

Elias Métral (20 + $5 \mathrm{~min}, 30$ slides) Many thanks to Vincent Baglin, Sergio Calatroni, F. Caspers and N. Kos for helpful discussions!

BEAM SCREEN ISSUES

(with 20 T dipole magnets instead of 8.3 T)

- Introduction and current LHC beam screen
- Magneto-Resistance (MR)
- What was done in the past (approx. of the approx. Kohler's rule)
- Exact and approximate Kohler's rules
- Anomalous Skin Effect (ASE)
- Approximate formula used in the past
- Exact formula from Reuter \& Sondheimer
- Conclusions and outlook

From ~ 3.8 kW for 1 beam to ~ 120 kW (scaling: E^{4})

- PS: Important issue of Synchrotro/: Radiation (SR) not discussed, sven if the power would be increased by ~ 30 and the critical photon energy by ~ 13

INTRODUCTION AND CURRENT LHC BEAM SCREEN (1/7)

- In the LHC:
- ~90\% (beam screen) between 5 and 20K
- $\sim 10 \%$ at room temperature (2 mm thick copper beam pipe)
- Main purpose of the beam screen: Shield the cold bore from SR => Made of SS to resist to mechanical stresses
- Cu coating to keep the resistance as low as possible
- Transverse resistive-wall instability (low-frequency phenomenon, from a few kHz to a few MHz) => MR important
- Power loss is a different issue due to the short bunch length + ASE + surface roughness (both important at high frequencies)
- Drawback from Cu coating: Eddy currents mainly in the Cu layer when quenches $=>$ The smaller the copper coating thickness the better for the quench force (which deforms the beam screen horizontally)
- Other impedance issues: pumping slots (for the vacuum) + weld

INTRODUCTION AND CURRENT LHC BEAM SCREEN (2/7)

Saw teeth in the arcs on Cu

(a series of ~30-40 $\mu \mathrm{m}$ high steps spaced by $\sim 500 \mu \mathrm{~m}$ in the long. direction, to In dipoles, also called baffles, to avoid direct e^{-} path along magnetic field lines to the cold bore (which would then add
to the heat load)

INTRODUCTION AND CURRENT LHC BEAM SCREEN (3/7)

- Power loss from the image currents in the beam screen (neglecting the holes) at $7 \mathrm{TeV} \Rightarrow$ It was checked by N . Mounet that the same numerical result is obtained with our more precise multi-layer impedance formula

$$
P_{l o s s / m}^{G, R W, 1 \text { layer }}=\frac{1}{2 \pi R} \Gamma\left(\frac{3}{4}\right) \frac{M}{b}\left(\frac{N_{b} e}{2 \pi}\right)^{2} \sqrt{\frac{c \rho Z_{0}}{2}} \sigma_{t}^{-3 / 2} \approx 85 \mathrm{~mW} / \mathrm{m}
$$

$\Gamma\left(\frac{3}{4}\right)=1.23$
Euler gamma function

$$
\rho_{C u}^{20 K}=5.5 \times 10^{-10} \Omega \mathrm{~m}
$$

LHC circumference $=L$
$=2 \pi R=26658.883 \mathrm{~m}$

$$
M=\text { number of bunches }=2808
$$

$b=$ beam screen half height $=36.8 / 2=18.4 \mathrm{~mm}$

$$
N_{b}=1.15 \times 10^{11} \mathrm{p} / \mathrm{b} \quad \sigma_{t}=0.25 \mathrm{~ns} \quad Z_{/ /}^{R W 0}(\omega)=(1+j) \frac{L}{2 \pi b} \sqrt{\frac{\omega \rho Z_{0}}{2 c}}
$$

INTRODUCTION AND CURRENT LHC BEAM SCREEN (4/7)

