
The tropical approach to

numerical Feynman integration

M. Borinsky, Nikhef Amsterdam

May 17, Radcor & Loopfest 2021

Talk based on arXiv:2008.12310,

to appear in Annales de l’Institut Henri Poincaré D
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Quantum field theory
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Quantum field theory
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Quantum field theory

e.g. L = −1
2(∂ϕ)

2 + λϕ4

4!

perturbative expansions

O(!) =
∑

n≥0 An!
n =

∑
graphs G

φ(G)
|AutG |!

LΓ

where φ(G ) =
∏
#

∫
dDk#

∏
e∈E

1
De({k},{p},me)

.
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A computational question

O(!) =
∑

n≥0

An!
n

Lower orders A0,A1,A2, . . . needed to interpret experimental data.
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A computational question

O(!) =
∑

n≥0

An!
n

Lower orders A0,A1,A2, . . . needed to interpret experimental data.

Practical question

What is the value of A0,A1,A2,A3, . . .?

How can we calculate them efficiently?
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A computational question

O(!) =
∑

n≥0

An!
n

Lower orders A0,A1,A2, . . . needed to interpret experimental data.

Practical question

What is the value of A0,A1,A2,A3, . . .?

How can we calculate them efficiently?

Associated ’meta’ question

Is there an algorithm to compute An?

What is its runtime?
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O(!) =
∑

n≥0

An!
n =

∑

graphs G

φ(G )

|AutG |
!
LΓ

Runtime to compute An for n large:

O
(
αnΓ(n + β) × F (n)

)
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numberofFeynman graphs time it takes to
adorn loops for n 7 is evaluate a style
k andp depend on theory Feynman integral
and observable of order or



F (n) = time to evalute n-loop Feynman integral

‘Analytic calculation’:

• Unclear: What is an analytic answer for an integral?

• Can ask for an expression within a specific function space

• No function space is known that works for all F. integrals

⇒ complicated to formulate the question
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what counts as an analytic answer

analytic answer g
fast algorithm to

to computation perform computation

numerically



In this talk

Cut the middle man!
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direct numerical evaluation

INPUT OUTPUT

i
n
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Direct evaluation






























































Algebro-Geometric perspective

O(!) =
∑

n≥0

An!
n =

∑

graphs G

φ(G )

|AutG |
!
LΓ

where φ(G ) =
∏

#

∫
dDk#

∏

e∈E

1

De({k}, {p},me)
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Algebro-Geometric perspective

O(!) =
∑

n≥0

An!
n =

∑

graphs G

φ(G )

|AutG |
!
LΓ

where φ(G ) =
∏

#

∫
dDk#

∏

e∈E

1

De({k}, {p},me)

Via the Schwinger trick we can rewrite the Feynman integral as

φ(G ) = Γ(ωG )

∫

P
E−1
>0

Ω

ΨG (x)D/2

(
ΨG (x)

ΦG (x)

)ωG

.

with ωG = E − 1
2Dh1(G ).
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∫

P
E−1
>0

Ω

ΨG (x)D/2

(
ΨG (x)

ΦG (x)

)ωG

where
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∫

P
E−1
>0

Ω

ΨG (x)D/2

(
ΨG (x)

ΦG (x)

)ωG

where

• Ω is the standard volume form on PE−1:

Ω =
∑E

k=1(−1)kdx1 ∧ ... ∧ d̂xk ∧ ... ∧ dxE .

• ΨG =
∑

T

∏
e $∈T xe (sum over spanning trees)

• ΦG =
∑

F ‖p(F )‖2
∏

e $∈F xe+ΨG

∑
e m

2
exe(sum over 2-forests)

• ΨG and ΦG are homogeneous polynomials in x1, . . . , xE .

• We assume that the integral exists.
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∫

P
E−1
>0

Ω

ΨD/2
G (x)

(
ΨG (x)

ΦG (x)

)ωG

ΨG (x) and ΦG (x) exhibit complicated geometric structures.

⇒ These integrals are hard to evaluate

⇒ These integrals are very interesting
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∫

P
E−1
>0

Ω

ΨD/2
G (x)

(
ΨG (x)

ΦG (x)

)ωG

Obstruction for direct numerical evaluation

Integrand has singularities on the boundary of PE−1
>0 .

