
### BLM – MPP review

- · Hardware nonconformities and safety
  - Equipment failures
  - · IP 3 signal cross talk
  - IP 2 sanity check failures
  - SEM signal
- Maximum of Acquisition Range
- · Monitors with Filter
- · Thresholds
  - · Global view
  - · Generation
  - · LSA developments
- · MPP test remaining
- · Audit

## Overview of failures (since Feb. 2010)



BLM - MPP review, BLM Team, B. Dehning

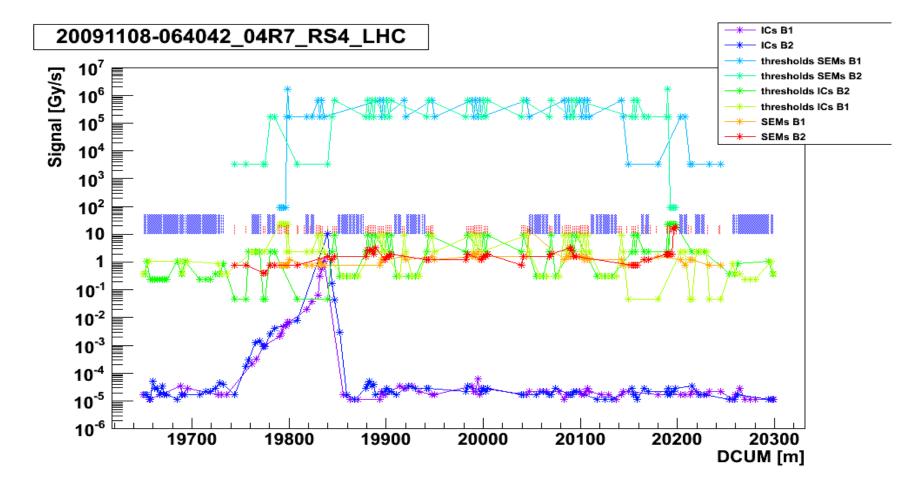
# System degradation analysis (I)

### System Component & Action:

- Ionisation Chambers
  - Sanity checks [once daily + 200 dur. tech. stop]
  - Check of all spares [ opening ~300 monitors]
- Current-to-Frequency Converter
  - Noise & Offset [technical stop]
- Optical links
  - Statuses & Errors [daily + weekly]

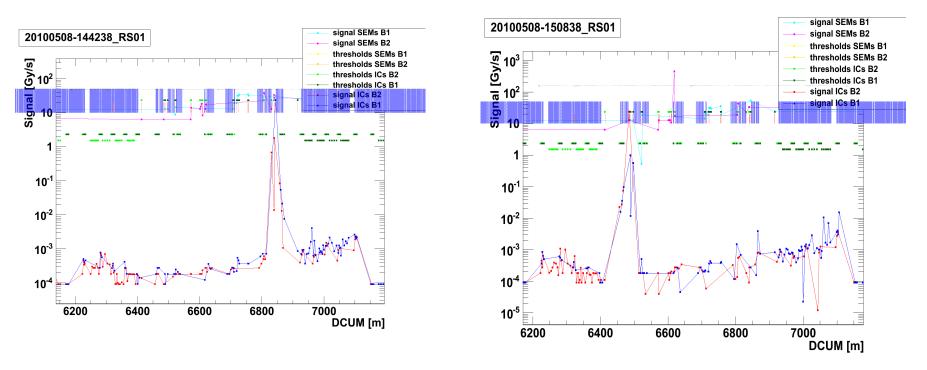
### **Criticality:**

- Degradation in between of sanity checks: fast losses cannot correctly detected [reliability]
- High noise/offset can give false dump requests
   [availability]
- Lost packets provoke spurious dump requests [availability]


# System degradation analysis (II)

### **Future Actions (increase availability):**

- Improve the analysis tools to achieve:
  - Better combination of results
  - Better display of results
  - Automation
  - Historical comparisons
- Large scale test of Optical Links:
  - Measure optical power of all links a few times
  - Understand if there is degradation over time
  - Understand if there is correlation with temperature


Comparison of BLM Monitor Behaviour between IR 3 and IR 7 (I)

#### Shooting on TCLA in IR 7



### Comparison of BLM Monitor Behaviour between IR 3 and IR 7 (II)

#### Shooting on TCLA in IR 3 (beam 1 and beam 2)



The measured losses are equal in IP3 and in IP7 and they are equal for Left and Right side in IP3

