## The tropical approach to numerical Feynman integration

M. Borinsky, Nikhef Amsterdam

May 17, Radcor \& Loopfest 2021

Talk based on arXiv:2008.12310, to appear in Annales de l'Institut Henri Poincaré D

## Motivation

Quantum field theory

Quantum field theory
e.g. $\mathcal{L}=-\frac{1}{2}(\partial \varphi)^{2}+\lambda \frac{\varphi^{4}}{4!}$

## Quantum field theory

$$
\text { e.g. } \mathcal{L}=-\frac{1}{2}(\partial \varphi)^{2}+\lambda \frac{\varphi^{4}}{4!}
$$


perturbative expansions

$$
\mathcal{O}(\hbar)=\sum_{n \geq 0} A_{n} \hbar^{n}=\sum_{\text {graphs } G} \frac{\phi(G)}{\mid \text { Aut } G \mid} \hbar^{L_{r}}
$$

$$
\text { where } \phi(G)=\prod_{\ell} \int \mathrm{d}^{D} \boldsymbol{k}_{\ell} \prod_{e \in E} \frac{1}{D_{e}\left(\{\boldsymbol{k}\},\{\boldsymbol{p}\}, m_{e}\right)} .
$$

## A computational question

$$
\mathcal{O}(\hbar)=\sum_{n \geq 0} A_{n} \hbar^{n}
$$

Lower orders $A_{0}, A_{1}, A_{2}, \ldots$ needed to interpret experimental data.

## A computational question

$$
\mathcal{O}(\hbar)=\sum_{n \geq 0} A_{n} \hbar^{n}
$$

Lower orders $A_{0}, A_{1}, A_{2}, \ldots$ needed to interpret experimental data.

## Practical question

What is the value of $A_{0}, A_{1}, A_{2}, A_{3}, \ldots$ ?
How can we calculate them efficiently?

## A computational question

$$
\mathcal{O}(\hbar)=\sum_{n \geq 0} A_{n} \hbar^{n}
$$

Lower orders $A_{0}, A_{1}, A_{2}, \ldots$ needed to interpret experimental data.

## Practical question

What is the value of $A_{0}, A_{1}, A_{2}, A_{3}, \ldots$ ?
How can we calculate them efficiently?

## Associated 'meta' question

Is there an algorithm to compute $A_{n}$ ?
What is its runtime?

$$
\mathcal{O}(\hbar)=\sum_{n \geq 0} A_{n} \hbar^{n}=\sum_{\text {graphs } G} \frac{\phi(G)}{|\operatorname{Aut} G|} \hbar^{L_{\Gamma}}
$$

Runtime to compute $A_{n}$ for $n$ large:
 ( $\alpha$ and $\beta$ depend on theory and observable)
 evaluate a single Feynman integral of order $n$
$F(n)=$ time to evalute $n$-loop Feynman integral
'Analytic calculation':

- Unclear: What is an analytic answer for an integral?
- Can ask for an expression within a specific function space
- No function space is known that works for all F. integrals $\Rightarrow$ complicated to formulate the question
$\Rightarrow$ What counts as an anabhic answer?
cenalytic answer to computation
fast algorithm to pertoom computation numerically

In this talk

Cut the middle man!
$\rightarrow$ direct numerical evaluation

INPUT
output


Direct evaluation

$$
\begin{aligned}
\mathcal{O}(\hbar) & =\sum_{n \geq 0} A_{n} \hbar^{n}=\sum_{\text {graphs } G} \frac{\phi(G)}{\mid \text { Aut } G \mid} \hbar^{L_{r}} \\
\text { where } \phi(G) & =\prod_{\ell} \int \mathrm{d}^{D} \boldsymbol{k}_{\ell} \prod_{e \in E} \frac{1}{D_{e}\left(\{\boldsymbol{k}\},\{\boldsymbol{p}\}, m_{e}\right)}
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{O}(\hbar) & =\sum_{n \geq 0} A_{n} \hbar^{n}=\sum_{\text {graphs } G} \frac{\phi(G)}{\mid \text { Aut } G \mid} \hbar^{L_{\Gamma}} \\
\text { where } \phi(G) & =\prod_{\ell} \int \mathrm{d}^{D} \boldsymbol{k}_{\ell} \prod_{e \in E} \frac{1}{D_{e}\left(\{\boldsymbol{k}\},\{\boldsymbol{p}\}, m_{e}\right)}
\end{aligned}
$$

