Tracking at the LHC

- Aims of central tracking at LHC
- Some basics influencing detector design
- Consequences for LHC tracker layout
- Measuring material before, during and after construction

5 February 2011

Two General Purpose Detectors

5 February 2011

Two more specialised, large detectors

From the outside, all you see is muon chambers. These are trackers too...

Most particles are absorbed in the calorimeters, which measure their energy. Muons (& neutrinos) escape.

This lecture concentrates on central trackers.

Measure charged particles as they emerge from the interaction point, disturbing them as little as possible.

5 February 2011

Role of trackers at LHC

- ATLAS and CMS GPDs
 - Central tracker covers $|\eta|$ < 2.5.
 - Polar angle expressed as pseudorapidity: $\eta = -\ln \tan (\theta/2)$
- ALICE optimised for heavy ions, high occupancy
 - Tracker restricted to $|\eta|$ <0.9, plus forward muons
- LHCb beauty-hadron production in forward direction

Role of trackers at LHC

- Measure the trajectory of charged particles
 - Measure several points ("hits") along the track.
 - Fit curves to the hits (helix, straight line)
 - → measure the momentum of charged particles from their curvature in a magnetic field.
- High occupancy, radiation dose and data rates
 - At full design luminosity, >20 interactions per pp bunch crossing → 1000 charged particles in tracker, every 25ns.
 - Even higher multiplicity in central (head-on) Pb-Pb collisions (ALICE speciality) with >10000 charged particles in trackers
 - Increasing sensor granularity to reduce occupancy increases the number of electronics channels, increasing material and heat load.
- Minimise material so as to minimise interactions of charged (and neutral) particles before the calorimeter

5 February 2011

Role of trackers at the LHC

- Extrapolate back to the point of origin. Reconstruct:
- Primary vertices
 - → distinguish primary vertices and identify the vertex associated with the interesting "hard" interaction
- Secondary vertices
 - Identify tracks from tau-leptons, b and c-hadrons, which decay inside the beam pipe by lifetime tagging
 - Reconstruct strange hadrons which decay in the detector volume
 - Identify photon conversions, nuclear interactions

Primary vertices

Run Number: 153565, Event Number: 4487360

Date: 2010-04-24 04:18:53 CEST

Event with 4 Pileup Vertices in 7 TeV Collisions

5 February 2011

Lifetime tagging

ΡV

SV

Tracks have significant impact parameter, d_0 , and maybe form a reconstructed secondary vertex

5 February 2011

LHCb Preliminary

EVT: 49700980

RUN: 70684

12 -

10

8

6

4

2 -

scale in mm

Pippa Wells, CERN

Jet

Role of trackers at LHC

- Trackers also contribute to particle identification (PID)
 - Measure rate of energy loss (dE/dx) in the tracker
 - Use dedicated detectors to distinguish different particle types
 - Transition Radiation Detectors also contribute to tracking
 - Time of Flight
 - Ring Imaging Cerenkov Detectors
 - Match tracks with showers in the calorimeter
 - Identify electrons from characteristic shower shape
 - Match central tracks with muon chamber track segments
 - Muon chamber information improves muon momentum measurement
- Focus today on vertexing, tracking and measuring material...

Track coordinates

With a uniform B field along the z-axis (= beam line), track path is a helix (i.e. for ALICE, ATLAS or CMS central trackers) Pseudorapidity, $\eta = -\ln \tan (\theta/2)$. Transverse momentum, $p_T = p \sin \theta$ Transverse (*xy*) and Longitudinal (*rz*) projections. Define impact parameter w.r.t. point of closest approach to origin or PV

Impact parameter resolution

Uncertainty on the transverse impact parameter, d_0 , depends on the radii and space point precision. Simplified formula for just two layers:

$$\sigma_{d_0}^2 = \frac{r_2^2 \sigma_1^2 + r_1^2 \sigma_2^2}{(r_2 - r_1)^2}$$

Suggests small r_1 , large r_2 , small σ_1 , σ_2 But precision is degraded by multiple scattering...

