Single W Boson Photoproduction in
 $\mathrm{p}-\mathrm{p}$ and $\mathrm{p}-\mathrm{A}$ collisions

Ute Dreyer,
Kai Hencken, and Dirk Trautmann University of Basel

Motivation

- the couplings of gauge bosons among themselves belong to one of the least tested sectors of electroweak theory
- the photoproduction of single W bosons is a process well-suited to test the $W W \gamma$ coupling
- up to now very low rates for processes involving triple gauge boson coupling (HERA: 3 events for inclusive photoproduction [Breitweg et al., Phys. Lett. B 471, 411 (2000)])
- Can these rates be improved in p-p and p-A collisions at LHC?
- exclusive photoproduction: neutron in forward direction
- in p-p collisions contributions from elastic and inelastic photon spectra

Exclusive Photoproduction of W

- we include three Feynman diagrams in our calculation

- appropriate electromagnetic and weak form factors have to be employed

Electromagnetic NNVertex

$$
\begin{aligned}
& \Gamma_{\mu}^{\gamma N N}=-i e\left[F_{1}^{N}\left(k^{2}\right) \gamma_{\mu}+i \frac{\kappa_{N}}{2 M} F_{2}^{N}\left(k^{2}\right) \sigma_{\mu \nu}\left(p_{2}-p_{1}\right)^{\nu}\right] \\
& F_{1}^{p}(0)=F_{2}^{p}(0)=F_{2}^{n}(0)=1 \\
& F_{1}^{n}(0)=0 \\
& \kappa_{p}=1.79 \\
& \sigma_{\mu \nu}=\frac{i}{2}\left[\gamma_{\mu}, \gamma_{\nu}\right]
\end{aligned} \quad \kappa_{n}=-1.91
$$

Weak NNVertex

(spacelike region)

$$
\begin{aligned}
\Gamma_{\mu}^{W N N} & =-i g\left[F_{V}\left(q^{2}\right) \gamma_{\mu}+i F_{M}\left(q^{2}\right) \sigma_{\mu \nu} q^{\nu}+F_{S}\left(q^{2}\right) q_{\mu}\right. \\
& +F_{A}\left(q^{2}\right) \gamma_{\mu} \gamma_{5}+i F_{T}\left(q^{2}\right) \sigma_{\mu \nu} q^{\nu} \gamma_{5} \\
& \left.+F_{P}\left(q^{2}\right) q_{\mu} \gamma_{5}\right]
\end{aligned}
$$

Weak NNVertex

(spacelike region)

$$
\begin{aligned}
\Gamma_{\mu}^{W N N} & =-i g\left[F_{V}\left(q^{2}\right) \gamma_{\mu}+i F_{M}\left(q^{2}\right) \sigma_{\mu \nu} q^{\nu}+F_{S} /\left(q^{2}\right) q_{\mu}\right. \\
& +F_{A}\left(q^{2}\right) \gamma_{\mu} \gamma_{5}+i F_{\mathcal{H}}\left(q^{2}\right) \sigma_{\mu \nu} q^{\nu} \gamma_{5} \\
& \left.+F_{\nu}\left(q^{2}\right) q_{\mu} \gamma_{5}\right]
\end{aligned}
$$

- conserved vector current hypothesis:

$$
\begin{aligned}
& F_{V}\left(q^{2}\right)=F_{1}^{p}\left(q^{2}\right)-F_{1}^{n}\left(q^{2}\right)=\frac{1+\tau\left(1+\left(\kappa_{p}-\kappa_{n}\right)\right)}{1+\tau} G_{V}\left(q^{2}\right) \quad F_{V}(0)=1 \\
& F_{M}\left(q^{2}\right)=\frac{1}{2 M}\left(\kappa_{p} F_{2}^{p}\left(q^{2}\right)-\kappa_{n} F_{2}^{n}\left(q^{2}\right)\right)=\frac{1}{2 M} \frac{\kappa_{p}-\kappa_{n}}{1+\tau} G_{V}\left(q^{2}\right) \\
& G_{V}\left(q^{2}\right)=\left(1-\frac{q^{2}}{m_{V}^{2}}\right)^{-2} \quad \tau=\frac{q^{2}}{4 M^{2}} \quad m_{V}^{2}=0.71 G e V^{2}
\end{aligned}
$$