Via the Schwinger trick we can rewrite the Feynman integral as

$$
\phi(G)=\Gamma\left(\omega_{G}\right) \int_{\mathbb{P}_{>0}^{E-1}} \frac{\Omega}{\Psi_{G}(\boldsymbol{x})^{D / 2}}\left(\frac{\Psi_{G}(\boldsymbol{x})}{\Phi_{G}(\boldsymbol{x})}\right)^{\omega_{G}}
$$

with $\omega_{G}=E-\frac{1}{2} D h_{1}(G)$.
where

$$
\int_{\mathbb{P}_{>0}=1} \frac{\Omega}{\psi_{G}(x)^{D / 2}}\left(\frac{\psi_{G}(x)}{\Phi_{G}(x)}\right)^{\omega_{G}}
$$

where

- $\Omega$ is the standard volume form on $\mathbb{P}^{E-1}$ :

$$
\Omega=\sum_{k=1}^{E}(-1)^{k} d x_{1} \wedge \ldots \wedge \widehat{d x_{k}} \wedge \ldots \wedge d x_{E}
$$

- $\Psi_{G}=\sum_{T} \prod_{e \notin T} x_{e}$ (sum over spanning trees)
- $\Phi_{G}=\sum_{F}\|\boldsymbol{p}(F)\|^{2} \prod_{e \notin F} x_{e}+\Psi_{G} \sum_{e} m_{e}^{2} x_{e}$ (sum over 2-forests)
- $\Psi_{G}$ and $\Phi_{G}$ are homogeneous polynomials in $x_{1}, \ldots, x_{E}$.
- We assume that the integral exists.

$$
\int_{\mathbb{P}_{>0}^{E-1}} \frac{\Omega}{\psi_{G}^{D / 2}(x)}\left(\frac{\Psi_{G}(x)}{\Phi_{G}(x)}\right)^{\omega_{G}}
$$

$\Psi_{G}(\boldsymbol{x})$ and $\Phi_{G}(\boldsymbol{x})$ exhibit complicated geometric structures.
$\Rightarrow$ These integrals are hard to evaluate
$\Rightarrow$ These integrals are very interesting

$$
\int_{\mathbb{P}_{>0}^{E-1}} \frac{\Omega}{\Psi_{G}^{D / 2}(\boldsymbol{x})}\left(\frac{\Psi_{G}(\boldsymbol{x})}{\Phi_{G}(\boldsymbol{x})}\right)^{\omega_{G}}
$$

## Obstruction for direct numerical evaluation

Integrand has singularities on the boundary of $\mathbb{P}_{>0}^{E-1}$.
I.e. vanishing locus of $\Psi_{G}$ and $\Phi_{G}$ meets the boundary of $\mathbb{P}_{>0}^{E-1}$.
$\Rightarrow$ Singularities have to be blown up first

## Established solutions

$$
\int_{\mathbb{P}_{>0}^{E-1}} \frac{\Omega}{\Psi_{G}^{D / 2}(\boldsymbol{x})}\left(\frac{\Psi_{G}(\boldsymbol{x})}{\Phi_{G}(\boldsymbol{x})}\right)^{\omega_{G}} \rightarrow \int_{\mathbb{P}_{>0}^{n-1}} \frac{\prod_{i} p_{i}(\boldsymbol{x})^{\mu_{i}}}{\prod_{j} q_{j}(\boldsymbol{x})^{\nu_{i}}} \Omega
$$

Sector decomposition approach

- Algorithms to perform blowups in the general case: Binoth, Heinrich '03; Bogner, Weinzierl '07; (Hironaka 1964)
- Simple geometric interpretation:


## Kaneko, Ueda '09

All algorithms are oblivious to the specific structures on the left!