Multiple Scattering

Particle incident on a thin layer, ٠ fraction x/X_0 of a radiation length thick, is bent by angle ω

- Distribution of ω is nearly Gaussian (central 98%)
- $d_0 = r \tan \omega \approx r \omega$

K. Nakamura et al. (PDG), J. Phys. G 37, 075021 (2010)

- $\sigma_{d_0} = \frac{r}{n} 13.6 \text{MeV} \sqrt{\frac{x}{x_0}} \left[1 + 0.038 \log \left(\frac{x}{x_0} \right) \right]$
- Higher momentum, $p \rightarrow$ less scattering
- Best precision with small radius, r, and minimum thickness x

⁵ February 2011

Transverse IP resolution

For a track with $\theta \neq 90^{\circ}$ $r \rightarrow \frac{r}{\sin \theta}$, $x \rightarrow \frac{x}{\sin \theta}$

Resulting in:

$$\sigma_{d_0} \approx \sqrt{\frac{r_2^2 \sigma_1^2 + r_1^2 \sigma_2^2}{(r_2 - r_1)^2}} \oplus \frac{r}{p \sin^{3/2} \theta} 13.6 \text{MeV} \sqrt{\frac{x}{x_0}}$$

$$\sigma_{d_0} \approx \alpha \oplus \frac{b}{p_T \sin^{1/2} \theta}$$

Constant term depending only on geometry and term depending on material, decreasing with p_T

5 February 2011

Summary of pixel layouts

	ALICE	ATLAS	CMS
Radii (mm)	39 – 76	50.5 - 88.5 - 122.5	44 – 73 – 102
Pixel size <i>r</i> φ x <i>z</i> (μm²)	50 x 425	40 x 400	100 x 150
Thickness (µm)	200	250	285
Resolution r_{ϕ} / z	12 / 100	10 / 115	~15-20
Channels (million)	9.8	80.4	66
Area (m ²)	0.2	1.8	1
The LHCb VELO: forward geometry strip detector with 42 stations along, nner radius of 7 mm.	cross section a xz	at y=0 390 mrad 390 mrad interaction region $\sigma = 5.3 \text{ cm}$ VELO station	60 mrad
Moves close to beam when it is stable.	x		8.4 cm
5 February 2011	VELO (stab	fully closed ble beam)	VELO fully open

IP resolutions

S.Alekhin et al. HERA and the LHC - A workshop on the implications of HERA for LHC physics:Proceedings Part B, arXiv:hep-ph/0601013.

IP resolutions

5 February 2011

Measuring momentum

• Circular motion transverse to uniform B field: $p_T[GeV/c] = 0.3 \cdot B[T] \cdot R[m]$

• Relative momentum uncertainty is proportional to p_T times sagitta uncertainty, σ_s . Also want strong B field and long path length, L

Measuring momentum

Precision in σ_s from N points, each with resolution $\sigma_{r\phi}$ is:

$$\sigma_{s} = \sqrt{\frac{A_{N}}{N+4}} \frac{\sigma_{r\phi}}{8}$$

Statistical factor $A_N = 720$: (Gluckstern)

The point error, $\sigma_{r\phi}$ has a constant part from intrinsic precision, and a multiple scattering part, so for σ_s :

Multiple scattering contribution: $\sigma_s \propto \frac{L}{p_T \sin^{1/2} \theta} \sqrt{\frac{L}{X_0}}$

 $\frac{\sigma_{p_T}}{p_T} = \frac{8p_T \cdot \sigma_s}{0.3BL^2} \approx a \cdot p_T \oplus \frac{b}{\sin^{1/2} \theta}$

Momentum resolution

2008 JINST 3 S08004 CMS Experiment 2008 JINST 3 S08003 ATLAS Experiment

CMS tracker layout

• Silicon Barrels and Disks (including End-Cap disks)

