2+3= 9

s7dσ/dt(γp→ π+n)∼ const
f ixed θCM scaling

Conformal invariance at high  momentum transfers!

Constituent counting rules Farrar, sjb; Muradyan, Matveev, Taveklidze

No sign of running coupling
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Quark-Counting  D. Sivers et a!., Large transverse momentum processes 21

s(Gev
2)

2 3 4 6 810 20 30
I I I I 1111 I

02 K~p—--K4p -

I I I I 11111
I 2 34 6810

PIOb(GeV/C)

Fig. 2.1.6. K~pscattering at 90°in the cm.

This factorization is indicated more clearly in fig. 2.1.8 where the pp cross section data at differ-

ent energies normalized to the 90°cross section are plotted as a function of cos 0. It is interesting

to investigate possible corrections to eq. (2.1 .2) but we will defer this until we can discuss the im-

plications of various possible models for the cross section.

The systematics of differential cross section measurements are important but ifwe are to deduce

amplitude structure for the various processes it is necessary to have more information. Polarization

measurements are obviously important but, because of the small counting rates, there have been
very few polarization experiments extending to large angles. The data of Abshire et al. [2] include

polarization measurements for pp elastic scattering out to t = —6 GeV2. This data is shown com-
bined with some small-i’ polarization measurements in fig. 2.1.9. Two features are notable. The

polarization does not vanish at large t at this energy and there is evidence for some structure,

perhaps double zeros at t ~ —1, —2.5, —4GeV2. We can conclude that a single spin amplitude

does not dominate in this range of momentum transfer and that the different amplitudes have

potentially complicated behavior at large momentum transfer.

Another type of structure which may be important at large t consists of rapid fluctuations of
amplitudes with energy or with angle. This behavior, known as Ericson Fluctuations [113], is

familiar in nuclear physics. Experiments designed to look for Ericson fluctuations in pp elastic
scattering have not reported any evidence for the phenomenon. Allaby et al. [51 examined pp -~ pp
at 16.9 GeV/c over a range of angles and Akerlof et al. [3] looked at °CM= 90°over a range of

dσ
dt (pp→ pp) = F (θCM)

s10

Data: n = 9.7± 0.5

n = 4× 3− 2 = 10

dσ
dt (K

+p→ K+p) = F (θCM)
s8

Data: n = 9.7± 0.5

n = 2× 3 + 2× 2 = 8

√
s =

dσ
dt (pp→ pp) = F (θCM)

s10

Data: n = 9.7± 0.5

n = 4× 3− 2 = 10

dσ
dt (K

+p→ K+p) = F (θCM)
s8

Data: n = 9.7± 0.5

n = 2× 3 + 2× 2− 2 = 8

√
s =
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FIG. 3: Pion form factor as extracted in this work. Also
shown are e−π elastic data from CERN, and earlier pion elec-
troproduction data from DESY and Jefferson Lab. The ear-
lier Jefferson Lab data are taken from reference [9]. The data
point at Q2 = 1.60 GeV2 from [9] has been shifted from its
central value for visual representation. The curves are from a
Dyson-Schwinger equation (solid, [17]), QCD sum rules (dot-
ted, [14]), dispersion relations with QCD constraint (dashed,
[15]), and from a pQCD calculation (dashed-dotted, [18]).

inance the longitudinal π−/π+ ratios in 2H were exam-
ined. Since the pole term is purely isovector this ratio is
expected to be close to unity and a significant deviation
from unity would indicate the presence of an isoscalar
background. The preliminary analysis of the longitudi-
nal π−/π+ ratios is consistent with unity.

In Figure 3, our results are shown along with re-
sults from CERN, DESY, earlier Jefferson Lab data, and
some representative calculations. Comparing the result
at Q2 = 1.60 GeV2 to the earlier Jefferson Lab data
point at a lower value of W allows for a direct test of the
theoretical model dependence. A higher value of W al-
lows for a measurement at smaller values of −t, at closer
proximity to the pion pole. The data are consistent with
the previous Jefferson Lab Fπ measurement at a value of
Q2 = 1.60 GeV2 and suggest a small model uncertainty
due to fitting the VGL model to the data. The data in-
dicate a one sigma deviation from a monopole form fac-
tor that yields the measured charge radius. That form
factor is up to Q2=2.5 GeV2 indistinguishable from the
solid curve in Figure 3. Various models provide a good
description of the measured values for Fπ up to Q2=1.60
GeV2. The data are well described by the calculation of
Nesterenko and Radyushkin [14], in which a QCD sum
rule framework for the soft contribution to Fπ as well as
an asymptotically dominant hard gluon exchange term
is used. The dispersion relation calculation by Geshken-