- Power loss from the image currents due to the weld

$$
\rho_{C u}^{20 K}=5.5 \times 10^{-10} \Omega \mathrm{~m}
$$

$$
\rho_{S S}^{20 K}=6 \times 10^{-7} \Omega \mathrm{~m}
$$

$$
\frac{\Delta_{l}^{W_{\text {Weld }}}}{2 \pi b}=\frac{2}{2 \pi \times 18.4}=\frac{1}{\pi \times 18.4} \approx \frac{1}{60}
$$

$$
\Rightarrow \quad P_{\text {loss } / m}^{\text {Weld }} \approx P_{\text {loss } / m}^{G, R W, 1 \text { layer }} \times \sqrt{\frac{\rho_{S S}^{20 K}}{\rho_{C u}^{20 K}}} \times \frac{\Delta_{l}^{\text {Weld }}}{2 \pi b} \approx 48 \mathrm{~mW} / \mathrm{m}
$$

$$
\frac{P_{\text {loss } / m}^{W e l d}}{P_{\text {loss } / m}^{G, R W, 1 \text { layer }}} \approx 57 \%
$$

INTRODUCTION AND CURRENT LHC BEAM SCREEN (5/7)

- Comparison between what I re-"estimated" and what is in the LHC Design Report, Vol. 1, Chap. 5 (https://edms.cern.ch/file/445833/5/ Vol_1_Chapter_5.pdf) $=>$ For 1 single beam
- $85 \mathrm{~mW} / \mathrm{m}$ (with the same formula as F. Ruggiero in his paper CERN SL/95-09 (AP)), i.e. without ASE (which gives an increase of $\sim 11 \%$). Mostacci found $\sim 80 \mathrm{~mW} / \mathrm{m}$ (with simulations). The value quoted comes from meas.

Table 5.7: Summary of heat load on the arc beam sdeen for nominal LHC beam at 7 TeV . The three columns give the source, the latest relevant reference, and the pean leat load in mW / m.

source	Ref.	Peaß	$\mathrm{mW} / \mathrm{m}]$ at 7 TeV
Synchrotron Radiation	$[48]$		220
Ohmic Losses	$[52]$		110
Pumping Slots	$[53]$		10
Welds	$[2]$		10

$\sim 1 \mathrm{~mW} / \mathrm{m}$ for the most critical pumping holes in the arc beam screen (very close to Mostacci's result) => See Appendices
$\sim 47 \mathrm{~mW} / \mathrm{m}$.
Mostacci found $27 \mathrm{~mW} / \mathrm{m}$

INTRODUCTION AND CURRENT LHC BEAM SCREEN (6/7)

- Transverse resistive-wall impedance

$$
Z_{\perp}^{R W 1}(\omega)=(1+j) \frac{L Z_{0}}{\pi b^{3}} \sqrt{\frac{\rho}{2 \mu_{0} \omega}}
$$

- In the next slides, the transverse coupled-bunch instabilities were studied with the exact dimensions of all the beam screens and the correct transverse betatron functions

INTRODUCTION AND CURRENT LHC BEAM SCREEN (717)

MAGNETO-RESISTANCE (1/13)

* How were the values of the Cu resistivity at low B and high B for the current beam screen obtained?
- In the paper "Surface Resistance Measurements and Estimate of the BeamInduced Resistive Wall Heating of the LHC Dipole Beam Screen" (LHC Project Report 307, 1999) by F. Caspers et al., the following formula was used (referred to as "Kohler's law")

$$
\frac{\rho(B, T)-\rho_{0}(T)}{\rho_{0}(T)}=\frac{\Delta \rho}{\rho_{0}}=10^{-2.69} \times(B \times R R R)^{1.055}
$$

$B=$ Magnetic induction in Tesla

$$
T=\text { Temperature in Kelvin }
$$

$$
\rho_{0}(T)=\text { Resistivity at temperature } \mathrm{T} \text {, without B }
$$

[^0]
MAGNETO-RESISTANCE (2/13)

- As the resistivity decreases with temperature towards a minimum (determined by purity), the $R R R$ is defined as the ratio of the $D C$ resistivity at room temperature to its cold-DC lower limit

MAGNETO-RESISTANCE (3/13)

- Plot of the approximate formula (of the approximate Kohler's rule)

- 0.535 T
$x=53.5$
$\Delta \rho / \rho_{0} \approx 0.14$
- 8.33 T
$x=833$
$\Delta \rho / \rho_{0} \approx 2.5$
- 20 T
$x=2000$
$\Delta \rho / \rho_{0} \approx 6.2$

MAGNETO-RESISTANCE (4/13)

