Photoproduction in Ultra Peripheral Relativistic Heavy Ion Collisions with STAR

Yury Gorbunov
Creighton University for the STAR collaboration

Workshop on Photoproduction at collider energies: from RHIC and HERA to LHC
ECT* - Trento, January 15-19, 2007

Outline

\square Vector meson production

- STAR
- Trigger and Data Sets
- ρ^{0} production
- Interference
- 4 prong analysis
- dAu
- $\mathrm{e}^{+} \mathrm{e}^{-}$pairs production
\square Plans and Summary

Ultra Peripheral Collisions

\square Photonuclear interaction
Mutual Excitation:
\square Two nuclei miss each
other: $b>2 R_{A}$, electromagnetic dominates over strong interactions

\square Photon emitted by nucleus fluctuates to virtual qq (bar) pair
\square qq (bar) pair elastically scatters from nucleus (absorb part of photon wave function) and real vector meson emerges

- coherence conditions limit $P_{T}<h / 2 R_{A} \sim 150 \mathrm{MeV}$

RHIC \& STAR

located at BNL on Long Island, NY

Trigger

\square Topology

- Central trigger Barrel divided into 4 quadrants
- ρ candidates with hits in North and South quadrants
- Events with hits Top/Bottom are vetoed
\square Minimum Bias
- Events with low multiplicity selected with Central Trigger Barrel detector
- At least one neutron in each of the Zero
 Degree Calorimeter
\square distinctive signature for nuclear breakup

Zero Degree Calorimeter

\square ZDC spectra obtained with the minimum bias sample
\square Allows to distinguish between different excited states of produced vector mesons (1n,2n,...)
\square Acceptance ~ 100\%

Data Samples

- Run 2000130 GeV AuAu
- Topology
- Minimum bias
- Run 2001200 GeV AuAu
- Topology
- Minimum bias
- Run 2004 AuAu
- 200 GeV 4 prong
- $200 \mathrm{GeV} \mathrm{J} / \mathrm{\psi}$
- 200, 62 GeV Minimum bias
- Run 2005 CuCu
- $200 \mathrm{GeV} \mathrm{J} / \mathrm{L}$
- 200, 62 GeV Minimum bias

Data Sample

\square Data taken in 2001 with energy $\sqrt{ } \mathrm{s}=200 \mathrm{GeV}$

- Background
- Beam gas
- Peripheral hadronic interactions
- Cosmics

Available Statistics

\square Approximately 16000 candidates in two samples

$$
\text { ә|dues } \text { К6oןodo। }
$$

\square Fitted with

- Breit-Wigner function for the signal
- Soding's interference term: direct $\pi^{+} \pi^{-}$production
- background described by the second order polynomial
\square Background estimated with like sign pairs

Acceptance

\square The STARlight Monte Carlo

- two-photon and photon-Pomeron interactions in peripheral heavy ion collisions.
\square Detector response simulation
\square Track reconstruction + Vertexing

Direct Pion Production

- $|B / A|$ - measure of non resonant to resonant production
- Fit function of the invariant mass gives access to the direct pion production
- $|B / A|=0.84 \pm 0.11 \mathrm{GeV}-1 / 2$ in agreement with previous STAR results $|B / A|=0.81 \pm 0.28 \mathrm{GeV}-1 / 2$
- No angular dependence -> in agreement with ZEUS measurements
- Acceptance stability cross check

Cross Section

ρ^{0} total production cross (AuAu, 200 GeV)
section along with 3 theoretical models

ρ^{0} production cross section for events with mutual excitation (AuAu, 200 GeV)

Cross Section Comparison

- $\rho 0$ production cross was measured by STAR at 200 GeV and 130 GeV

	STAR $\sqrt{s}=200 \mathrm{GeV}, \mathrm{mb}$	STAR $\sqrt{s}=130 \mathrm{GeV}, \mathrm{mb}$
σ_{xnxn}	$30.26 \pm 1.1 \pm 6.35$	$26.2 \pm 1.8 \pm 5.8$
$\sigma_{0 \mathrm{nxn}}$	$108.74 \pm 9.08 \pm 22.83$	$90 \pm 55 \pm 20$
$\sigma_{1 \mathrm{n} 1 \mathrm{n}}$	$1.63 \pm 0.18 \pm 0.34$	$2.5 \pm 0.4 \pm 0.6$
$\sigma_{0 \mathrm{n} 0 \mathrm{n}}$	$370.19 \pm 33.26 \pm 77.74$	$285 \pm 145 \pm 70$
σ_{xnxn}	$509.2 \pm 34.5 \pm 106.9$	$410 \pm 190 \pm 100$