## Established solutions

$$
\int_{\mathbb{P}_{>0}^{E-1}} \frac{\Omega}{\Psi_{G}^{D / 2}(\boldsymbol{x})}\left(\frac{\Psi_{G}(\boldsymbol{x})}{\Phi_{G}(\boldsymbol{x})}\right)^{\omega_{G}} \rightarrow \int_{\mathbb{P}_{>0}^{n-1}} \frac{\prod_{i} p_{i}(\boldsymbol{x})^{\mu_{i}}}{\prod_{j} q_{j}(\boldsymbol{x})^{\nu_{i}}} \Omega
$$

Sector decomposition approach

- Algorithms to perform blowups in the general case: Binoth, Heinrich '03; Bogner, Weinzierl '07; (Hironaka 1964)
- Simple geometric interpretation:

Kaneko, Ueda '09
All algorithms are oblivious to the specific structures on the left! へ
previous

## Established solutions

$$
\int_{\mathbb{P}_{>0}^{E-1}} \frac{\Omega}{\Psi_{G}^{D / 2}(\boldsymbol{x})}\left(\frac{\Psi_{G}(\boldsymbol{x})}{\Phi_{G}(\boldsymbol{x})}\right)^{\omega_{G}} \quad \rightarrow \quad \int_{\mathbb{P}_{>0}^{n-1}} \frac{\prod_{i} p_{i}(\boldsymbol{x})^{\mu_{i}}}{\prod_{j} q_{j}(\boldsymbol{x})^{\nu_{i}}} \Omega
$$

Numerical evaluation using sector decomposition for blowups:

- Runtime to evaluate the integral up to $\delta$-accuracy

$$
\approx \mathcal{O}\left(V^{2} \cdot \delta^{-2}\right)
$$

where $V$ is the number of monomials in $\frac{\prod_{i} p_{i}(x)^{\mu_{i}}}{\prod_{j} q_{j}(x)^{\nu_{i}}}$.

- For Feynman integrals $V$ grows $\approx$ exponentially with $n$.


## Results MB 2020:

1. Numerical integration is an exercise in tropical geometry.
2. The general (oblivious) approach can be accelerated:

$$
\mathcal{O}\left(V^{2} \cdot \delta^{-2}\right) \quad \rightarrow \quad \mathcal{O}\left(V^{2}+\delta^{-2}\right)
$$

$\Rightarrow$ achievable accuracy 'decouples' from integral complexity.
3. Euclidean Feynman integration can be accelerated extremely:

$$
\mathcal{O}\left(V^{2} \cdot \delta^{-2}\right) \approx \mathcal{O}\left(2^{c n} \cdot \delta^{-2}\right) \quad \rightarrow \quad \mathcal{O}\left(n 2^{n}+\delta^{-2}\right)
$$

with $c \gg 1$ where $n$ is the number of edges of the graph.

## Theorem MB 2020

There is a 'fast' algorithm to approximate the Feynman integral.

## Theorem MB 2020

There is a 'fast' algorithm to approximate the Feynman integral.

- 3 loops is already a tough challenge for existing programs.


## Theorem MB 2020

There is a 'fast' algorithm to approximate the Feynman integral.

- 3 loops is already a tough challenge for existing programs.
- New: $\geq 17$ loops possible (with basic implementation).


## Theorem MB 2020

There is a 'fast' algorithm to approximate the Feynman integral.

- 3 loops is already a tough challenge for existing programs.
- New: $\geq 17$ loops possible (with basic implementation).
- Caveat: Only Euclidean - no Minkowski regime (so far).


## Interesting example



Figure 1: A non-generalized polylog/non-MZV 8-loop $\varphi^{4}$-graph.

## Interesting example



Figure 1: A non-generalized polylog/non-MZV 8-loop $\varphi^{4}$-graph.

$$
\Gamma(\varepsilon) \int_{\mathbb{P}_{>0}^{E-1}} \frac{1}{\Psi_{G}(x)^{2-\varepsilon}}\left(\frac{\Psi_{G}}{\Phi_{G}}\right)^{\varepsilon} \Omega \approx \frac{1}{\epsilon} 422.9610 \cdot\left(1 \pm 10^{-6}\right)+\ldots
$$

## Interesting example



Figure 1: A non-generalized polylog/non-MZV 8-loop $\varphi^{4}$-graph.

$$
\Gamma(\varepsilon) \int_{\mathbb{P}_{>0}^{E-1}} \frac{1}{\Psi_{G}(x)^{2-\varepsilon}}\left(\frac{\Psi_{G}}{\Phi_{G}}\right)^{\varepsilon} \Omega \approx \frac{1}{\epsilon} 422.9610 \cdot\left(1 \pm 10^{-6}\right)+\ldots
$$

- $\sim 10 \mathrm{CPU}$ secs to compute up to $10^{-3}$-accuracy at 8 loops.