 $\rightarrow$  Functionality of the system is given and protection can be assured

Comparison of BLM Monitor Behavior between IR 3 and IR 7 (III)

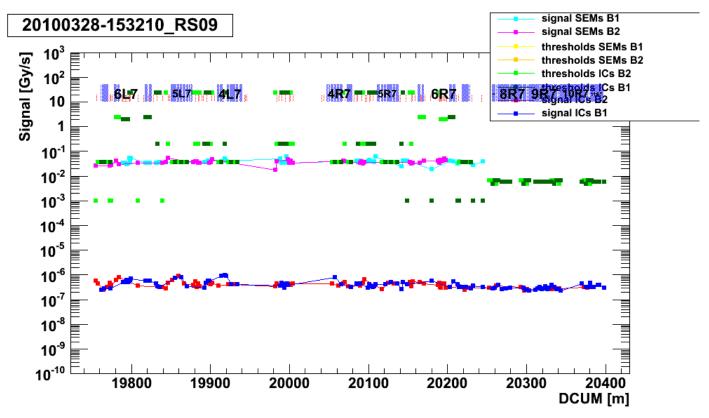
Actions being taken so far:

- Checked network structure
- HV on the front ends is stable, variation < 50 V (Unom=1.5kV)
- It can be not excluded that the effects come from signal cables
- Expected non-conformity in HV distribution
- Investigations and analysis ongoing, need more detailed studies

•Additional installations being done in order to investigate noise

1) Installation of batteries on spare channels:

- BJBAP.A6R3 Channel 7: connected battery with 1.5μA
- BJBAP.A8R3 Channel 7: connected battery with 1.5μA
- BJBAP.B8R3 Channel 7: connected battery with 1.5μA


2) Installation of cable + T splitters + HV resistors on spare channels:

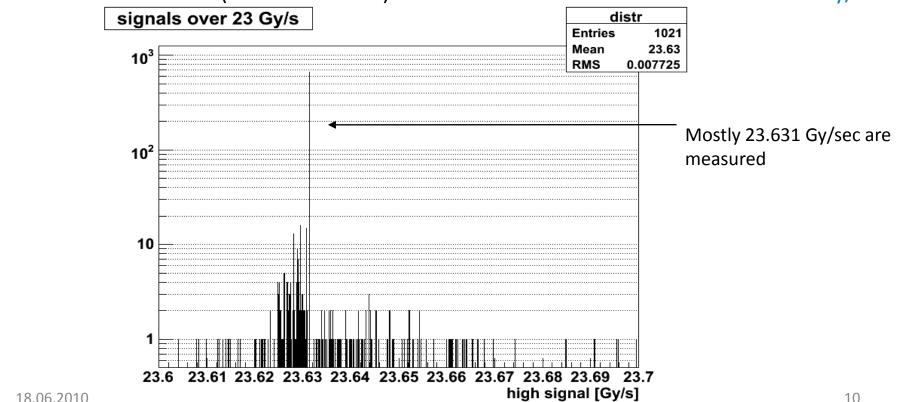
- BJBAP.A6R3 Channel 8: HV via 100Mohm 15μA
- BJBAP.A8R3 Channel 8: HV via 100Mohm 15μA
- BJBAP.B8R3 Channel 8: HV via 100Mohm 15μA
- Beam tests and analysis pending

# IP2 Sanity Check Nonconformity

- Observation: sequencer initiated sanity check does not start
- Consequence: timer reset is not done, no beam permit given
- Beam permit generation is independent of sequencer
- Non conformity is not safety critical

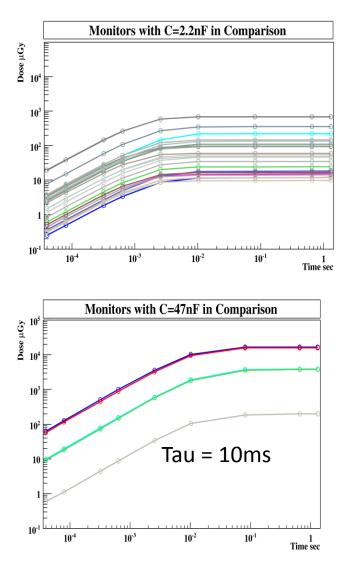
# Resonance Crossing – SEM signal

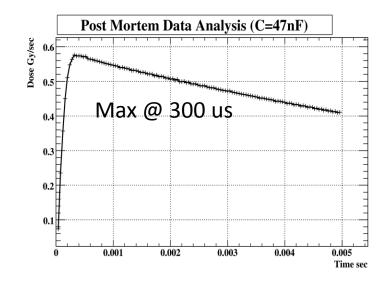



No signal from SEM expected: probable due to ionization in air, more investigations needed

