Software Interlock System

J. Wenninger

SIS team: L. Pereira, L. Ponce, J. Wenninger, J. Wozniak (LP² + JW²)

SIS Overview

SIS @ LHC used for:

- Injection interlocking.
- Circulating beam interlocking (\rightarrow dump).
- Powering & access interlocking not for today.
- Beta* reconstruction and publication (via MTG) not for today.
- **To perform its job @ LHC:**
 - SIS has subscriptions to <u>2409</u> control system devices / parameters.
 - SIS exports signals to:
 - oBICs (8 signals)update period 2 sBIC timeout 20 s
 - MTG (2 signals) update period of 4 s
 - PICs (36 signals) update period of 2 s

0

SIS Overview

- Interlock types:
 - Initially: used simple test logic comparison of acquired value to reference value (number or boolean) – hardcoded into configuration.
 - Now: more and more complicated interlocks (JAVA) that pull together multiple signals and DB references. Very flexible, but complex interlocks are tricky to test !
- For the moment all interlocks are maskable except:
 - XPOC
 - BIC pre-operational checks
 - LHCf injection inhibit.
- Masking:
 - Independent of SBF.
 - Allowed for all holders of RBAC roles : LHC-EIC, MCS-SIS

SIS Availability

LHC SIS runs on dedicated HP server in the CCR.

- The server is equipped with a timing card (CTRI).
- The SIS processes of SPS and LHC have never failed during operation in the last 2 years.
 - Server crashes were however observed in the 2009-10 shutdown. This was traced to a timing library (concurrency) and fixed.
 - In case of failure the timeouts on the SIS inputs to the BICs lead to beam dump/injection or extraction inhibit.

SIS Injection Interlocks

Test	Coverage	Status	Comments
PC states	All PCs	Operational	
PC currents	RB, RQ, RD, MCBX	Operational	Extend to IPQ?
QPS_OK	All circuits with QPS	Operational	
RF	Synchronization Cryo maintain	Operational	A few interlocks on fRF to come
BTV position	Ring and dump line BTVs	Operational	Dump BTV not tested with intensity (more int. needed)
Injection bucket	Abort gap and over- injection protection	Operational	Some issues with BQM reliability
Injection mode		Operational	Avoid injecting with wrong mode
Energy		Operational	
(Pre)-op checks	XPOC, PM, IQC, BIC	Operational	
LHCf		Operational	via DIP
Triplet alignment	WPS in all IRs	Operational	

Injection summary

- □ Large number of interlocks (> 3000!):
 - Very high reliability given the number of signals.
 - Loosing one injection is not too dramatic can afford to be tough, but must avoid too many false decision (credibility !).
 - A few more interlocks to come...
 - Availability issues:
 - BQM issue with the crate for beam1.
 - LHCf in 2009 'solved'.

SIS Circulating Beam Interlocks

Test	Coverage	Status	Comments
SMP energy	All RBs, SMP energy	Operational	0.2% to 1%, relax with faster ramp?
SMP energy distribution	All BLM crates	Operational	Verify energy across all BLM crates
BETS	Q4 and MSD in IR6	Masked	Ready to go
TCDQ – beam	Beam center in TCSG TCSG gap TCDQ-TCSG retraction	Operational Masked Masked	Achievable tolerances depend on orbit stability
COD integral	All arc Hor. CODs	Operational	dp/p < 0.2%
Orbit	All ring BPMs	Operational	Achievable tolerances depend on orbit stability
COD settings	All CODs	Operational in stable beams	Achievable tolerances depend on reproducibility and variation in ramp & squeeze
COD trips	60 A CODs (not in PIC)	Masked	Dump if COD(s) trips and missing kick > threshold. <u>NEW.</u>

Orbit and COD interlocking

Principle:

- Limit global orbit excursions.
- Catch un-detected orbit bumps (via COD settings).
- Interlocks settings per COD/monitor:
 - Reference, tolerance, enable flag.

Tolerances are a balance between safety, availability and interlock complexity.

- So far the tolerance settings were limited by beam excursion in ramp and squeeze. Much better now with OFB.
- Ramp and squeeze cleanup will also allow for tigh(er) COD interlocks.

Orbit interlocking

Enforce overall orbit envelope. Present settings:

- Per plane and beam accept max of <u>10 BPMs out of tolerance</u>.
- Faulty BPMs are ignored.
- \circ Tolerances (wrt ref) stable beams : ± 2.5 mm IR1,2,5,8, ± 2 mm elsewhere
- Tolerances (wrt ref) other modes : \pm 6 IR1,2,5,8, \pm 3-3.5 mm elsewhere
 - larger tolerance in IRs to cover separation ON/OFF phases.