bein [15] also agrees well with the data. The data are
also reasonably well described by the Dyson-Schwinger
calculation by Maris and Tandy, which is based on the
Bethe-Salpeter equation with dressed quark and gluon
propagators. All parameters in the latter calculation are
determined without the use of Fπ data [16, 17]. Perturba-
tive QCD calculations of which one is shown in Figure 3
give values of Q2Fπ around 0.10 GeV2 in the region of
our measurements.

In summary, we have measured separated 1H(e,e′π+)n
cross sections at values of Q2=1.60 and 2.45 GeV2 at
W=2.22 GeV. The charged pion form factor was ex-
tracted from the separated longitudinal cross section us-
ing a Regge model. The data are consistent with the
previous Jefferson Lab result at Q2 = 1.60 GeV2. The
data deviate by one sigma from a monopole form factor
obeying the measured charge radius, but are still far from
the values expected from pQCD calculations.
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G. Huber

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) " const at small Q2.

High Q2 from short distances

Fπ(Q2)

z2 = ζ2 = b2⊥x(1− x) = O( 1
Q2)

L

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) " const at small Q2.

High Q2 from short distances

Fπ(Q2)

z2 = ζ2 = b2⊥x(1− x) = O( 1
Q2)

L
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Quark-Counting : dσ
dt (pp→ pp) = F (θCM)

s10

Data: n = 9.7± 0.5
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q̄
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Deuteron Photodisintegratio" 

PQCD and AdS/CFT:

sntot−2dσdt (A+B→C+D) =
FA+B→C+D(θCM)

s11dσdt (γd→ np) = F(θCM)

ntot−2=
(1 + 6 + 3+ 3 ) - 2 = 11

Conformal invariance 
at high  momentum transfers!

J-Lab
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Why do dimensional counting 
rules work so well?

• PQCD predicts log corrections from powers of αs, logs, pinch 
contributions  Lepage, sjb; Efremov, Radyushkin

• DSE: QCD coupling  (mom scheme) has IR Fixed point!       
Alkofer, Fischer, von Smekal et al.

• Lattice  results show similar flat behavior

• PQCD exclusive amplitudes dominated by integration regime 
where αs   is large and flat

Furui, Nakajima
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VI. THE QCD RUNNING COUPLING

In the DSE approach, the ghost-gluon coupling in the
M̃OM scheme is calculated by the gluon dressing func-
tion Z3 and the ghost dressing function Z̃3 and the vertex
renormalization factor Z̃1 as

g(q) = Z̃−1
1 Z1/2

3 (µ2, q2)Z̃3(µ2, q2)g(µ).

Our lattice simulation[16] of the gluon propagator and
the ghost propagator of MILCc yields the running cou-
pling shown in FIG.3. There are deviations from the
pQCD (dash-dotted line) and the DSE approach with
κ = 0.5 (long dashed line). As was done by the Orsay
group[9], we consider a correction including the A2 con-
densates and obtained 〈A2〉 ∼ a few GeV2.

-0.4-0.2 0 0.2 0.4 0.6 0.8 1
Log_10!q"GeV#$

0.5

1

1.5

2

2.5

3
Α

s
"q#

FIG. 3: The running coupling αs(q) as a function of
log10 q(GeV) of MILCc (a = 0.12fm) βimp = 6.76(triangles)
and 6.83(diamonds), (50 samles each).

The running coupling in the infrared can be estimated
from the quark-gluon coupling

g(q) = Zψ
1

−1
Z1/2

3 (µ2, q2)Z2(µ2, q2)g(µ),

where Z2 is the quark dressing function and Zψ
1 is the ver-

tex renormalization factor. An evaluation of Z2(µ2, q2)
is given in the next section.