- Barrels have 3 pixel layers and 10 microstrip layers
 - Inner strips 10cm x 80 to 120 μ m (320 μ m thick)
 - Outer strips 25cm x 180 to 120 μ m (500 μ m thick for S/N)
 - 4 strip layers have additional stereo module for z coordinate

5 February 2011

Barrel track passes: ~36 TRT 4mm straws (Transition Radiation Tracker – gas detector)

4x2 Si strips on stereo modules12cm x 80 μm, 285μm thick

3 pixel layers, 250μm thick

5 February 2011

Pippa Wells, CERN

4 η

⁵ February 2011

5 February 2011

ALICE heavy ion event display

CMS Tracker & ALICE TPC

(plus a LEP silicon detector!)

5 February 2011

LHCb tracking

Comparison of (barrel) tracker layouts

	ALICE	ATLAS	CMS
R inner	3.9 cm	5.0 cm	4.4 cm
R outer	3.7 m	1.1 m	1.1 m
Length	5 m	5.4 m	5.8 m
η range	0.9	2.5	2.5
B field	0.5 T	2 T	4 T
Total X ₀ near η=0	0.08 (ITS) + 0.035 (TPC) + 0.234 (TRD)	0.3	0.4
Power	6 kW (ITS)	70 kW	60 kW
rφ resolution near outer radius	~ 800 μm TPC ~ 500 μm TRD	130 μm per TRT straw	35 μm per strip layer
p_T resolution at 1GeV and at 100 GeV	0.7% 3% (in pp)	1.3% 3.8%	0.7% 1.5%

Summary - Precision of trackers

- Intrinsic space point resolution
 - Sensor design (pixels, strips, gas detectors...)
- Magnetic field
 - Strength, and precise knowledge of value
- Alignment
 - Assembly precision, survey, stability
 - Measure the positions of detector elements with the tracks themselves
 - Control systematic effects
- Multiple scattering and other interactions
 - Minimise the material
 - Measure the amount of material in order to simulate the detector and reconstruct tracks correctly
 - Also affects energy measurement in calorimeter

Weighing detectors before construction

Keep track of all the parts, big and small. Weigh them, and know what material they are made of.

Weighing detectors during construction

Weigh assembled parts where possible, to cross check. eg. Measured TRT, and TRT+SCT after insertion.

Compare the weighing methods...

- Measured weight (from weighing complete detector)
- Estimated weight from adding up all the parts
- Simulated weight as implemented in Monte Carlo description

Detector	Measured weight (kg)	Estimated weight (kg)	Simulated weight (kg)
SCT barrel	201 ± 20	222 ± 6	222
TRT barrel	707 ± 20	703 ± 3	700
SCT+TRT barrel	883 ± 20	925 ± 7	922
SCT end-cap A	207 ± 10	225 ± 10	225
SCT end-cap C	172 ± 10	225 ± 10	225
TRT end-cap A	1118 ± 12	1129 ± 10	1131
TRT end-cap C	1120 ± 12	1129 ± 10	1131
Pixel barrel		20.1	18.3
Pixel package	193.5 ± 5	201	197

5 February 2011

Weighing detectors after construction

- Central trackers are buried inside the experiments
- Identify material interactions to assess material, eg.
 - Photon conversions
 - Nuclear interactions
 - Stopping tracks (track ends when particle interacts)
- Have to disentangle effects of
 - Material
 - Alignment
 - Magnetic field map
 - → Effects on momentum measurements which distort the measured masses and width of particles, (K⁰_s, J/ψ, Z...) or give systematic +/- charge differences
- In general, compare real data with detailed GEANT 4 simulation based on design, and gradually refined

Photon conversions

- Conversions, $\gamma \rightarrow e^+e^-$, example from CMS
 - Two oppositely charged tracks
 - Consistent with coming from the same point
 - Consistent with fit to a common vertex, imposing zero mass