Cross Section

\square Measured ρ^{0} coherent plus incoherent production cross section
\square Fit function:

$$
\frac{d \sigma}{d t}=a^{*} \exp \left(b^{*} t\right)+c^{*} \exp \left(d^{*} t\right)
$$

- σ Incoherent/Coherent ~ 0.57
$\square \mathrm{d}=8.64 \pm 1.04 \mathrm{GeV}^{-2}$ - access to the nucleon form factor; $R_{A U} \sim 5.9 \pm 2$. fm
■ In agreement with previous STAR measurement

Spin Density Matrix

\square 2-dimensional correlation of $\Phi_{h} v s \cos \left(\Theta_{h}\right)$ allows to determine the $\rho 0$ spin density matrix elements

- Θ - polar angle between ion and direction of π^{+}
- Φ - azimuthal angle between decay plane and production plane
- Fit function:K. Schilling and G. Wolf, Nucl. Phys. B61, 381 (1973)

$$
\begin{equation*}
\frac{1}{\sigma} \frac{d \sigma}{d \cos \Theta_{h} d \Phi_{h}}=\frac{3}{4 \pi}\left[\frac{1}{2}\left(1-\gamma_{00}^{0 .}\right)+\frac{1}{2}\left(3 r_{00}^{0 \Delta}-1\right) \cos ^{2} \Theta_{h}-\sqrt{2} R e\left[r_{10}^{0 \Delta}\right] \sin 2 \Theta_{h} \cos \Phi_{h}-\gamma_{1-1}^{0.1} \sin ^{2} \Theta_{h} \cos 2 \Phi_{h}\right] \tag{1}
\end{equation*}
$$

- r_{00}^{04} represents probability $\rho 0$ having a helicity
- r_{1-1}^{04} related to the level of interference helicity non flip \& double flip
- $\mathbb{R e}\left[r_{10}^{04}\right]$ elated to the level of interference helicity non flip \& single flip
- In case of s-channel helicity conservation $r_{1-1}^{04} \Re e\left[r_{10}^{04}\right]$ equal 0 and r_{00}^{04} small

Matrix Elements

\square Fit results are consistent with S-channel helicity conservation
\square In agreement with ZEUS experiment measurements

Parameter	STAR	ZEUS
r_{00}^{04}	0.01 ± 0.02	0.01 ± 0.03
$R e\left[r_{10}^{04}\right]$	0.04 ± 0.03	0.01 ± 0.02
r_{1-1}^{04}	-0.03 ± 0.02	-0.01 ± 0.02

Interference

\square Two possible scenarios:

- Photon emitted by nucleus 1 and scattered from nucleus 2
- Photon emitted by nucleus 2 and scattered from nucleus 1

\square Cross section:
- Due to ρ negative parity amplitudes subtracted
- At mid rapidity cross section depends on the transverse momentum and impact parameter

$$
\sigma=\sigma_{0}\left(1-\cos \left(p_{T} b\right)\right)
$$

- P_{T} spectra suppressed for $\left.P_{T}<h /<b\right\rangle$

Measuring the Interference

\square Two samples topology and minimum bias

- Differ in median impact parameter
\square topology ~ 46 fm
ㅁ minimum bias $\sim 16 \mathrm{fm}$
\square Fit function: $\frac{d N}{d t}=A e^{-k t}(1+c[R(t)-1])$
ㅁ c-degree of interference
- c = 1 - interference
- $\mathrm{c}=0$ - no interference
$\square \mathrm{R}(\mathrm{t})$ - correction factor - MC int / MC no int
$R(t)=a+\frac{b}{(t+0.012)}+\frac{c}{(t+0.012)^{2}}+\frac{d}{(t+0.012)^{3}}+\frac{e}{(t+0.012)^{4}}$
Based on B. Haag presentation