VII. THE QUARK PROPAGATOR

We extended the measurement of the quark propagator
using Asqtad action of MILCc [14] to MILCf . In the
case of MILCc, we compared the Asqtad action and the
Staple+Naik action.

Due to long computation time for the convergence of
the conjugate gradient method, the number of samples is
of the order of 10 for each βimp and the bare quark mass
m0.

The quark propagator is defined as a statistical average
over Landau gauge fixed samples

Sαβ(p) =
〈
〈χp,α| 1

i /D(U) + m0
|χp,β〉

〉
.

In this expression, the inversion, 1

i /D(U)+m0
, is performed

via conjugate gradient method after preconditioning, and
we obtain

Sαβ(q) = Z2(q)
−iγq + M(q)
q2 + M(q)2

.

The mass function M(q) reflects dynamical chiral sym-
metry breaking. In high momentum region, it is param-
eterized as

M(q) = −4π2dM 〈ψ̄ψ〉µ[log(q2/Λ2
QCD)]dM −1

3q2[log(µ2/Λ2
QCD)]dM

+
m(µ2)[log(µ2/Λ2

QCD)]dM

[log(q2/Λ2
QCD)]dM

,

where dM = 12/(33 − 2Nf ) and m(µ2) is the running
mass.

In the infrared region, we adopt the monopole fit

M(q) =
c̃Λ3

q2 + Λ2
+ m0.

The momentum dependence of M(q) and Z2(q) of
m0 = 13.6MeV in the infrared region of Asqtad action is
smoother than that of the Staple+Naik action. It could
be attributed to the effect of the tadpole renormalization.
The parameters c̃ and Λ in our fit of the mass function
are given in TABLE V.

We showed the quark wave function renormalization
Zψ(q2) = g1(µ2)/Z2(q2) of MILCf βimp = 7.11 using
the staple+Naik action in [14], where Z2(q2) is the bare
lattice data and g1(q2) is the coefficient of γµ of the vector
current vertex that compensates artefacts in Z2.

We adopt 〈A2〉 as a fitting parameter and calculate[9]

Zψ(q2) =
g1(µ2)
Z2(q2)

= Zpert
ψ (q2) +

(
α(µ)
α(q)

)(−γ0+γA2 )/β0

q2

〈A2〉µ
4(N2

c − 1)
Zpert

ψ (µ2)

+
c2

q4

where α(q) are data calculated in the M̃OM scheme us-
ing the same MILCf gauge configuration[7].

Here Nf is chosen to be 2 but the data does not change
much for 3. We choose ΛQCD = 0.691GeV and 〈ψ̄ψ〉µ =
−(0.7ΛQCD)3[17, 18].

Since g1(q2) in the infrared is expected to be given by
the running coupling, the absence of suppression of the
quark wave function renormalization suggests that the
infrared suppression of the running coupling obtained by
the ghost-gluon coupling could be an artefact.

In [20] the Z2(q) is normalized to 1 at q = 3GeV. In our
simulation without this kind of renormalization, Z2(q) at
q = 3GeV is close to 1 and the results are consistent.
Our mass function M(q) of βimp = 7.09 are about 20%

Lattice simulation 
(MILC)

Schwinger-Dyson

Infrared-Finite QCD Coupling?

Furui, Nakajima

PQCD Asymptotic freedom 

DSE: Alkofer, Fischer, von Smekal et al.
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[33]

Exclusive Processes in QCD and Light-Front Wavefunctions

S. Brodsky

   

Return

 Leading-Twist  PQCD Factorization

(which is not unnatural for discussing effects of nuclear size) we may regard3 antishadowing and the EMC effect as

merely resulting from Fourier transforming a flat distribution (of finite length) in x−! This is corroborated in Fig. 11b,
where the reverse transform back to momentum (xB-) space is made, under the assumption that R

A(x−,Q2) is unity
for x− < w (and takes the values of Fig. 11a for x− > w). It is seen that the antishadowing and (most of) the EMC

effect is reproduced assuming no nuclear dependence in coordinate space for x− <∼ 5 fm. The nuclear effects can thus
be ascribed solely to shadowing.

The parton distribution qA(x−,Q2) in coordinate space is insensitive to the region of Fermi motion at large xB in
Fig. 9, where the structure function F2(xB,Q2) is small. The sizeable nuclear dependence of RAF2(xB,Q

2) at large xB
reflects the ratio of very small F2, which do not appreciably affect the inverse Fourier transform (11).