Weak NN Vertex

(spacelike region)

$$
\begin{aligned}
\Gamma_{\mu}^{W N N} & =-i g\left[F_{V}\left(q^{2}\right) \gamma_{\mu}+i F_{M}\left(q^{2}\right) \sigma_{\mu \nu} q^{\nu}+F_{S}\left(q^{2}\right) q_{\mu}\right. \\
& +F_{A}\left(q^{2}\right) \gamma_{\mu} \gamma_{5}+i F_{\mathcal{H}}\left(q^{2}\right) \sigma_{\mu \nu} q^{\nu} \gamma_{5} \\
& \left.+F_{\nu}\left(q^{2}\right) q_{\mu} \gamma_{5}\right]
\end{aligned}
$$

- by analogy with vector form factors, the axial vector form factor $F_{A}\left(q^{2}\right)$ is usually parameterized as a dipole form

$$
F_{A}\left(q^{2}\right)=F_{A}(0)\left(1+\frac{q^{2}}{m_{A}^{2}}\right)^{-2}
$$

with $F_{A}(0)=-1.26$ and $m_{A}=0.95 \mathrm{GeV}$

Weak NNVertex

(timelike region)

$$
\Gamma_{\mu}^{W N N}=-i g\left[F_{V}\left(Q^{2}\right) \gamma_{\mu}+i F_{M}\left(Q^{2}\right) \sigma_{\mu \nu} Q^{\nu}+F_{A}\left(Q^{2}\right) \gamma_{\mu} \gamma_{5}\right]
$$

here:

$$
Q^{2}=M_{W}^{2}
$$

- Fearing et al. [Phys. Rev. D5, 158 \& 177 (1972)] and Kallianpur [Phys. Rev. D34, 3343 (1986)] use two different choices of timelike weak form factors:
- constant timelike form factors
- dipole timelike form factors

Triple Gauge Boson Coupling

$$
\begin{aligned}
\Gamma_{\mu \alpha \beta}^{W W \gamma} & =i e\left\{F_{1}^{W}\left(k^{2}\right)\left[(2 Q-k)_{\mu} g_{\alpha \beta}-Q_{\alpha} g_{\mu \beta}-(Q-k)_{\beta} g_{\mu \alpha}\right]\right. \\
& \left.+\kappa_{W} F_{2}^{W}\left(k^{2}\right)\left[k_{\beta} g_{\mu \beta}-k_{\alpha} g_{\mu \beta}\right]\right\}
\end{aligned} \begin{aligned}
F_{1}^{W}(0) & =F_{2}^{W}(0)=1
\end{aligned}
$$

- Standard Model Coupling recovered for $\kappa_{W}=1$

Gauge Invariance

$$
\begin{gathered}
\mathcal{M}_{f i}=- \text { ige } \epsilon_{\mu} M^{\mu \beta} \epsilon_{\beta}^{W} \\
M^{\mu \beta}=M_{1}^{\mu \beta}+M_{2}^{\mu \beta}+M_{3}^{\mu \beta}
\end{gathered}
$$

- employing weak vertices between offshell states results in loss of explicit gauge invariance

$$
k_{\mu} M^{\mu \beta} \epsilon_{\beta}^{W} \neq 0
$$

- Fearing et al. [Phys. Rev. D 5, 158 (1972)] introduce a technique how to maintain gauge invariance by adding a term $\Delta M^{\mu \beta}$
$\Delta M^{\mu \beta}$ has to fulfill certain requirements:
- it should cancel the extra terms arising
- it should not contain new singularities in the physical region
- it should satisfy $\Delta M \ll M$

$$
M^{\mu \beta} \longrightarrow M^{\mu \beta}+\Delta M^{\mu \beta}
$$

Results (Photoproduction)