- Reminder on Kohler's rule (See "Kohler's rule and relaxation rates in high-Tc superconductors" by Nie Luo and G.H. Miley, Physica C 371 (2002) 259-269)
- It is shown in this paper that care must be exercised when applying Kohler's rule to the magnetoresistance of some conductors (including high Tc-superconductors), where the density of charge carriers might change with temperature
- Kohler's rule may take 2 forms:
- One exact
- One approximate
- EXACT Kohler's rule

If there is only 1 relaxation rate in the transport process of a certain conductor $\Rightarrow>\Delta \rho / \rho_{0}=F(H \tau)$, which is generally a tensor

MAGNETO-RESISTANCE (5/13)

- APPROXIMATE Kohler's rule
- Reminder on the link between relaxation time and DC resistivity under 0 magnetic field \Rightarrow Use Ohm's law for a wire carrying the current density \vec{J} to get the resistivity in terms of the relaxation time
\triangleleft Equation of motion for $1 e^{-}$
e- charge

Relaxation
\star Permanent regime (DC) time

$$
\begin{aligned}
& \frac{d \vec{v}}{d t}=0 \quad \vec{J}=-N e \vec{v}=\sigma_{\mathrm{DC}} \vec{E} \quad \Rightarrow \sigma_{\mathrm{DC}}=\frac{N e^{2}}{\alpha} \\
& \begin{array}{c}
\begin{array}{c}
\text { Density } \\
\text { of carriers }
\end{array}
\end{array} \text { or } \quad \rho_{0}=\frac{1}{\sigma_{\mathrm{DC}}}=\frac{m}{N e^{2} \tau}
\end{aligned}
$$

MAGNETO-RESISTANCE (6/13)

- The exact Kohler's rule can then be re-written

$$
\frac{\Delta \rho}{\rho_{0}}=F\left(\frac{H}{\rho_{0}} \times \frac{m}{N e^{2}}\right)
$$

- IF the factor $\frac{m}{N e^{2}}$ does not change with temperature, then Kohler's rule can be simplified to

Most of the problem comes from \mathbf{N} which could be very sensitive to T in various conductors...

$$
B=\mu_{0} H
$$

Kohler's rule in its approximate but often used form

MAGNETO-RESISTANCE (7/13)

$$
R R R=\frac{R(273 \mathrm{~K})}{R(\mathrm{~T})}=\frac{\rho_{0}(273 \mathrm{~K})}{\rho_{0}(\mathrm{~T})}=\text { Cte for Copper }
$$

$$
\begin{aligned}
& \Rightarrow \quad \rho_{0}=\rho_{0}(T) \propto \frac{1}{R R R} \\
& \Rightarrow \frac{\Delta \rho}{\rho_{0}}=F(B \times R R R)
\end{aligned}
$$

This is the form of Kohler's law used for instance in the "Handbook of Accelerator Physics and Engineering", 2 ${ }^{\text {nd }}$ Printing, Edited by A.W. Chao and M. Tigner, p. 368

Figure 3: Kohler plot for Cu .

MAGNETO-RESISTANCE (8/13)

- Al is one of the few materials which deviates from Kohler's rule (see "Beam Vacuum Chamber Effects in the CERN Large Hadron Collider" by L. Vos, 1985)

MAGNETO-RESISTANCE (9/13)

- Experimental observations => Always an increase in resistance when increasing magnetic field:
- For small B fields $\Rightarrow \quad \rho \propto B^{2}$
- For very high \mathbf{B} fields $\Rightarrow \rho \propto B$
-Why an increase in resistance?

MAGNETO-RESISTANCE (10/13)

- MEAN FREE PATH:
- The mean free path λ of a particle is the average distance covered by a particle (photon, atom or molecule) between successive impacts:

- CYCLOTRON RADIUS and FREQUENCY:
- A particle, with a constant energy, describes a circle in equilibrium between the centripetal magnetic force and the centrifugal force

$$
\begin{array}{r}
\frac{m v^{2}}{r}=e v B \quad \Rightarrow=\frac{m v}{e B} \quad \text { and } \quad \omega=\frac{v}{r}=\frac{e B}{m} \\
\text { Cyclotron radius } \quad \frac{B}{\rho_{0}} \propto \frac{\lambda}{r} \quad \text { Cyclotron frequency }
\end{array}
$$

