Photoproduction in Ultra Peripheral Relativistic Heavy Ion Collisions with STAR

> Yury Gorbunov Creighton University for the STAR collaboration

Workshop on Photoproduction at collider energies: from RHIC and HERA to LHC

ECT* - Trento, January 15-19, 2007

Outline Vector meson production □ STAR Trigger and Data Sets \bullet ρ^0 production Interference 4 prong analysis dAu e⁺e⁻ pairs production Plans and Summary

Ultra Peripheral Collisions

- Photonuclear interaction
- Two nuclei miss each
- other: $b > 2R_A$, electromagnetic
- dominates over strong
- interactions

- Photon emitted by nucleus fluctuates to virtual qq (bar) pair
- qq (bar) pair elastically scatters from nucleus (absorb part of photon wave function) and real vector meson emerges

• coherence conditions limit $P_T < h/2R_A \sim 150 \text{ MeV}$

RHIC & STAR

Trigger Topology Central trigger Barrel divided into 4 quadrants p candidates with hits in North and South quadrants Events with hits Top/Bottom are vetoed Cosmic Ray Background **Top Veto** Central Trigger Barre Minimum Bias North

- Events with low multiplicity selected with Central Trigger Barrel detector
 - At least one neutron in each of the Zero
- Degree Calorimeter

- North Bottom Veto
- □ distinctive signature for nuclear breakup

Zero Degree Calorimeter

- ZDC spectra obtained with the minimum bias sample
- □ Allows to distinguish between different excited states of produced vector mesons (1n,2n,...)
- \Box Acceptance ~ 100%

Data Samples
 Run 2000 130 GeV AuAu Topology Minimum bias
 Run 2001 200 GeV AuAu Topology Minimum bias
 Run 2004 AuAu 200 GeV 4 prong 200 GeV J/Ψ 200 62 GoV Minimum bias
 200, 62 GeV Minimum blas Run 2005 CuCu 200 GeV J/Ψ 200, 62 GeV Minimum blas

Available Statistics

- Fitted with
 - Breit-Wigner function for the signal
 - Soding's interference term: direct $\pi^+\pi^-$ production
 - background described by the second order polynomial
- Background estimated with like sign pairs

Cross Section

Cross Section Comparison

 ρ0 production cross was measured by STAR at 200 GeV and 130 GeV

	STAR	STAR
	$\sqrt{s}=200$ GeV, mb	\sqrt{s} =130GeV, mb
σ _{xnxn}	30.26±1.1±6.35	26.2±1.8±5.8
σ _{0nxn}	108.74±9.08±22.83	90±55±20
σ_{1n1n}	1.63±0.18±0.34	2.5±0.4±0.6
σ _{0n0n}	370.19±33.26±77.74	285±145±70
σ _{xnxn}	509.2±34.5±106.9	410±190±100

Cross Section

Measured ρ⁰ coherent
 plus incoherent production
 cross section
 Fit function:

$$\frac{d\sigma}{dt} = a * \exp(b * t) + c * \exp(d * t)$$

• σ Incoherent/Coherent ~ 0.57

□ d = 8.64 ±1.04 GeV⁻²− access to the nucleon form factor; R_{AU} ~5.9±2. fm

In agreement with previous STAR measurement

Spin Density Matrix

- 2-dimensional correlation of Φ_h vs cos(Θ_h) allows to determine the ρ0 spin density matrix elements
 - Θ polar angle between ion and direction of π +
 - Φ azimuthal angle between decay plane and production plane
 - Fit function: K. Schilling and G. Wolf, Nucl. Phys. B61, 381 (1973)

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\Theta_h d\Phi_h} = \frac{3}{4\pi} \left[\frac{1}{2} (1 - r_{00}^{04}) + \frac{1}{2} (3r_{00}^{04} - 1)\cos^2\Theta_h - \sqrt{2}\Re e[r_{10}^{04}]\sin2\Theta_h \cos\Phi_h - r_{1-1}^{04}\sin^2\Theta_h \cos2\Phi_h \right]$$
(1)

- r_{00}^{04} represents probability ρ0 having a helicity
- r_{1-1}^{04} related to the level of interference helicity non flip & double flip
- $\Re e[r_{10}^{04}]$ elated to the level of interference helicity non flip & single flip
 - In case of s-channel helicity conservation $r_{1-1}^{04} \Re e[r_{10}^{04}]$ equal 0 and r_{00}^{04} small

Matrix Elements
Fit results are consistent with S-channel helicity conservation
In agreement with ZEUS experiment measurements

Parameter	STAR	ZEUS
r_{00}^{04}	0.01±0.02	0.01±0.03
$\Re e[r_{10}^{04}]$	0.04±0.03	0.01±0.02
r_{1-1}^{04}	-0.03±0.02	-0.01±0.02

Measuring the Interference

p' production

- **Δ** γ Au -> ρ (1450/1700) -> $\pi^+\pi^+\pi^-\pi^-$
- Signature
 - 4 charged tracks with $\Sigma Q = 0$
 - Low P_T
 - Hits in ZDC
- Trigger
 - Neutrons detected in ZDC
 - Cut on multiplicity

dAu->d(np)Aup Cross Section

- Triggered with topology trigger + neutron registered in West ZDC
- □ Sample of 13400 events
- □ Fitted by BW + direct pions + BG
 - $\sigma = 2.63 \pm 0.32 \pm 0.73 \text{ mb}$
 - mass width in agreement with PDG

- P_T spectra reflects γd and no γAu interactions in dAu sample
- Coherent (deuteron stays in tact) and incoherent (deuteron dissociation) produced ρ0 are accessible in dAu sample

dAu->d(np)Aup t Spectra

- Fit to the *t* spectra
 Fit function:
 F(t)=e^{-bt} access to the nucleon form factor
 - b = 9.06±0.85 GeV⁻²

Same as ZEUS

Turndown at small t
 The same behavior seen

by γd experiment

e⁺e⁻ Pairs Production

 Topology triggered
 Iow P_T tracks don't reach CTB

Minimum bias

- In full field data, tracks curve strongly – no tracking possible
 - Half field data (0.25 T) useful for analysis

Based on V. Morozov presentation

e⁺e⁻ Pairs Cross Section

- Production cross section of the e⁺e⁻ pairs as a function of invariant mass, transverse momentum, rapidity and $cos(\Theta)$
 - two models : equivalent photons and lowest order QED

0.08

0.7

(d)

0.9

0.8 cos(0 ')

photon virtuality is required

Plans

- Improved trigger for the run 2007
 - Improved cluster finder for J/Ψ trigger
 - Monitoring of CTB
- □ TOF will replace CTB in the near future
 - Trigger simulation is underway
 - □ Triggering on multiplicity
 - Topology trigger
 - Possible PID

Summary

- STAR has measured coherent and incoherent photo production of ρ0 meson in AuAu 200 GeV
 - Differential cross section dσ/dy, dσ/dt were obtained and compared to the theoretical models
 - P0 spin density matrix elements r_{00}^{04} ; $\Re e[r_{10}^{04}]$; r_{1-1}^{04} were obtained from the angular distribution of the decay pions in the helicity frame
 - Consistent with S-channel helicity conservation
- \Box interference in ρ^0 production has been measured
- $\square \quad \rho' \rightarrow \pi^+ \pi^+ \pi^- \pi^- \text{ production in AuAu 200GeV collisions has been observed }$
- incoherent ρ⁰ meson photoproduction in dAu has been measured
 - Differential production cross is measured and found to be in agreement with previous measurements and theoretical models
- □ Cross section of e⁺e⁻ pairs production has been measured