Measuring the Interference

\square Interference is largest at $\mathrm{y} \sim 0$

Rapidity
$0.1<\mathrm{y}<0.5$

c	$X 2 / n d f$
1.01 ± 0.08	$51 / 47$

c	$X 2 /$ ndf
0.93 ± 0.11	$80 / 47$

ρ ' production

$\square \quad \gamma \mathrm{Au} \rightarrow \rho(1450 / 1700)->\pi^{+} \pi^{+} \pi^{-} \pi^{-}$
\square Signature

- 4 charged tracks with

$$
\Sigma Q=0
$$

- Low P_{T}
- Hits in ZDC
\square Trigger
- Neutrons detected in
 ZDC
- Cut on multiplicity

ρ ' in 2004 Data

\square Analyzed:3.9 * 10^{6} events
$\square \sim 123 \rho$ ' candidates
\square Signal $\pi^{+} \pi^{-} \pi^{+} \pi^{-}$Background $\pi^{+} \pi^{+} \pi^{+} \pi^{-}$plus low p_{T}

SumPt of Neutral Quads

g
$\frac{1}{2}$
$\frac{\square}{4}$

Iny. Mass of Neutral Cuads(sumPt<0.1)

dAu->d(np)Au Cross Section

\square Triggered with topology trigger + neutron registered in West ZDC
\square Sample of 13400 events
\square Fitted by BW + direct pions + BG

- $\sigma=2.63 \pm 0.32 \pm 0.73 \mathrm{mb}$
- mass width in agreement with PDG

P_{T} in dAu->d(np)Au ρ

$\square P_{T}$ spectra reflects yd and no YAu interactions in dAu sample
\square Coherent (deuteron stays in tact) and incoherent (deuteron dissociation) produced $\rho 0$ are accessible in dAu sample

dAu->d(np)Aup t Spectra

\square Fit to the t spectra
\square Fit function:
$F(t)=e^{-b t}$ - access to the nucleon form factor

- b $=9.06 \pm 0.85 \mathrm{GeV}^{-2}$
- Same as ZEUS

\square Turndown at small t
- The same behavior seen by yd experiment

$\mathrm{e}^{+} \mathrm{e}^{-}$Pairs Production

\square Topology triggered

- low P_{T} tracks don't reach CTB
\square Minimum bias
- In full field data, tracks curve strongly - no tracking possible
- Half field data (0.25 T) useful for analysis

Peripheral $\mathrm{e}^{+} \mathrm{e}^{-}$Pairs

\square Events selection is based on the $\mathrm{dE} / \mathrm{dx}$
\square Background from the mis-identified $\pi^{+} \pi^{-}$pairs and incoherent hadronic events
$\square P_{T}$ distribution well described by the lowest order quantum electrodynamics

$\mathrm{e}^{+} \mathrm{e}^{-}$Pairs Cross Section

\square Production cross section of the $\mathrm{e}^{+} \mathrm{e}^{-}$pairs as a function of invariant mass, transverse momentum, rapidity and $\cos (\Theta)$

- two models : equivalent photons and lowest order QED
- photon virtuality is required

Plans

\square Improved trigger for the run 2007

- Improved cluster finder for J/ Ψ trigger
- Monitoring of CTB
\square TOF will replace CTB in the near future
- Trigger simulation is underway
\square Triggering on multiplicity
\square Topology trigger
- Possible PID

Summary

\square STAR has measured coherent and incoherent photo production of $\rho 0$ meson in AuAu 200 GeV

- Differential cross section $\mathrm{d} \sigma / \mathrm{dy}, \mathrm{d} \sigma / \mathrm{dt}$ were obtained and compared to the theoretical models
- P0 spin density matrix elements $r_{00}^{04} ; \Re e\left[r_{10}^{04}\right] ; r_{1-1}^{04}$ were obtained from the angular distribution of the decay pions in the helicity frame
\square Consistent with S-channel helicity conservation
\square interference in ρ^{0} production has been measured
$\square \rho^{\prime} \rightarrow \pi^{+} \pi^{+} \pi^{-} \pi^{-}$production in AuAu 200 GeV collisions has been observed
\square incoherent ρ^{0} meson photoproduction in dAu has been measured
- Differential production cross is measured and found to be in agreement with previous measurements and theoretical models
$\square \quad$ Cross section of $\mathrm{e}^{+} \mathrm{e}^{-}$pairs production has been measured

