News from DESY.

Eckhard Elsen Plenary ECFA Frascati, July 1-2, 2010

DESY 50 – Grand Finale of a series of memorable events

- Representatives from all major institutes
- Chancellor A. Merkel represented by G.Schütte (bmbf)
 - profound commitment to Basic Research

Formation of XFEL GmbH progressing

> XFEL GmbH with 12 partners

- > XFEL treaty has already been signed by
 - Denmark, Germany, Hungary, Russia, Sweden, Switzerland and Slovakia

Pending

- France, Greece, Italy, Poland and Spain
- China considering
- UK not joining

> Project

- 14 GeV is under discussion as the new baseline
- maintain cw-option at 7 GeV
- some (generous) contingency has been used to counteract funding constraints

Civil construction in full swing

First XFEL tunnel borer in place

Christening celebration June 30, 2010

Two borers will complete 5.8 km tunnel length until 2012. Herlind-Tunnel

Lowering

into hall

FLASH wavelength record at 4.5 nm

- > After 5 months shutdown
- > 1.2 GeV energy with module PXFEL1
- FLASH wavelength record of 4.5 nm (was 6.5 nm)
- FLASH doubles peak bunch intensity to 0.3 mJ

Module PXFEL1 in FLASH

FLASH longitudinal bunch profile

> 3.9 GHz module

- built at Fermilab
- performing well
- > 3rd harmonic
 - generates flat beam profile

Effect of

3.9 GHz module

Installation in FLASH

> All three experiments active in analysis

- = H1
- ZEUS
- Hermes
- Good commitment of the participating institutes and DESY
- > Preparing for summer conferences
 - Primary goal is precision
 - Parton distribution functions

Highly relevant for LHC

Flavour separation provides new constraints

Modeling of the hadronization

- Searches for new physics likely to be concluded first
- Data preservation seriously pushed
 - Maintain data in state that can be analyzed in the future
 - Regular series of workshop involving all recent HEP experiments

Combination of H1 & ZEUS Analyses

Single W-Production

- Combination of analyses improves precision beyond gain in statistical error
- Systematic uncertainties are considerably different between experiments and hence can be reduced

> Multi-leptons

Physics at LHC – Conference

- International conference with first LHC results
- LHC-, Tevatron-, HERAexperiments well represented
- > G. Schütte bmbf
 - underlines the importance of HEP in Germany and bmbf commitment

PHYSICS AT LHC 2010 7 - 12 June 2010 DESY, Hamburg

ATLAS and CMS

> DESY contributes to both experiments

> Significant role in commissioning

- Remote control centers at DESY
- Physics analysis carried out in the framework of the Helmholtz Alliance Physics at the Terascale

Helmholtz Alliance

Terascale Alliance – Midterm report

- > The Helmholtz Alliance *Physics at the Terascale*
 - achieves an efficient collaboration between the leading German HEP groups
 - world-class results in Terascale physics (at the LHC and beyond)
 - Review has been carried out winter Topics 2009/10 by internationally renowned experts. physics analysis GRID computing detector R&D accelerator physics
- successfully attracts top researchers (in particular at start of scientific) career).
- highly-motivating framework for students Research Centre ⇔ Universities Alliance
- Recommendations
 - continue along the present lines
 - Alliance should continue to play a structural role in the future.
 - ascertain the future of the Alliance

Status ALPS

Most stringent limits for *light* through walls experiments

> Laser intensity increase achieved by resonant power buildup

meV region effectively covered with Ar data

 g_{-} [GeV⁻¹]

OLYMPUS Physics program

- > Resolve p-Form Factor discrepancy
- Measure ratio e⁺/e⁻ with ~1% accuracy
 - Use 100 mA e⁺/e⁻ beam of DORIS
 - Regular change of polarity
- > Unpolarised H-target
 - Target cell has to be installed this winter
- > Experiment installation July 2011
 - Minimal interference with DORIS operation

Status OLYMPUS

> Reuse BLAST detector

- BLAST detector has been dismounted at MIT
- components arriving (4 of 6 shipments in Hamburg)
- Drift chambers being rewired at DESY
- Experimental site: ARGUS removed, pit prepared

TTTT

Alexander von Humboldt Professorship for Brian Foster

- > AvH Professorship has been offered to B Foster (Oxford)
- > 5 years generous support for research at DESY and Hamburg University
 - HERA
 - Linear Collider
 - Advanced accelerator concepts
- Starting summer 2011 (provided detailed negotiations converge).

ILC cavity gradient yield

SRF Quality Assurance and Failure Mitigation

- Package of ILC-HiGrade
- > Goals: High-Gradient Cavities
 - Rapid testing
 - Fast feedback to manufacturer
 - High quality standards
- > will use industrial production

Correlations of Temperature Map and Optical Features on the Nb cavity inner surface

Optical Inspection of 9-cell cavities Handling of Cavities

ILC – FLASH 9mA Experiment

- > As a user machine FLASH is typically running with a few bunches only
- ILC-like operations mode
- FLASH ran with more than 2200 bunches of 3nC @ 3 MHz (for short periods

		XFEL	ILC	FLASH design	9mA studies
Bunch charge	nC	1	3.2	1	3
# bunches		3250	2625	7200*	2400
Pulse length	μS	650	970	800	800
Current	mA	5	9	9	9

comparable requirements

Conclusion

> XFEL project advancing visibly; industrial phase has started

> DESY HEP firmly anchored in LHC experiments

- Builds on the legacy of the HERA experiments and the ongoing analyses
- DESY acts as a facilitator for physics analyses in Germany through the Terascale Analysis Centre, schools and workshops
- DESY plays a key role in the management of the ILC; the project is advancing to a TDR in 2012/3 – in phase with strategic decisions in the field
 - DESY is the only place to provide experience of large scale production of SRF cavities
 - ILC-HiGrade is dedicated to pushing the gradient in an industrial framework
- > DESY's infrastructure comes to bear in precision experiments
 - OLYMPUS
 - ALPS

always welcome

Calculation of 2-Photon Exchange

 \rightarrow

Only experiment can definitively resolve the contributions beyond single photon exchange

Measure ratio of positron proton/electron proton cross sections $\sigma = (1\gamma)^2 \alpha^2 + (1\gamma)(2\gamma)\alpha^3 + \dots$

 $e^- \iff e^+ \Rightarrow \alpha \iff -\alpha$

$$\sigma(\text{electron-proton}) = (1\gamma)^2 \alpha^2 - (1\gamma)(2\gamma)\alpha^3 + \dots$$

 $\sigma(\text{positron-proton}) = (1\gamma)^2 \alpha^2 + (1\gamma)(2\gamma)\alpha^3 + \dots$