SIZE OF HARD SUBPROCESSES

The third aspect of shape that I would like to discuss concerns the size of coherent hard subprocesses in scattering

involving large momentum transfers. As sketched in Fig. 12, in inclusive DIS (ep→ eX) we expect that the virtual

photon (whose transverse coherence length is ∼ 1/Q) scatters off a single quark. The quark is typically part of a Fock
state with a hadronic,∼ 1 fm size. In elastic scattering (ep→ ep), where the entire Fock state must coherently absorb

the momentum, one might on the other hand expect [11] that only compact Fock states of the photon, with transverse

sizes r⊥ ∼ 1/Q will contribute. Thus the dynamics of inclusive and exclusive processes appears to be quite different.
In particular, the dependence on the electric charges of the quarks is expected to be, qualitatively,

!(ep→ eX) " #
q

e2q Inclusive, DIS

(13)

!(ep→ ep) " (#
q

eq)
2 Exclusive, form factor

! !

"

!#$

!"#$%&'()

% *+,-.

&

/0#$%&'()

! !

" "

#$ !

% *+12

FIGURE 12. The virtual photon scatters from single quarks in inclusive deep inelastic scattering (left). If the valence quarks
absorb equal shares of the momentum transfer in the exclusive ep→ ep process (right) only compact Fock states can contribute.

In contrast to these expectations the data suggests a close connection between inclusive and exclusive scattering.

The resonance production ep→ eN∗ cross sections (including N∗ = p) average the DIS scaling curve when plotted at

the same value of xB (or of the related Nachtmann variable $ ) [12]. Examples of this Bloom-Gilman duality are shown
in Fig. 13. A natural explanation of duality is that the same Fock states of the proton contribute in both cases [13].

Resonance formation occurs on a longer time scale than the hard subprocess, hence is incoherent with it and cannot

change the total cross section. Only the local mass distribution (resonance bumps) is sensitive to the hadronization

time scale.

3 Understanding the dynamics of nuclear dependence in momentum space is nevertheless interesting in its own right. See [10] for recent ideas about
the origin of the antishadowing enhancement.

M =
∫ ∏

dxidyiφF (x, Q̃)×TH(xi, yi, Q̃)φI(yi, Q)

Lepage, sjb

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) " constant at small Q2.

Q4F1(Q2) " constant

If αs(Q∗2) " constant

High Q2 from short distances

Fπ(Q2)

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) " constant at small Q2.

Q4F1(Q2) " constant

If αs(Q∗2) " constant

If αs(Q̃2) " constant

High Q2 from short distances
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• Representation of Semi-Classical QCD

• Confinement at Long Distances and Conformal 
Behavior at short distances

• Non-Perturbative Derivation of Dimensional 
Counting Rules 

• Hadron Spectra, Regge Trajectories, Light-Front 
Wavefunctions; QCD at the amplitude level

• Goal: A first approximant to physical QCD

AdS/CFT and QCD
Mapping of  Poincare’ and 

Conformal SO(4,2) symmetries of 
3+1 space to  AdS5 spac$
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AdS/QCD G. F. de Téramond

5-Dimensional
Anti-de Sitter

Spacetime

4-Dimensional
Flat Spacetime

(hologram)

Black Hole

1-2006
8685A7

z0 = 1/ΛQCD

z

Caltech High Energy Seminar, Feb 6, 2006 Page 3
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String Theory

AdS/CFT

Semi-Classical QCD / Wave Equations

Mapping of  Poincare’ and 
Conformal SO(4,2) symmetries of 

3+1 space 
to  AdS5 space

Integrable!

Boost Invariant 3+1 Light-Front Wave Equations

Hadron Spectra, Wavefunctions, Dynamics

AdS/QCD
Conformal behavior at short 

distances
+ Confinement at large 

distance

Counting rules for Hard 
Exclusive Scattering
Regge Trajectories

Holography

Integrable! J =0,1,1/2,3/2 plus L

Goal: First Approximant to QCD

QCD at the Amplitude Level
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• Pseudoscalar mesons: O3+L = ψγ5D{!1 . . . D!m}ψ (Φµ = 0 gauge).