#### Maximum Values in the BLMs during Operation in 40 $\mu s$

Calibration: 1mA = 200 counts \* 1024 = 204800 BITS


The counter is able to count up to: 255 counts \* 1024 = 261120 BITS = 23.631 Gy/sec


Absolut maximum (including ADC): 255 counts \* 1024 + 1023 = 262143 BITS = 23.724 Gy/sec



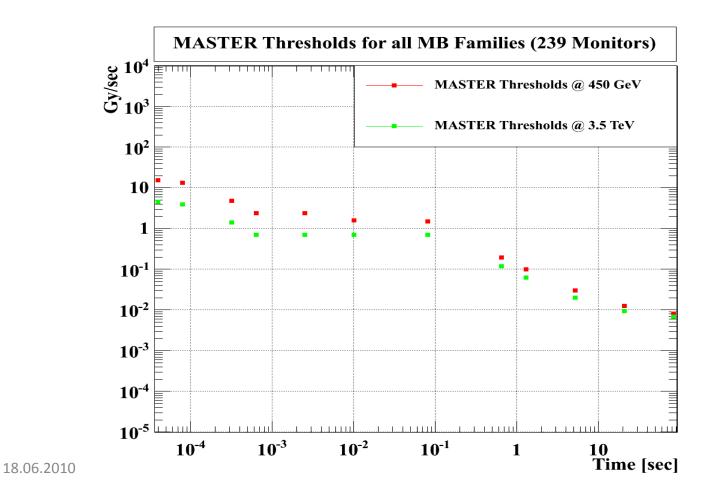
Restriction on LSA level (max. thresholds): 250 counts \* 1024 = 256000 BITS = 23.168 Gy/sec

### **Filter Monitors**





#### Checking performance and behavior:

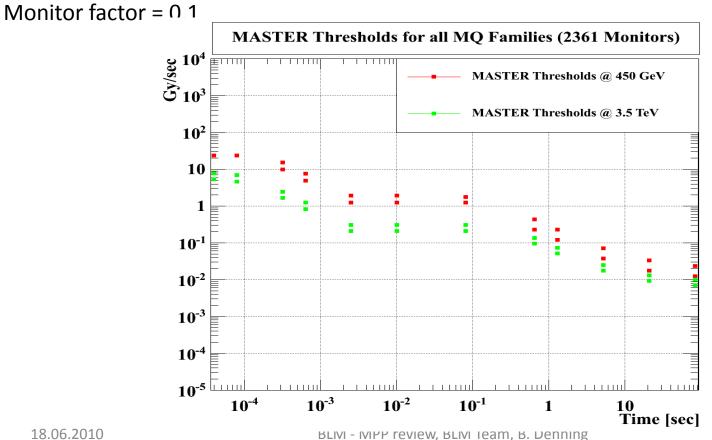

- 1) Check with beam that filters are installed at the defined channels (done)
- 2) Determination of rise time (time needed to collect 100% of the charges (use PM data) (missing for IP6)
- 3) Determination of ratio filter/non-filter amplitude, i.e. height of signal (partially done)

#### Thresholds for MB Monitors

239 MBB and MBA monitors (5 families according to position)

All monitors have the same thresholds, no difference for positions 1,2,3

Monitor factor = 0.1




### Thresholds for MQ Monitors

2361 MQ monitors (18 families according to position 1,2,3 in LSS, DS, ARC)

Monitors in position 2,3 have the same thresholds and are ~ 30% smaller than for position 1