## Interesting example



Figure 1: A non-generalized polylog/non-MZV 8-loop $\varphi^{4}$-graph.
$\Gamma(\varepsilon) \int_{\mathbb{P}_{>0}^{E-1}} \frac{1}{\Psi_{G}(\boldsymbol{x})^{2-\varepsilon}}\left(\frac{\Psi_{G}}{\Phi_{G}}\right)^{\varepsilon} \Omega \approx \frac{1}{\epsilon} 422.9610 \cdot\left(1 \pm 10^{-6}\right)+\ldots$

- $\sim 10 \mathrm{CPU}$ secs to compute up to $10^{-3}$-accuracy at 8 loops.
- $\sim 30 \mathrm{CPU}$ days to compute up to $10^{-6}$-accuracy at 8 loops.


## Interesting example



Figure 1: A non-generalized polylog/non-MZV 8-loop $\varphi^{4}$-graph.
$\Gamma(\varepsilon) \int_{\mathbb{P}_{>0}^{E-1}} \frac{1}{\Psi_{G}(x)^{2-\varepsilon}}\left(\frac{\Psi_{G}}{\Phi_{G}}\right)^{\varepsilon} \Omega \approx \frac{1}{\epsilon} 422.9610 \cdot\left(1 \pm 10^{-6}\right)+\ldots$

- $\sim 10 \mathrm{CPU}$ secs to compute up to $10^{-3}$-accuracy at 8 loops.
- $\sim 30 \mathrm{CPU}$ days to compute up to $10^{-6}$-accuracy at 8 loops.
- Higher orders in $\epsilon$ can also be computed.

The Tropical Approach

## Tropical geometry

## Philosophy

Deform geometry to sacrifice smoothness for simplicity.

Various applications in algebraic geometry.

$$
1=x^{2}+y^{2} \quad \rightarrow \quad 1=\left(x^{2}+y^{2}\right)^{\operatorname{tr}}=\max \left\{x^{2}, y^{2}\right\}
$$




## Application to Feynman graph polynomials

$$
\Psi_{G}=\sum_{T} \prod_{e \notin T} x_{e} \quad \Rightarrow \quad \psi_{G}^{\operatorname{tr}}=\max _{T} \prod_{e \notin T} x_{e}
$$

## Application to Feynman graph polynomials

$$
\begin{array}{ll}
\Psi_{G}=\sum_{T} \prod_{e \notin T} x_{e} & \Rightarrow \quad \Psi_{G}^{\operatorname{tr}}=\max _{T} \prod_{e \notin T} x_{e} \\
\Phi_{G}=\sum_{F}\|p(F)\|^{2} \prod_{e \notin F} x_{e} \quad \Rightarrow \quad \Phi_{G}^{\operatorname{tr}}=\max _{F} \prod_{\substack{ \\
\text { s.t. }\|p(F)\|^{2} \neq 0}} x_{e}
\end{array}
$$

Feynman integral: $\quad \phi(G)=\int_{\mathbb{P}_{>0}^{E-1}} \frac{\Omega}{\left(\Psi_{G}\right)^{D / 2}}\left(\frac{\Psi_{G}}{\Phi_{G}}\right)^{\omega_{G}}$

Feynman integral: $\quad \phi(G)=\int_{\mathbb{P}_{>0}^{E-1}} \frac{\Omega}{\left(\Psi_{G}\right)^{D / 2}}\left(\frac{\Psi_{G}}{\Phi_{G}}\right)^{\omega_{G}}$
$\Rightarrow$ Tropicalized version: $\quad \phi^{\operatorname{tr}}(G)=\int_{\mathbb{P}_{>0}^{E-1}} \frac{\Omega}{\left(\Psi_{G}^{\mathrm{tr}}\right)^{D / 2}}\left(\frac{\Psi_{G}^{\mathrm{tr}}}{\Phi_{G}^{\mathrm{tr}}}\right)^{\omega_{G}}$

Feynman integral: $\quad \phi(G)=\int_{\mathbb{P}_{>0}^{E-1}} \frac{\Omega}{\left(\Psi_{G}\right)^{D / 2}}\left(\frac{\Psi_{G}}{\Phi_{G}}\right)^{\omega_{G}}$
$\Rightarrow$ Tropicalized version: $\quad \phi^{\operatorname{tr}}(G)=\int_{\mathbb{P}_{>0}^{E-1}} \frac{\Omega}{\left(\Psi_{G}^{\operatorname{tr}}\right)^{D / 2}}\left(\frac{\Psi_{G}^{\operatorname{tr}}}{\Phi_{G}^{\operatorname{tr}}}\right)^{\omega_{G}}$

## QFT tropicalization

Replace all instances of $\Psi$ and $\Phi$ with their tropicalized versions.