CMS conversions in pixel barrel

- ϕ distribution for conversions with |z| < 26 cm, R< 19 cm
- → Compare pixel barrel structure in data and simulation
- Spikes due to cooling pipes

5 February 2011

CMS conversions

- Correct for identification efficiency to make a quantitative measurement of pixel and inner tracker barrel material
- Relative agreement between data and simulation ~10%
- Local discrepancy for support between TIB and TOB

Nuclear interactions

- ATLAS example
 - Tracks with d₀>2mm w.r.t PV
 - Form secondary vertices
 - Mass veto for γ , K⁰_s, Λ

- x-y view for |z|< 300mm
- Sensitive to interaction lengths

ATLAS-CONF-2010-058

5 February 2011

Radius [mm]

- Full φ range shows displaced beam pipe(i.e. r varies with φ)
- Some features more spread out in data than MC.

Radius [mm]

LHCb VELO material

2.4M vertices in plot ۲

LHCb Preliminary $\sqrt{s} = 7$ TeV

- ~20k from material interactions •
- Require \geq 3 tracks per vertex •

RF foil photo with VELO open

Alignment performance

- Track based alignment minimises residuals for a sample of tracks, by adjusting position of sensitive elements.
- Position and width of known mass objects allows momentum resolution measurement.

from F. Meier

Alignment performance

Systematic distortions, example a twist, are hard to detect. Track residuals can be minimised but p_T is biassed.

from P. Brückman de Renstrom

Two oppositely charged tracks, consistent with the same vertex. Assume the tracks are pions. Reconstruct the pair invariant mass. PDG value 497.614 \pm 0.024 MeV

Two oppositely charged tracks, consistent with the same vertex. Assume the tracks are pions. Reconstruct the pair invariant mass.

PDG value 497.614 \pm 0.024 MeV

Tracker Material Budget

CMS example: K_s^0 mass vs η 1< $|\eta|$ <1.5 is most difficult to model Mass shifted upwards in simulation Same trend with η in data

CMS-PAS-TRK-10-004

5 February 2011

Pippa Wells, CERN

2

3

 $K_{S} \eta$

Pions vs. muons

• Because of material interactions, track finding efficiency is lower for π and e than for μ

<u>μ⁺μ⁻ mass spectrum</u>

Well known resonances. Observed widths depend on p_T resolution. Again, check for biases in mass value as a function of η , ϕ , p_T ...

$J/\psi \rightarrow \mu^+\mu^-$ mass and width

As a function of the η of the more forward muon.

$J/\psi \rightarrow \mu^+\mu^-$ mass and width

As a function of muon transverse momentum (CMS example)

Reconstructed mass in data tends to be too low at low momentum, and p_T resolution is up to 10% worse (from width). These distributions can then be used to make corrections.

⁵ February 2011

$J/\psi \rightarrow \mu^+\mu^-$ mass and width

Momentum resolution measured using J/ψ

(This only uses a small sample from early 2010 run)

⁵ February 2011

<u> $Z \rightarrow \mu^+ \mu^-$ the highest mass cross-check</u>

- Example from ATLAS before/after improvements to Inner Detector (& Muon System) alignment and material description.
- Getting closer to resolution in perfectly aligned MC for higher p_{τ}

5 February 2011

Conclusions

- LHC tracker layouts were optimised for the physics goals:
 - Distinguish primary vertices
 - Measure impact parameters and secondary vertices
 - Measure the track momentum
- Trade-off between precision and material
 - Most of the material budget is not in the sensitive elements, but support structures, cables, cooling...
- Already seeing good agreement between simulated performance and measurements with data, and the tools are in place to make more improvements
 - Careful work to control material during construction
 - Alignment of detectors using tracks is already high quality
 - Photon conversions, material interactions, and masses of known particles allow material to be measured and systematic checks to be made