#### No difference for LSS, DS, ARC



13

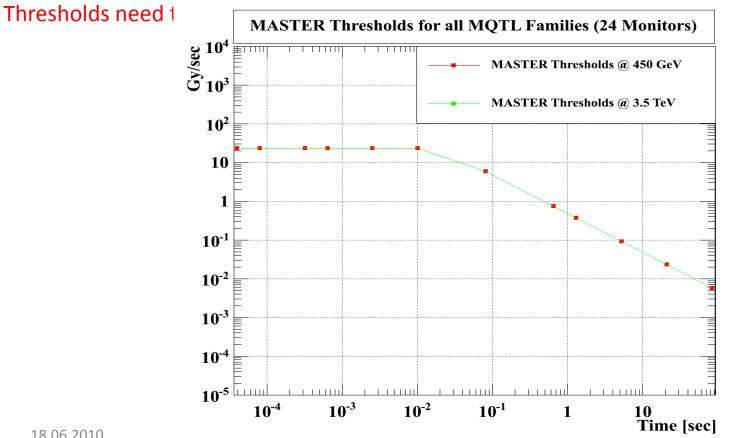
#### Thresholds for MQM Monitors

361 MQM monitors (12 families according to position 1,2,3 in LSS, DS)

Thresholds in LSS: pos. 1 > pos. 2 (~90% smaller) , pos. 3 at maximum

Thresholds in DS : pos. 1 > pos. 2 (~30% smaller) , pos. 3 same thresholds as in pos. 2

LSS pos.1 > DS pos.1 (~50% smaller)



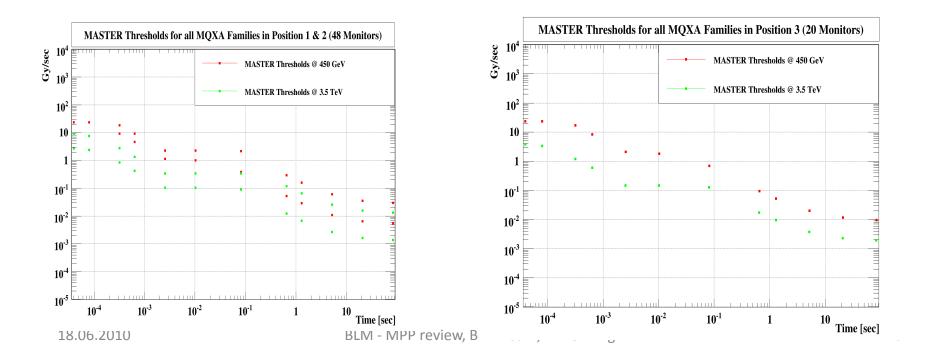

#### **Thresholds for MQTL Monitors**

24 MQTLH monitors (6 families according to position 1,2,3)

No difference for position, non-linear energy dependence (change only above 3.5 TeV)

Monitor factor = 0.1



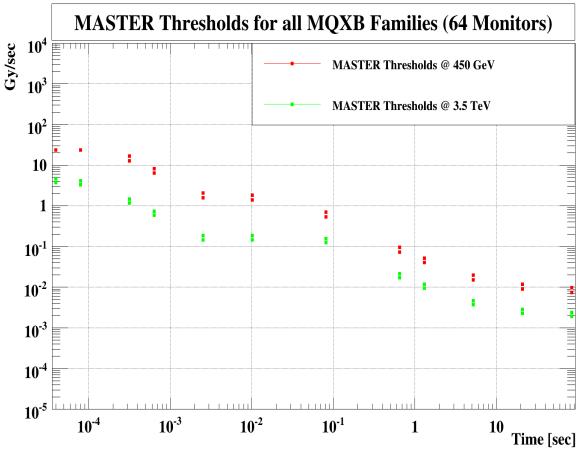

#### Thresholds for MQXA Monitors

80 MQXA monitors (8 families according to position 1,2,3 and special positions)

Thresholds in pos. 1 > pos. 2 (~70 % smaller) < pos. 3 (~25% higher)