• 4-d mass spectrum from boundary conditions on the normalizable string modes at z = z0,

Φ(x, zo) = 0, given by the zeros of Bessel functions βα,k: Mα,k = βα,kΛQCD.

• Normalizable AdS modes Φ(z)
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Fig: Meson orbital and radial AdS modes for ΛQCD = 0.32 GeV.
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Confinement 
in the 5th 

dimension
z∆

∆: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

Twist dimension 
of baryon

z0 = 1
ΛQCD

z∆

∆: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

de Teramond, sjb

z0 = 1
ΛQCD

z∆

∆ = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

Identify hadron by its interpolating operator at z  -- > 0
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Guy de Teramond
SJB 

Only one 
parameter! 

Entire light 
quark baryon 

spectrum

Prediction from  
AdS/QCDAdS/QCD G. F. de Téramond
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Fig: Predictions for the light baryon orbital spectrum for ΛQCD = 0.25 GeV. The 56 trajectory corre-

sponds to L even P = + states, and the 70 to L odd P = − states.
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Nearly Conformal QCD and AdS/CFT G. F. de Téramond, UCR

• SU(6) multiplet structure for N and ∆ orbital states, including internal spin S and L.
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Quark-Hadron Duality, Frascati, 6-8 June 2005 Page 19
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Space-like pion form factor in holographic model for ΛQCD = 0.2 GeV.
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Data Compilation from Baldini, Kloe and Volmer
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ψ(x,"b⊥) = ψ(ζ)

φ(z)

ζ =
√

(x(1− x)|b⊥|

z

z∆

z0 = 1
ΛQCD

γd→ np

ψ(x,"b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)"b2⊥

z

z∆

z0 = 1
ΛQCD

γd→ np

ψ(x,"b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)"b2⊥

z

z∆

z0 = 1
ΛQCD

γd→ np

Mapping between LF(3+1) and AdS5

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

LF(3+1)              AdS5

κ = 0.77GeV

ψ(x,#b⊥) =
√

x(1− x) φ(ζ)

√
x(1− x)

M ∝ ∂2

∂2k⊥
ψπ(x, k⊥)

M ∝ ∂2

∂2k⊥
ψγ∗(x, k⊥)

F2
A(q2⊥) ∼ e−

1
3R2

Aq2⊥
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3

from momentum conservation at the vertex we find

F (Q2) = R3

∫ ∞

0

dz

z3
e3A(z)ΦP ′(z)J(Q, z)ΦP (z). (9)

The form factor in AdS is the overlap of the normalizable
modes dual to the incoming and outgoing hadron ΦP and
ΦP ′ and the non-normalizable mode J(Q, z), dual to the
external source [15]

We integrate (4) over angles to obtain

F (q2) = 2π

∫ 1

0
dx

(1− x)
x

∫
ζdζJ0

(
ζq

√
1− x

x

)
ρ̃(x, ζ),

(10)
where we have introduced the variable

ζ =
√

x

1− x

∣∣∣ n−1∑
j=1

xjb⊥j

∣∣∣, (11)

representing the x-weighted transverse impact coordinate
of the spectator system.

We can now make contact with the AdS results. Com-
paring (10) with the expression for the form factor in
AdS space (9) for arbitrary values of Q we find

J(Q, ζ) =
∫ 1

0
dxJ0

(
ζQ

√
1− x

x

)
= ζQK1(ζQ), (12)

which is also the solution for the electromagnetic poten-
tial in AdS (8). Thus we can identify the spectator den-
sity function appearing in the light-front formalism with
the corresponding AdS density

ρ̃(x, ζ) =
R3

2π

x

1− x
e3A(ζ) |Φ(ζ)|2

ζ4
. (13)

Eq (13) expresses the duality between extended AdS
modes and point-like partonic distributions. It gives a
precise relation between the string modes in AdS5 and
the QCD transverse density in four dimensional space-
time. The variable ζ, 0 ≤ ζ ≤ Λ−1

QCD, represents the
invariant separation between quarks, and it is also the
holographic variable z, ζ = z.