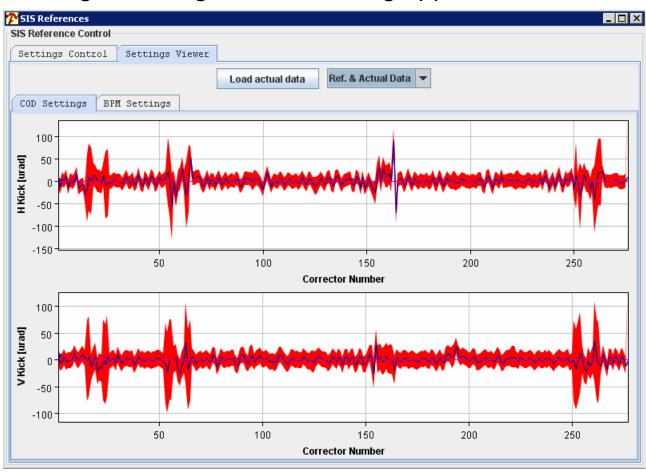
>> Provides de facto an energy offset interlock of 0.1-0.2 %.

Tolerances can now be significantly tightened with OFB.

- Could reduce tolerances to around ±1 mm (at least in arcs + IR 3,4,6, & 7), maybe even less for stable beams.
 - Could be a problem at injection (before orbit corrected). Deactivate automatically if intensity < 5E10 & injection energy?

COD settings

Aim is to catch bump-like structure that are only visible on few BPMs.


- Simple logic: trigger when 2 kicks are out of tolerance (pi-bump like, but also for 'larger' bumps).
- Could be made more intelligent but would involve more complex dependence (optics...).
- Settings stable beams : \pm 50 μrad IR1,2,5,8 (sep. scans), \pm 25 μrad elsewhere probably possible to reduce with OFB (not IR1,2,5 and 8).
- Settings other modes : to be defined. One value + tolerances per COD to cover ramp and squeeze.

Complex changes of COD settings in ramp and squeeze:

 Need SW to analyze changes and define tolerances around required operational margin (in preparation...). But this also needs a number of ramps in regular operation to define reliable limits.

Orbit interlocking in steering

Display of orbit and COD interlock settings together with actual data, and handling of settings in the steering application.

MPS Internal Review : SIS / J. Wenninger

TCDQ orbit interlocking

□ Ensures beam centered in TCSG (\leftarrow → offset wrt TCDQ):

- $_{\odot}\,$ Present setting : tolerance of \pm 2 mm (independent of E).
- Limited so far by:
 - Orbit changes in ramp & squeeze >> solved now by OFB.
 - Intensity dependence (BPMSB the worst guys !).
 - \circ Collimator gap consistency (injection → stable beams).

Very efficient – triggered already a few times – no false decision.

With OFB active, the interlock windows can be reduced – exact values to be confirmed.

 \circ Tolerance: \pm 1 mm is in reach (1.5 sigma @ 3.5 TeV).

COD trips

□ 60 A arc CODs are not interlocked by PIC.

- Presently a PC trip does not lead to a beam dump (only injection inhibit via SIS !).
- New interlock in SIS to catch 60 A trips:
 - Monitor all 60 A states and detect any PC failure.
 - $_{\odot}\,$ Dump beam if the total kick of failing PC(s) exceeds a threshold (so far 10 μrad).
 - Tested at 450 GeV and ready to go…

Settings management

Settings for orbit, COD and TCDQ interlocks are 'virtual' critical devices in LSA – digitally signed (role LHC-MCS-SIS).

- Requires regular updates to follow evolution of the machine.
- This will hopefully become more stable soon....
- o So far I manage all the settings need some people to back me up !

Running faster?

□ SIS evaluates its checks every 2 seconds.

Server CPU load ~ 20-30%

Main clients provide data at 1 Hz or less.

 $_{\circ}~$ Orbit at 1 Hz.

◦ PC states and currents at 0.5 Hz.

>> Could move to 1 s period – but gain is probably marginal.

Safety...

Protection of the subscription UI.

- Avoid accidental stopping of data subscription mostly availability, but also safety when there are timeouts.
- □ Masking.
 - So far masking rights apply to all signals. Could consider making masking role-dependent.
 - Could consider making masks of selected interlocks SBF dependent.
 - not clear how much work this implies.

Summary

□ SIS is a reliable solution for quite a class of interlocks:

- Injection interlocks (reliability less critical).
- (Complex) interlocks involving multiple systems.
- Interlocks for distributed systems like orbit.
- Quick solutions for un-expected situations.

Lt is all software:

- Reaction time limited to around 1 second.
- Safety will never be SIL3... even if it is better than what I would have expected some years ago.
- Interlocks on orbit and CODs:
 - Quite powerful but require constant checking to follow evolution of the machine.
 - One can do better but watch out for the settings nightmare !