Thresholds in special positions are at maximum

Monitor factor = 0.1

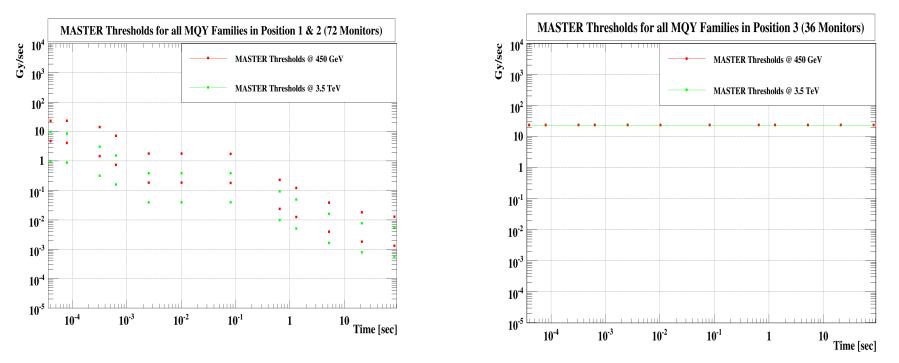



### Thresholds for MQXB Monitors

64 MQXB monitors (4 families according to position 2,3)

Thresholds in pos. 2 < pos. 3 (~25 % higher)

```
Monitor factor = 0.1
```




#### Thresholds for MQY Monitors

108 MQY monitors (6 families according to position 1,2,3 in LSS)

Thresholds in pos. 1 > pos. 2 (~90 % smaller), pos.3 at maximum

Monitor factor = 0.1



### Status of Threshold Settings

| Nr    | Elements                   | Thresholds                                                                                                                                                                                 |  |  |
|-------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1     | MB                         | Detailed Geant4 and FLUKA simulations,<br>Quench tests on LHC                                                                                                                              |  |  |
| 2     | MQ                         | Detailed Geant4 simulations.                                                                                                                                                               |  |  |
| 3     | MQXA, MQXB<br>(triplets)   | Detailed FLUKA simulations (at 7 TeV only)                                                                                                                                                 |  |  |
| 4     | B1.3B_MQXA<br>B2.3B_MQXA   | Max. thresholds<br>New simulations are done – to be revised                                                                                                                                |  |  |
| 5     | MQY                        | Quench Levels rescaled from MQ simulations, new Geant4 simulations<br>and loss maps may be needed, monitors in position 3 have max.<br>thresholds. Data analysis standalone magnet needed. |  |  |
| 6     | MQM, MQML,<br>MQM at 4.5 K | Quench Levels rescaled from MQ simulations, analysis loss maps<br>needed (as for MQY),<br>Monitors in position 3 have max. thresholds                                                      |  |  |
| 7     | MQTLH                      | Quench Levels rescaled from MQ simulations (a setting error spotted, to be corrected asap)                                                                                                 |  |  |
| 8     | MBRB, MBRC                 | Basic simulations for loss pattern generated by Wire Scanner, but thresholds are rescaled from MB                                                                                          |  |  |
| 9     | MBX                        | Quench Levels rescaled from MB + ECR's for over-injection issues<br>More detailed analysis for over-injection needed                                                                       |  |  |
| 10    | Collimators                | EDMS 995569 + ECRs, systematic study of signal per lost proton<br>needed                                                                                                                   |  |  |
| GC GC | od knowledge               | To be checked with data More simulation                                                                                                                                                    |  |  |
|       |                            |                                                                                                                                                                                            |  |  |

| 11                                                                        | TDI                                  | Thresholds based on input from Brennan + analysis results<br>Detailed simulations have been started (but no results yet) |  |  |
|---------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|
| 12                                                                        | TCD                                  | Max. thresholds<br>Need info from experts (who?)                                                                         |  |  |
| 13                                                                        | MSI/D                                | Damage conditions agreed with Jan + Geant4 simulations (being revised now)                                               |  |  |
| 14                                                                        | MKI/D                                | Max. thresholds<br>Need info from experts                                                                                |  |  |
| 15                                                                        | Dump line                            | Disabled ,i.e. disconnected from BIS<br>Analysis needed in order to determine thresholds                                 |  |  |
| 16                                                                        | MQW                                  | The same thresholds as for MSI/D                                                                                         |  |  |
| 17                                                                        | MBW                                  | Max. thresholds<br>(can they be re-scaled (BLM signal due to geometry) from<br>MSI?)                                     |  |  |
| 18                                                                        | TAN                                  | Max. thresholds<br>Need info from experts                                                                                |  |  |
| 19                                                                        | Roman pots<br>(XRP)                  | Like TCT,TCLA thresholds + FLUKA simulations for BLM signal                                                              |  |  |
| 20                                                                        | On missing<br>magnet in DS<br>(LYRA) | FLUKA simulations                                                                                                        |  |  |
| 21 🗾 G                                                                    | DFB<br>ood knowledge                 | The same thresholds as for MB<br>To be checked with data More simulation                                                 |  |  |
| 18.06.2010 Will be changed mextriew, BL M Teach, Discongected from BIS 20 |                                      |                                                                                                                          |  |  |