- total photoproduction cross section as function of photon energy without form factors and with constant and dipole weak timelike form factors

Results (Photoproduction)

constant timelike form factors

dipole timelike form factors

Results (Photoproduction)

constant timelike form factors

dipole timelike form factors

Results (Photoproduction)

- total photoproduction cross section as function of photon energy for different values of κ_{W}

Equivalent Photon Approximation

- impact parameter larger than the extension of the nucleus/proton
- approximated equivalent photon spectrum for ion of radius R and mass M_{A}

$$
f_{\gamma \mid A}(u) \approx \frac{2 Z^{2} \alpha}{\pi} \ln \left(\frac{1}{u R M_{A}}\right) \quad \omega=u \cdot E_{A}
$$

- approximate proton spectrum can be derived in the same way as ion spectrum, with R being the charge radius of the proton

$$
\begin{gathered}
f_{\gamma \mid p}(u) \approx \frac{\alpha}{\pi} \ln \left(\frac{0.71 G e V^{2}}{u^{2} M_{p}^{2}}\right) \quad \omega=u \cdot E_{p} \\
\sigma=\int \frac{d u}{u} f_{\gamma \mid p / A}(u) \sigma_{\gamma}
\end{gathered}
$$

Equivalent Photon Approximation (proton, elastic)

- proton spectrum can be derived approximately in the same way as ion spectrum, with R being the charge radius of the proton

$$
f_{\gamma \mid p}(u) \approx \frac{\alpha}{\pi} \ln \left(\frac{0.71 G e V^{2}}{u^{2} M_{p}^{2}}\right)
$$

- parametrization from Kniehl [Phys. Lett. B 254, 267 (1991)]

$$
\begin{gathered}
f_{\gamma \mid p}(u)=\frac{\alpha}{2 \pi} u\left[c_{1} y \ln \left(1+\frac{c_{2}}{z}\right)-\left(y+c_{3}\right) \ln \left(1-\frac{1}{z}\right)\right. \\
\left.+\frac{c_{4}}{z-1}+\frac{c_{5} y+c_{6}}{z}+\frac{c_{7} y+c_{8}}{z^{2}}+\frac{c_{9} y+c_{10}}{z^{3}}\right] \\
y=\frac{1}{2}-\frac{2}{u}+\frac{2}{u^{2}} \quad z=1+\frac{M_{p}^{2}}{0.71 G e V^{2}} \frac{u^{2}}{1-u} \\
\sigma=\int \frac{d u}{u} f_{\gamma \mid p}(u) \sigma_{\gamma}
\end{gathered}
$$

Equivalent Photon Approximation (proton, elastic)

Equivalent Photon Approximation

 (elastic)

Results (p-p and p-A collisions)

- total cross sections:
- p-p collisions: $\sim 5 \cdot 10^{-40} \mathrm{~cm}^{2}$
- Pb-p collisions: $\sim 9 \cdot 10^{-37} \mathrm{~cm}^{2}$

Results (p-p and p-A collisions)

- total cross sections:
- p-p collisions: $\sim 5 \cdot 10^{-40} \mathrm{~cm}^{2}$
- Pb-p collisions: $\sim 9 \cdot 10^{-37} \mathrm{~cm}^{2}$
- luminosities:
- p-p collisions: $L_{p p} \approx 10^{29} \ldots 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- Pb-p collisions: $\quad L_{p A} \approx 10^{29} \ldots \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

Results (p-p and p-A collisions)