I.e. vanishing locus of ΨG and ΦG meets the boundary of PE−1
>0 .

⇒ Singularities have to be blown up first
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Established solutions

∫

P
E−1
>0

Ω

ΨD/2
G (x)

(
ΨG (x)

ΦG (x)

)ωG

→

∫

P
n−1
>0

∏
i pi (x)

µi

∏
j qj(x)

νi
Ω

Sector decomposition approach

• Algorithms to perform blowups in the general case:

Binoth, Heinrich ’03; Bogner, Weinzierl ’07; (Hironaka 1964)

• Simple geometric interpretation:

Kaneko, Ueda ’09

All algorithms are oblivious to the specific structures on the left!
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Established solutions

∫

P
E−1
>0

Ω

ΨD/2
G (x)

(
ΨG (x)

ΦG (x)

)ωG

→

∫

P
n−1
>0

∏
i pi (x)

µi

∏
j qj(x)

νi
Ω

Numerical evaluation using sector decomposition for blowups:

• Runtime to evaluate the integral up to δ-accuracy

≈ O(V 2 · δ−2)

where V is the number of monomials in
∏

i pi (x)
µi

∏
j qj (x)

νi
.

• For Feynman integrals V grows ≈ exponentially with n.
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Results MB 2020:

1. Numerical integration is an exercise in tropical geometry.

2. The general (oblivious) approach can be accelerated:

O(V 2 · δ−2) → O(V 2 + δ−2)

⇒ achievable accuracy ‘decouples’ from integral complexity.

3. Euclidean Feynman integration can be accelerated extremely:

O(V 2 · δ−2) ≈ O(2cn · δ−2) → O(n2n + δ−2)

with c ( 1 where n is the number of edges of the graph.
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Theorem MB 2020

There is a ‘fast’ algorithm to approximate the Feynman integral.
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Theorem MB 2020

There is a ‘fast’ algorithm to approximate the Feynman integral.

• 3 loops is already a tough challenge for existing programs.
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Theorem MB 2020

There is a ‘fast’ algorithm to approximate the Feynman integral.

• 3 loops is already a tough challenge for existing programs.

• New: ≥ 17 loops possible (with basic implementation).

14






























































Theorem MB 2020

There is a ‘fast’ algorithm to approximate the Feynman integral.

• 3 loops is already a tough challenge for existing programs.

• New: ≥ 17 loops possible (with basic implementation).

• Caveat: Only Euclidean - no Minkowski regime (so far).
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Interesting example

Figure 1: A non-generalized polylog/non-MZV 8-loop ϕ4-graph.
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Interesting example

Figure 1: A non-generalized polylog/non-MZV 8-loop ϕ4-graph.

Γ(ε)

∫

P
E−1
>0

1

ΨG (x)2−ε

(
ΨG

ΦG

)ε

Ω ≈
1

ε
422.9610 · (1± 10−6) + . . .
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Interesting example

Figure 1: A non-generalized polylog/non-MZV 8-loop ϕ4-graph.

Γ(ε)

∫

P
E−1
>0

1

ΨG (x)2−ε

(
ΨG

ΦG

)ε

Ω ≈
1

ε
422.9610 · (1± 10−6) + . . .

• ∼ 10 CPU secs to compute up to 10−3-accuracy at 8 loops.

• ∼ 30 CPU days to compute up to 10−6-accuracy at 8 loops.

• Higher orders in ε can also be computed.
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The Tropical Approach






























































Tropical geometry

Philosophy

Deform geometry to sacrifice smoothness for simplicity.