For two partons ρ̃(x, ζ) = |ψn=2(x, ζ)|2/(1−x)2, and a
closed form solution for the two-constituent bound state
light-front wave function is found

|ψ(x, ζ)|2 =
R3

2π
x(1− x) e3A(ζ) |Φ(ζ)|2

ζ4
. (14)

In the case of two partons ζ2 = x
1−x%η2

⊥ = x(1− x)b2
⊥.

For spin-carrying constituents the relevant dimension
is that of twist (dimension minus spin) τ = ∆−σ, where
σ is the sum over the constituent’s spin σ =

∑n
i=1 σi.

Twist is equal to the number of partons τ = n. Upon
the substitution ∆ → n + L, φ(z) = z−3/2Φ(z), in

the five-dimensional AdS wave equations describing glue-
balls, mesons or vector mesons [5] we find an effec-
tive Schrödinger equation written in terms of the four-
dimensional impact variable ζ[

− d2

d2ζ
+ V (ζ)

]
= M2φ(ζ), (15)

with the effective conformal potential [16]

V (ζ) = −1− 4L2

4ζ2
. (16)

The new wave equation has a stable range of solutions ac-
cording to the Breitenlohner-Freedman bound [17]. The
solution to (15) is

φ(z) = z−
3
2 Φ(z) = Cz

1
2 JL(zM). (17)

The eigenvalues are determined by the boundary condi-
tions at φ(z = 1/ΛQCD) = 0, and are given in terms of
the roots of the Bessel functions: ML,k = βL,kΛQCD.
The normalized LFWF ψ̃L,k follow from (14) [18]

ψ̃L,k(x,%b⊥) = BL,k

√
x(1− x)

JL

(√
x(1− x)|%b⊥|βL,kΛQCD

)
θ
(
%b 2
⊥ ≤

Λ−2
QCD

x(1− x)

)
, (18)

where BL,k = ΛQCD

[
(−1)LπJ1+L(βL,k)J1−L(βL,k)

]− 1
2 .

The first eigenmodes are depicted in Figure 1, and the
masses of the light mesons in Figure 2. The predictions
for the lightest hadrons are improved relative to the re-
sults of [5] with the boundary conditions determined in
terms of twist instead of conformal dimensions. The de-
scription of baryons is carried out along similar lines and
will be presented somewhere else.
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FIG. 1: Two-parton bound state holographic LFWF eψ(x, ζ)
for ΛQCD = 0.32 GeV: (a) ground state # = 0, k = 1, (b) first
orbital excited state # = 1, k = 1.

We have shown how the string amplitude Φ(z) defined
on the fifth dimension in AdS5 space can be precisely

Effective conformal 
potential:

Map AdS/CFT  to  3+1 LF Theory
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FIG. 1: Two-parton bound state holographic LFWF eψ(x, ζ)
for ΛQCD = 0.32 GeV: (a) ground state # = 0, k = 1, (b) first
orbital excited state # = 1, k = 1.

We have shown how the string amplitude Φ(z) defined
on the fifth dimension in AdS5 space can be precisely

[
− d2

d2ζ
+ V (ζ)

]
=M2φ(ζ)

[
− d2

dζ2 + V (ζ)
]
=M2φ(ζ)

ζ2 = x(1− x)b2⊥.

Jz = Sz
p =

∑n
i=1 Sz

i +
∑n−1

i=1 #z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Effective radial equation:

General solution:

G. de Teramond and sjb 

u↓(x)
u↑(x)

∼ (1− x)2

Q2(GeV2)

[
− d2

d2ζ
+ V (ζ)

]
φ(ζ) =M2φ(ζ)

[
− d2

dζ2 + V (ζ)
]
φ(ζ) =M2φ(ζ)

ζ2 = x(1− x)b2⊥.

#L = #P × #R
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Example:
• Two parton LFWF bound state:

ψ̃qq/π(x, ζ) = BL,k

√
x(1− x)JL (ζβL,kΛQCD) θ

(
z ≤ Λ−1

QCD

)
,
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(a) ground state L = 0, k = 1, (b) first orbital L = 1, k = 1, (c) first radial L = 0, k = 2.