- total cross sections:
- p-p collisions: $\sim 5 \cdot 10^{-40} \mathrm{~cm}^{2}$
- Pb-p collisions: $\sim 9 \cdot 10^{-37} \mathrm{~cm}^{2}$
- luminosities:
- p-p collisions: $L_{p p} \approx 10^{29} \ldots 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- Pb-p collisions: $\quad L_{p A} \approx 10^{29} \ldots \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

$$
\begin{array}{ll}
5 \cdot 10^{-4} \ldots 50 \text { events } / 10^{7} s & \text { p-p collisions } \\
\text { at least } 0.1 \text { events } / 10^{6} s & \text { Pb-p collisions }
\end{array}
$$

Results (p-p collision)

- differential cross section as function of rapidity in p-p collision

Results (p-p collision)

- differential cross section as function of rapidity in p-p collision

Results (p-p collision)

- differential cross section as function of energies in p-p collision, incident particles at 7 TeV

Results (p-A collision)

- total cross section as function of κ_{W} in $\mathrm{Pb}-\mathrm{p}$ collision

Equivalent Photon Approximation

 (proton, inelastic)- for large momentum transfers Q^{2} of the photon, the proton should be regarded as a collection of partons, which radiate as pointlike particles
- for simplicity, we neglect the dependence of the parton distribution functions on Q^{2}

$$
\begin{gathered}
\sigma=\int d x \int d u \sum_{q_{i}} e_{i}^{2} f_{q_{i} \mid p}\left(x, Q_{a v}^{2}\right) f_{\gamma \mid q_{i}}(u) \sigma_{\gamma} \\
f_{\gamma \mid q}=\frac{\alpha}{2 \pi} \frac{1+(1-u)^{2}}{u} \ln \left(\frac{Q_{\max }^{2}}{Q_{\min }^{2}}\right) \quad \omega=x \cdot u \cdot E_{p} \\
Q_{\min }^{2}=1 G e V^{2} \quad Q_{\max }^{2}=M_{W}^{2}
\end{gathered}
$$

Equivalent Photon Approximation

 (proton, inelastic)

Equivalent Photon Approximation

 (proton, inelastic)

Equivalent Photon Approximation

 (proton, inelastic)

Equivalent Photon Approximation (proton, inelastic)

Results (p-p collisions)

- total cross sections:
- p-p collisions, elastic: $\sim 5 \cdot 10^{-40} \mathrm{~cm}^{2}$
- p-p collisions, inelastic: $\sim 1.7 \cdot 10^{-39} \mathrm{~cm}^{2} \quad Q_{a v}^{2} *=\frac{Q_{\max }^{2}-Q_{\min }^{2}}{\log Q_{\max }^{2}-\log Q_{\min }^{2}}$

Results (p-p collisions)

- differential cross section as function of rapidity in p-p collision (inelastic EPA)

Results (p-p collisions)

- differential cross section as function of rapidity in p-p collision (inelastic EPA)

Results (p-p collision)

- differential cross section as function of energies in p-p collision, incident particles at 7 TeV

Conclusion

- we give an estimate of the total cross section for exclusive single W boson production in $\mathrm{p}-\mathrm{p}$ and $\mathrm{p}-\mathrm{Pb}$ collisions
- in p-p collisions two possibilities: elastic and inelastic EPA
- for elastic EPA \& for timelike form factors which fall off:
- total cross section is sensitive to the anomalous magnetic moment of the W boson
- differential and total cross sections do not depend on the choice of the form factors in the timelike region

Conclusion

- we give an estimate of the total cross section for exclusive single W boson production in $\mathrm{p}-\mathrm{p}$ and $\mathrm{p}-\mathrm{Pb}$ collisions
- in p-p collisions two possibilities: elastic and inelastic EPA
- for elastic EPA \& for timelike form factors which fall off:
- total cross section is sensitive to the anomalous magnetic moment of the W boson
- differential and total cross sections do not depend on the choice of the form factors in the timelike region

Open Questions

- feasibility of measuring this process
- Is it possible to distinguish single W boson production from other processes?
- inelastic EPA: two further diagrams exist, their contribution needs to be checked