Various applications in algebraic geometry.
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1 = x2 + y2 → 1 = (x2 + y2)tr = max{x2, y2}

x

y

x

y
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Application to Feynman graph polynomials

ΨG =
∑

T

∏

e $∈T

xe ⇒ Ψtr

G = max
T

∏

e $∈T

xe
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Application to Feynman graph polynomials

ΨG =
∑

T

∏

e $∈T

xe ⇒ Ψtr

G = max
T

∏

e $∈T

xe

ΦG =
∑

F

‖p(F )‖2
∏

e $∈F

xe ⇒ Φtr

G = max
F

s.t. ‖p(F )‖2 $=0

∏

e $∈F

xe
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Feynman integral: φ(G ) =

∫

P
E−1
>0

Ω

(ΨG )D/2

(
ΨG

ΦG

)ωG
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Feynman integral: φ(G ) =

∫

P
E−1
>0

Ω

(ΨG )D/2

(
ΨG

ΦG

)ωG

⇒ Tropicalized version: φtr(G ) =

∫

P
E−1
>0

Ω

(Ψtr

G )
D/2

(
Ψtr

G

Φtr

G

)ωG
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Feynman integral: φ(G ) =

∫

P
E−1
>0

Ω

(ΨG )D/2

(
ΨG

ΦG

)ωG

⇒ Tropicalized version: φtr(G ) =

∫

P
E−1
>0

Ω

(Ψtr

G )
D/2

(
Ψtr

G

Φtr

G

)ωG

QFT tropicalization

Replace all instances of Ψ and Φ with their tropicalized versions.
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Tropical approach

Computations are easy for the tropicalized QFTs:

• Tropicalized Feynman integrals are easily calculated exactly.
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• Tropicalized Feynman integrals are easily calculated exactly.

• They correspond to volumes of certain polytopes.

• All observables are rational numbers/functions.

Panzer 2019; MB 2020
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Tropical approach

Computations are easy for the tropicalized QFTs:

• Tropicalized Feynman integrals are easily calculated exactly.

• They correspond to volumes of certain polytopes.

• All observables are rational numbers/functions.

Panzer 2019; MB 2020
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Tropical approach

Computations are easy for the tropicalized QFTs:

• Tropicalized Feynman integrals are easily calculated exactly.

• They correspond to volumes of certain polytopes.

• All observables are rational numbers/functions.

Panzer 2019; MB 2020

• When the tropical version is known exactly, numerical

integration of the original integrals is just an extra step.

MB 2020
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Tropical approach

Computations are easy for the tropicalized QFTs:

• Tropicalized Feynman integrals are easily calculated exactly.

• They correspond to volumes of certain polytopes.

• All observables are rational numbers/functions.

Panzer 2019; MB 2020

• When the tropical version is known exactly, numerical

integration of the original integrals is just an extra step.

MB 2020

⇒ Better understanding of tropical geometry

leads to faster numerical integration.
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Relevant polytopes: Generalized permutahedra

x1

x2

x3

v 123

v 132

v 213

v 231

v 312

v 321

Π3

(a) The permutahedron Π3 ⊂ R
3.

1R

y1

y2

y3

C123C213

C231

C312

C321

C132

(b) Dual of Π3: The corresponding

braid arrangement fan.

Gen. permutahedra are well understood thanks to Postnikov 2008

and Aguiar, Ardila 2017.
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Current limitations

Problem: Non-Euclidean kinematic regions are not as fast, because

• The generalized permutahedron structure breaks down at

singular momentum configurations (IR singularities).
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Current limitations

Problem: Non-Euclidean kinematic regions are not as fast, because

• The generalized permutahedron structure breaks down at

singular momentum configurations (IR singularities).

• ΦG can vanish in the integration domain

(⇒ analytic continuation is necessary).

But the approximation property still works.
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Conclusions






























































• Fast numerical evaluation of Euclidean Feynman integrals:
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Tropicalapproach toFeyamanintegration



• Fast numerical evaluation of Euclidean Feynman integrals:

• Loop order ≈ 15 or ≈ 30 edges are easily possible.

• Applications:

• Calculations in the Euclidean regime.

• Renormalization group calculations.

• (Massive) form factor calculations.

• ...

23




























































Tropicalapproach toFeyamanintegration



• Fast numerical evaluation of Euclidean Feynman integrals:

• Loop order ≈ 15 or ≈ 30 edges are easily possible.

• Applications:

• Calculations in the Euclidean regime.

• Renormalization group calculations.

• (Massive) form factor calculations.

• ...

• Much left to explore:

• Tropical amplitudes

• What is the role of the generalized permutahedra?

• IR singularities/Minkowski space

• ...
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Tropicalapproach

toFeyamanintegrations

I

https://github.com/michibo/tropical-feynman-quadrature