## Tropical approach

Computations are easy for the tropicalized QFTs:

- Tropicalized Feynman integrals are easily calculated exactly.


## Tropical approach

Computations are easy for the tropicalized QFTs:

- Tropicalized Feynman integrals are easily calculated exactly.
- They correspond to volumes of certain polytopes.


## Tropical approach

Computations are easy for the tropicalized QFTs:

- Tropicalized Feynman integrals are easily calculated exactly.
- They correspond to volumes of certain polytopes.
- All observables are rational numbers/functions. Panzer 2019; MB 2020


## Tropical approach

Computations are easy for the tropicalized QFTs:

- Tropicalized Feynman integrals are easily calculated exactly.
- They correspond to volumes of certain polytopes.
- All observables are rational numbers/functions.

Panzer 2019; MB 2020
Hep - Bound

## Tropical approach

Computations are easy for the tropicalized QFTs:

- Tropicalized Feynman integrals are easily calculated exactly.
- They correspond to volumes of certain polytopes.
- All observables are rational numbers/functions. Panzer 2019; MB 2020
- When the tropical version is known exactly, numerical integration of the original integrals is just an extra step. MB 2020


## Tropical approach

Computations are easy for the tropicalized QFTs:

- Tropicalized Feynman integrals are easily calculated exactly.
- They correspond to volumes of certain polytopes.
- All observables are rational numbers/functions. Panzer 2019; MB 2020
- When the tropical version is known exactly, numerical integration of the original integrals is just an extra step. MB 2020
$\Rightarrow$ Better understanding of tropical geometry leads to faster numerical integration.


## Relevant polytopes: Generalized permutahedra


(a) The permutahedron $\Pi_{3} \subset \mathbb{R}^{3}$.
(b) Dual of $\Pi_{3}$ : The corresponding braid arrangement fan.

Gen. permutahedra are well understood thanks to Postnikov 2008 and Aguiar, Ardila 2017.

## Current limitations

Problem: Non-Euclidean kinematic regions are not as fast, because

- The generalized permutahedron structure breaks down at singular momentum configurations (IR singularities).


## Current limitations

Problem: Non-Euclidean kinematic regions are not as fast, because

- The generalized permutahedron structure breaks down at singular momentum configurations (IR singularities).
- $\Phi_{G}$ can vanish in the integration domain ( $\Rightarrow$ analytic continuation is necessary).

Conclusions

Tropical approach to Feynman integration

- Fast numerical evaluation of Euclidean Feynman integrals


## Tropical approach to Feynman integration

- Fast numerical evaluation of Euclidean Feynman integrals
- Loop order $\approx 15$ or $\approx 30$ edges are easily possible.
- Applications:
- Calculations in the Euclidean regime.
- Renormalization group calculations.
- (Massive) form factor calculations.
- ...

Tropical approach to Feyuman integration

- Fast numerical evaluation of Euclidean Feynman integrals
- Loop order $\approx 15$ or $\approx 30$ edges are easily possible.
- Applications:
- Calculations in the Euclidean regime.
- Renormalization group calculations.
- (Massive) form factor calculations.
- ...
- Much left to explore:
- Tropical amplitudes
- What is the role of the generalized permutahedra?
- IR singularities/Minkowski space
- ...

Tropical approach to Feynman integration

- Fast numerical evaluation of Euclidean Feynman integrals
- Loop order $\approx 15$ or $\approx 30$ edges are easily possible.
- Applications:
- Calculations in the Euclidean regime.
- Renormalization group calculations.
- (Massive) form factor calculations.
- ...

- Much left to explore:
- Tropical amplitudes
- What is the role of the generalized permutahedra?
- IR singularities/Minkowski space
- ...