| 22                                                     | TCSM + TCHS<br>+<br>TCAPA | Disabled ,i.e. disconnected from BIS, since element not installed |  |  |  |
|--------------------------------------------------------|---------------------------|-------------------------------------------------------------------|--|--|--|
| 23                                                     | All SEM                   | Disabled ,i.e. disconnected from BIS<br>Analysis needed           |  |  |  |
| 24                                                     | BSRTM +BGI                | Thresholds as for MSI/D                                           |  |  |  |
| 25                                                     | MBWMD                     | Max. thresholds<br>Need info from experts                         |  |  |  |
| Good knowledge To be checked with data More simulation |                           |                                                                   |  |  |  |
| Will be changed next Disconnected from BIS             |                           |                                                                   |  |  |  |

### Threshold Generation

Current:

- Code written in C (object oriented source code, Macros to create thresholds)
- Code needs to be debugged in detail and needs to be improved
- For each family we use one specific Macro
- Source code, macros and threshold files are stored in SVN with given version
- Automatic versioning needs to be implemented
- Documentation of all changes (stored in SVN): automatization needed
- ECR for each change that needs to be signed by the responsible persons (needs further improvement)

Planned:

- Change to fully object oriented threshold code (C++ or python)
- Implementing algorithms and parametrization on LSA level, thresholds generation directly in LSA

Checks:

- Maximum BITS (code, application, LSA level)
- Decrease with energy and with integration time
- Need more automatic procedures to keep human failures as small as possible

# LSA Developments

- Internal LSA DB Constraints [improvement]
  - Most of them already reviewed
  - Need to add more complex/powerful constraints
- Internal LSA DB Check for disabled channels [available]
  - Based on monitor criticality and adjacent disabled channels
  - Each monitor is being tagged on its criticality
  - Current version blocks commits on rules violation
  - Needs review of the monitor tags (e.g. collimator monitors can be disabled atm)

#### Roll-Back of commits

- Complete :: using DB Retention functionality [available]
  - Currently available max 24h after commit has been made
  - Only by DB expert (i.e. CO/DM)
- Partial :: using history tables [under development]
  - Flags (masking, connection\_to\_BIS, ...)
  - Family (threshold values)
  - Monitor (classification to family, other settings)

# Predefined Procedures (Audits) what is not done

- MPS Aspects of the Beam Loss Monitor System Commissioning
- Management Procedure of the LM System Settings
- Procedure/Implementation for generation of thresholds
- Direct dump not tested, high intensity needed (electrically done)
- Update of thresholds two person procedure executed in the control room, enforced by program (will be implemted)

## MPS checks

Beam Commissioning Tests (only those still pending)

#### • Interface of direct BLMs with the LBDS

- Reduce the voltage setting of the abort threshold.
- Dump the injected beam on the collimator TCDQ and TCSG (with local bump)
- 2 hours and 2 accesses

#### • Provoked quench for transient losses

- 'recovering quench' detected with the nQPS
- The losses are recorded and compared to the expected quench level
- 1 hour/magnet type = 4 hours

#### • Provoked quench for steady-state losses

- 'recovering quench' detected with the temperature sensors
- The losses are recorded and compared to the expected quench level
- 1 hour/magnet type = 4 hours

*More info: https://espace.cern.ch/LHC-Machine-Protection/* 

## **External Audit**

Review will seek to:

- assess the **adequacy of the overall** BLM system design with a focus on the programmable parts
- identify possible weaknesses in the programmable parts of the mission-critical BLM
- suggest activities that could increase the level of confidence that the programmable parts of BLM system performs as intended
- suggest potential improvements of the BLM
- provide a general comparison of the BLM with approaches in industrial systems.

| Date                                                | Responsible | Deliverable                       |
|-----------------------------------------------------|-------------|-----------------------------------|
| 16 <sup>th</sup> August 2010                        | CERN        | Delivery of project documentation |
| 6 <sup>th</sup> September 2010                      | CSL/CERN    | Finalization of site-visit agenda |
| 13 <sup>th</sup> to 16 <sup>th</sup> September 2010 | CSL/CERN    | On-Site visit - 4 full days       |
| 18 <sup>th</sup> October 2010                       | CSL         | Delivery of written report        |