MAGNETO-RESISTANCE (11/13)

For small B fields

A smaller λ
means a larger ρ !

$$
\Rightarrow \quad \frac{\Delta \rho}{\rho_{0}}=-\frac{\Delta \lambda}{\lambda_{0}} \propto\left[\frac{\lambda(0)}{r}\right]^{2} \propto\left[\frac{B}{\rho_{0}}\right]^{2}
$$

MAGNETO-RESISTANCE (12/13)

- Electrical measurements of beam screen wall samples in magnetic fields were performed in the past (see for instance EDMS \# 329882 by C. Rathjen):
- Meas. showed that the trend line slopes of the voltage for all samples are always higher (around 20\%) than the theoretical curves

Graph: $d R / R$ vs. $R R R * B$ for samples 2,3 and 4:
Courtesy of C. Rathjen
In this graph appears the theoretical curve of $d R / R$ vs. RRR*B for OFE copper, found in Outokumpu copper literature (Kohler).

MAGNETO-RESISTANCE (13/13)

- Meas. confirmed the assumption of a heterogeneous RRR in the colaminated copper layer $=>$ Cu close to the steel gets contaminated during the fabrication process such that the surface impedance is increased. The increase of the resistance has been compensated by increasing the thickness of the copper layer from 50 to 75 microm

ANOMALOUS SKIN EFFET (1/8)

- The ASE theory attributes the anomalous increase of surface resistance of metals at low temperatures and high frequencies to the long mean free path λ of the conduction $e^{-} \Rightarrow>$ When the skin depth $\bar{\delta}$ becomes much smaller than the mean free path λ, only a fraction of the conduction e^{-}moving almost parallel to the metal surface is effective in carrying current and the classical theory breaks down
- Some measurements were performed (see "Surface Resistance Measurements of LHC Dipole Beam Screen Samples, F. Caspers et al., EPAC2000), which were in relatively good agreement with predictions

ANOMALOUS SKIN EFFET (2/8)

- Reminder on the Normal Skin Effect (NSE): skin depth and surface resistance

$$
\delta=\sqrt{\frac{2 \rho}{\omega \mu_{0}}}
$$

$$
R_{s}^{\mathrm{NSE}}=\frac{\rho}{\delta}=\sqrt{\frac{\omega \mu_{0} \rho}{2}}
$$

- Approximate formula for the surface resistance with ASE used in the past (See "Anomalous Skin Effect and Resistive Wall Heating", W. Chou and F. Ruggiero, LHC Project Note 2 (SL/AP), when $\alpha \geq 3$

$$
\begin{aligned}
& R_{s}^{\mathrm{ASE}}=R_{\infty}\left(1+1.157 \alpha^{-0.276}\right) \alpha=\frac{3}{2}\left(\frac{\lambda}{\delta}\right)^{2}=\frac{3 \omega \mu_{0}}{4 \rho^{3}}(\rho \lambda)^{2} \\
& \begin{array}{c}
\text { Independent of T } \\
\text { and impurity }
\end{array} \rho \lambda=\frac{m v}{e^{2} N}=\text { characteristic of the metal } \\
&=6.6 \times 10^{-16} \Omega \mathrm{~m}^{2} \text { for copper } \\
& R_{\infty}=\left[\frac{\sqrt{3}}{16 \pi} \times \rho \lambda \times\left(\omega \mu_{0}\right)^{2}\right]^{1 / 3}=1.123 \times 10^{-3} \Omega \times\left(\frac{f}{\mathrm{GHz}}\right)^{2 / 3}
\end{aligned}
$$

ANOMALOUS SKIN EFFET (3/8)

- Relative increase of the heating power

$$
\frac{P_{A S E}}{P_{N S E}}=\frac{\int_{\omega=0}^{\omega=+\infty} d \omega R_{s}^{A S E}(\omega) e^{-\left(\frac{\omega \sigma_{z}}{c}\right)^{2}}}{\int_{\omega=0}^{\omega=+\infty} d \omega R_{s}^{N S E}(\omega) e^{-\left(\frac{\omega \sigma_{z}}{c}\right)^{2}}}
$$