Séminaire Ecole Polytechnique, 25 Juillet 2006 Page 21

ψ(x,"b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)"b2⊥

z

z∆

z0 = 1
ΛQCD

γd→ np
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ψ(σ, b⊥)

σ = y−P+

2

|b⊥|

pp→ pp

e+e− → pp̄

ep→ ep

R(e+e− → HH̄) ∝ |F (s)|2

ψ(σ, b⊥)

σ = y−P+

2

|b⊥|(GeV−1)

pp→ pp

e+e− → pp̄

ep→ ep

R(e+e− → HH̄) ∝ |F (s)|2

AdS/CFT  Holographic Model

3-dimensional photograph:
meson LFWF at fixed LF Time

G. de Teramond
SJB 

Fig. 1. Dirac’s three forms of Hamiltonian dynamics.

2.4. Forms of Hamiltonian dynamics

Obviously, one has many possibilities to parametrize space—time by introducing some general-
ized coordinates xJ (x). But one should exclude all those which are accessible by a Lorentz
transformation. Those are included anyway in a covariant formalism. This limits considerably the
freedom and excludes, for example, almost all rotation angles. Following Dirac [123] there are no
more than three basically different parametrizations. They are illustrated in Fig. 1, and cannot be
mapped on each other by a Lorentz transform. They differ by the hypersphere on which the fields
are initialized, and correspondingly one has different “times”. Each of these space—time parametriz-
ations has thus its own Hamiltonian, and correspondingly Dirac [123] speaks of the three forms of
Hamiltonian dynamics: The instant form is the familiar one, with its hypersphere given by t"0. In
the front form the hypersphere is a tangent plane to the light cone. In the point form the time-like
coordinate is identified with the eigentime of a physical system and the hypersphere has a shape of
a hyperboloid.

Which of the three forms should be prefered? The question is difficult to answer, in fact it is
ill-posed. In principle, all three forms should yield the same physical results, since physics should
not depend on how one parametrizes the space (and the time). If it depends on it, one has made
a mistake. But usually one adjusts parametrization to the nature of the physical problem to
simplify the amount of practical work. Since one knows so little on the typical solutions of a field
theory, it might well be worth the effort to admit also other than the conventional “instant” form.

The bulk of research on field theory implicitly uses the instant form, which we do not even
attempt to summarize. Although it is the conventional choice for quantizing field theory, it has

S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486 315

z0 = 1
ΛQCD

z∆

∆ = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

z0 = 1
ΛQCD

z∆

∆ = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

σ = ct− z

z0 = 1
ΛQCD

z∆

∆ = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

σ = ct− z
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Physics of Rescattering

• Diffractive DIS: New Insights into Final State 
Interactions in QCD

• Origin of Hard Pomeron

• Structure Functions not Probability 
Distributions!

• T-odd SSAs, Shadowing, Antishadowing

• Diffractive dijets/ trijets, doubly diffractive Higgs

• Novel Effects: Color Transparency, Color 
Opaqueness, Intrinsic Charm, Odderon
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“Dangling Gluons”
• Diffractive DIS

• Non-Unitary Correction to DIS:  Structure functions are 
not probability distributions

• Nuclear Shadowing, Antishadowing

• Single Spin Asymmetries -- opposite sign in DY and DIS

•  DY               correlation at leading twist from double ISI-- 
not given by standard PQCD factorization 

• Wilson Line Effects persist even in LCG

• Must correct hard subprocesses for initial and final-state 
soft gluon attachments  --  Ji gauge link, Kovchegov gauge

the differential cross section is written as

1

!

d!

d"
!
3

4#

1

$"3

#! 1"$ cos2%"& sin2% cos'"
(

2
sin2% cos 2' " .

)1*

These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not
satisfied by the experimental data ,13,14-. The Drell-Yan
data show remarkably large values of ( , reaching values of
about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *

d"dx1dx2d
2q!

!
.2

3Q2 0
a , ā

ea
2# A)y *F , f 1 f̄ 1-

"B)y *cos)2'*F $ )2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.
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Truth is stranger than fiction, but it is because 
Fiction is obliged to stick to possibilities. 
                                    —Mark Twain

• Although we know the QCD Lagrangian, we 
have only begun to understand its remarkable 
properties and features.

• Novel QCD Phenomena: diffraction, hidden 
color, color transparency, shadowing, anti-
shadowing, intrinsic charm, anomalous heavy 
quark phenomena,  anomalous spin effects, 
odderon, anomalous Regge behavior ...

• Remarkable Predictions of AdS/QCD
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