$\sigma_{z}=7.5 \mathrm{~cm}$

$$
\begin{aligned}
& \rho=1.8 \times 10^{-10} \Omega \mathrm{~m}(450 \mathrm{GeV} / \mathrm{c}) \Rightarrow \frac{P_{\text {ASE }}}{P_{N S E}} \approx 1.46 \\
& \rho=5.5 \times 10^{-10} \Omega \mathrm{~m}(8.33 \mathrm{~T}) \Rightarrow \frac{P_{A S E}}{P_{N S E}} \approx 1.11 \text {, i.e. increase of } \sim 46 \% \\
& \rho=11.2 \times 10^{-10} \Omega \mathrm{~m}(20 \mathrm{~T}) \Rightarrow \frac{P_{A S E}}{P_{N S E}} \approx 1.04 \text {, increase of } \sim 11 \% \\
& \text {, i.e. increase of } \sim 4 \%
\end{aligned}
$$

ANOMALOUS SKIN EFFET (4/8)

ANOMALOUS SKIN EFFET (5/8)

ANOMALOUS SKIN EFFET (6/8)

ANOMALOUS SKIN EFFET (7/8)

- Sergio Calatroni implemented the exact (full) formula from "The theory of the anomalous skin effect in metals" by G.E.H. Reuter and E.H. Sondheimer, Proc. Royal Society (London), A195, 336 (1948) \Rightarrow For the specular reflection of the e^{-}

Frequency $=1 \mathrm{GHz}$, copper at various temperatures

ANOMALOUS SKIN EFFET (8/8)

CONCLUSIONS AND OUTLOOK

- In the LHC at 20 T , we are dominated by the magnetic field and we can neglect the rest! $\Rightarrow>$ The resisivity at top energy will increase from $\sim 5.5 \mathrm{E}-10 \mathrm{\Omega m}($ at 7 TeV) to $\sim 11.2 \mathrm{E}-10 \mathrm{\Omega m}$ (at 16.5 TeV), i.e. by a factor ~ 2
- The longitudinal and transverse impedances are

```
\propto\sqrt{}{\rho}
``` \(\Rightarrow\) They are \(\sqrt{2} \approx 1.4\) times larger
- The total (ohmic losses + pumping slots + welds) present power loss is \(\sim 150 \mathrm{~mW} / \mathrm{m}\) for 1 beam at \(7 \mathrm{TeV} / \mathrm{c}=>\) At \(16.5 \mathrm{TeV} / \mathrm{c}\), it would be \(\sim 175 \mathrm{~mW} / \mathrm{m}\)
- Other impedance issues: Collimators, whose gaps will be smaller and the TMCI might be critical! Reminder: At \(7 \mathrm{TeV} / \mathrm{c}\), the TMCI intensity threshold is estimated at (only) ~ 2 times the ultimate intensity...

\section*{APPENDICES}

\section*{CURRENT LHC BEAM SCREEN (1/6)}

\section*{Arc beam screens: \\ Inner dimension between flats: \(\quad 36.8 \mathrm{~mm}\) \\ Inner dimension between radii: \(\quad 46.4 \mathrm{~mm}\) \\ SS thickness: \\ 1.0 mm \\ Cu thickness: \\ 0.075 mm \\ LSS beam screens: \\ Inner dimension between flats: \\ Inner dimension between radii: \\ SS thickness: \\ Cu thickness: \\ varying from 37.6 until 61.0 mm \\ varying from 47.2 until 70.7 mm \\ 0.6 mm \\ 0.075 mm}

\section*{CURRENT LHC BEAM SCREEN (2/6)}

- Bunch charge (for nominal) \(Q=e \times 1.15 \times 10^{11}=18.4 \mathrm{nC}\)
- Rms bunch length \(\sigma_{z}=7.5 \mathrm{~cm}\) - Covered surface from the holes
- Bunch spacing \(S_{b}=7.5 \mathrm{~m}\)
- Cold bore inner radius \(d=2.5 \mathrm{~cm}\)
- In the arcs: \(\mathrm{f}=4.0 \%\)
- In the LSS: f = from \(1.8 \%\) to 2.6\% (depends on screen \(\Phi\))

\section*{CURRENT LHC BEAM SCREEN (3/6)}
- The power loss goes with the square of the bunch charge \(=>\) It is \(\sim 2\) times more for the ultimate bunch (1.7E11 p/b) compared to the nominal one (1.15E11 p/b)
- Power loss

> F Rugglero, CERN SL95-09 (AP)

Table 10: Summary of parasitic losses for LHC at 7 TeV .
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c}
Power loss \\
{\([\mathrm{kW}]\)}
\end{tabular} & FOR A SINGLE BEAM & \begin{tabular}{c}
Power loss per \\
unit length \([\mathrm{mW} / \mathrm{m}]\)
\end{tabular} \\
\hline 3.67 & Incoherent synchrotron radiation & 216 \\
\(\ll 0.54\) & Coherent synchrotron radiation & 32 \\
1.97 & Resistive wall \(\left(20^{\circ} \mathrm{K}\right)\) & 74 \\
0.27 & Welds & 10 \\
0.26 & Pumping slots & 10 \\
\(<0.80\) & Shielded bellows & \(<30\) \\
\(<1.03\) & Leaks in bellows gaps & \(<38\) \\
\hline 8.54 & TOTAL & 410 \\
\hline
\end{tabular}
(http://cdsweb.cern.ch/recora/279204/filles) s/-95-009.pdif)

Theoretical computation with a previous design

Meas. of LHC dipole beam screen samples without magnetic field
Table 5.7: Summary of heat load on the arc beam screen for nominal LHC bean at 7 Tq extrapolation give the source, the latest relevant reference, and the peak heat load in \(\mathrm{mW} / \mathrm{m}\).
\begin{tabular}{|c|c|c|c|}
\hline source & Ref. & Peak power [mW/m] & \\
\hline Synchrotron Radiation & [48] & 220 & \\
\hline Ohmic Losses & [52] & (110) & , \\
\hline Pumping Slots & [53] & (10) Chap. & 5 (ristos://ed ins cern.ch/ilie) \\
\hline Welds & [2] & 10 (10) & 33/5/\ol y C'najter 5.pdf) \\
\hline
\end{tabular}

\section*{CURRENT LHC BEAM SCREEN (4/6)}
- Using A. Mostacci's Mathematica Notebook (wwwslap.cern.ch/ collective/mostacci/slots/note/slots.nb), and updating the numerical values (only small changes), these curves were produced (curves of constant power in mW/m vs. the beam screen thickness T and the width of the slots W)

\section*{CURRENT LHC BEAM SCREEN (5/6)}
- The current parameters of the beam screen are
- Length of the slots: \(L=6,7,8,9\) and \(10 \mathrm{~mm}=>\) Laverage \(=8 \mathrm{~mm}\)
- Width of the slots:
- In the arcs: \(\mathbf{W}=1.5 \mathrm{~mm}\)
- In the LSS: W=1.0 mm
- Beam screen thickness:
- In the arcs: \(T=1 \mathbf{m m}\) SS + \(0.075 \mathrm{~mm} \mathrm{Cu}=1.075 \mathrm{~mm}\)
- In the LSS: \(\mathrm{T}=0.6 \mathrm{~mm}\) SS \(\mathbf{+} \mathbf{0 . 0 7 5} \mathbf{~ m m ~ C u}=0.675 \mathrm{~mm}\)
=> Power loss from the holes in the arcs: \(P_{\text {arcs }} \approx 1.1 \mathrm{~mW} / \mathrm{m}\)
Power loss from the holes in the LSS: \(\mathrm{P}_{\text {LsS }} \approx 0.1 \mathrm{~mW} / \mathrm{m}\)

In the most critical case

\section*{CURRENT LHC BEAM SCREEN (6/6)}

Sacherer vertical tune shifts for all the coupled-bunch modes and \(m=0\)

"" Stability diagram (positive S)
--- Stability diagram (negative S)
- Nb part. \(=115 \mathrm{e} 9, \sigma_{\mid}=7.55 \mathrm{~cm}\), Allthemachine 7 TeV
```


[^0]:    Resistance

    $$
    R=\rho \frac{l}{S}=>\frac{\Delta R}{R_{0}}=\frac{\Delta \rho}{\rho_{0}}
    $$

