IBS and cooling in RHIC, HE-LHC active emittance control

W. Fischer and M. Blaskiewicz

15 October 2010 High-Energy LHC, Malta

Content

1. LHC active emittance control

- HE LHC damping times
- Maximization of integrated luminosity

1. IBS and cooling in RHIC

- Measurements and simulations for IBS
- Au⁷⁹⁺ beam dynamics with stochastic cooling

High Energy LHC parameters (from F. Zimmermann)

[R. Assmann et al, "First thoughts on a higher energy LHC", CERN-ATS-2010-177]

	Nominal	High energy
	LHC	HE-LHC
beam energy [TeV]	7	16.5
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	1.0	2.0
luminosity lifetime [h]	23	13
events per crossing	19	76
# bunches / beam	2808	1404
bunch population [10 ¹¹]	1.15	1.3
Luminosity leveling	no	yes: e _{x,y}
initial transverse normalized emittance [mm]	3.75	3.75 (x) 1.84 (y) 2.59
number of IPs contributing to tune shift	3	2
maximum total beam-beam tune shift	0.01	0.01
IP beta function [m]	0.55	1.0 (x), 0.43 (y) 0.6
full crossing angle [mrad]	285 (9.5 s _{x,y})	~180 (12 s _{x0})
longitudinal SR emittance damping time [h]	12.9	0.98
horizontal SR emittance damping time [h]	25.8	1.97
initial long. IBS emittance rise time [h]	61	64
initial hor. IBS emittance rise time [h]	80	80
initial ver. IBS emittance rise time [h], (k=0.2)	~400	~400

3

Means of active emittance control during stores

Assume that initial beam parameters have been adjusted to acceptable values.

- 1. Adjust strength of active cooling (currently not an option in LHC) change of gain, power, average "system on" time changes equilibrium emittance
- 2. Increase transverse emittance random dipole kicks θ [M. Syphers, Handbook]

$$\frac{d\varepsilon}{dt} = \frac{f_0}{2}(\beta\gamma)\beta_0\theta_{rms}^2$$

3. Use x-y coupling to equalize transverse emittances when operating at beam-beam limit, maintains same bb parameter in both planes works well in RHIC without and with active cooling $\varepsilon_x = \varepsilon_y \implies \xi_x = \xi_y$

4. Increase bunch length to reduce peak currents random phase kicks $\delta \varphi$ [M. Syphers, Handbook]

$$\frac{d\varepsilon_{s}}{dt} = \frac{f_{0}}{2} \frac{E_{0}}{\omega_{rf}} \sqrt{-\frac{\beta eV_{rf} \cos \varphi_{s}}{2\pi h \eta E_{0}}} \left(\delta \varphi_{rms}\right)^{2}$$

HE LHC emittances without and with heating

Heating condition: $\xi = 0.01$ (constant) Constant crossing angle $\theta \sim 180$ mrad.

5

Courtesy of O. Dominiguez, F. Zimmermann, in CERN-ATS-2010-177.

HE LHC emittance without and with heating

Heating determined by: $\xi = 0.01$ (constant)

6

Same luminosity with round and flat beams.

Courtesy of O. Dominiguez, F. Zimmermann, in CERN-ATS-2010-177.

HE LHC luminosity with round beams

$$L = \frac{f_c \gamma N\xi}{r_0 \beta^*} F\left(\frac{\sigma_s}{\beta^*}, \theta\right)$$

 f_c collision frequency γ Lorentz factor r_0 classical proton radiusNbunch intensity $(N_1=N_2=N)$ ξ beam-beam parameter β^* envelope function at IPFcorrection factor for

hourglass and crossing angle θ

• Larger beam-beam parameter ξ allows for larger luminosity, or smaller *N* (and stored energy) for same luminosity

2 Tevatron electron lenses in operation (not operationally used for HOBBC). 2 RHIC electron lenses for head-on BB compensation <u>under construction</u>.

Relativistic Heavy Ion Collider 1 of 2 ion colliders, only polarized p-p collider

IP8

IP10

2 superconducting 3.8 km rings2 large experiments

IP2

100 GeV/nucleon Au 250 GeV polarized protons

Performance defined by

- 1. Luminosity L
- 2. Proton polarization P
- 3. Versatility

Au-Au, d-Au, Cu-Cu, polarized p-p (so far) 12 different energies (so far)

Intrabeam scattering in RHIC

IBS leads to debunching and transverse emittance growth of heavy ion beams

Comparison of measured and simulated $\varepsilon(t)$ and $\sigma_s(t)$ [A. Fedotov et al., proceedings HB2008.]

Beam: Au⁷⁹⁺,100 GeV/nucleon, 95 deg/cell, $N_{\rm b}$ =0.92x10⁹

Simulation: BETACOOL

RHIC – 3D stochastic cooling for heavy ions

M. Brennan, M. Blaskiewicz, F. Severino, Phys. Rev. Lett. 100 174803 (2008); PRST-AB, PAC, EPAC 11

RHIC – bunched beam stochastic cooling for heavy ions

- Longitudinal cooling since 2007
- First transverse (vertical) cooling in 2010
- So far stochastic cooling increased average store luminosity by factor 2
- Expect another factor 2 with full 3D cooling

Issues being addressed:

- Vacuum leaks at feedthroughs
- Mechanical motion of long. kickers
- Cross-talk between Blue and Yellow vertical system (addressed by 100 MHz shift in Blue)
- Construction, installation, and commissioning of horizontal systems

M. Brennan

M. Blaskiewicz

RHIC Au beams with vertical stochastic cooling

Emittance measurement with Ionization Profile Monitor (IPM).

[M. Blaskiewicz, J.M. Brennan, and K. Mernick, PRL 105, 094801 (2010).]

13

Cooling only one beam

Because of Blue-Yellow cross talk of vertical cooling systems in 2010, only one beam could be cooled at the time. Loss rate of other beam increased as a result (from unmatched beam sizes at the IP).

(Known effect from SppS, HERA, RHIC.)

Wolfram Fischer

RHIC store evolution with 3D stochastic cooling

Simulation by M. Blaskiewicz

Longitudinal profiles with $h_1 = 360 (360 \text{ kV})$ and $h_2 = 7x360 (4 \text{ MV})$

Simulations have matched observable cases so far.

Wolfram Fischer

RHIC store evolution with 3D stochastic cooling

Simulation by M. Blaskiewicz

Summary

LHC

- LHC damping times of 1h (long.) and 2h (transv.) much shorter than IBS growth times (>50h)
- Heating required to maintain constant beam-beam parameter $\xi \sim 0.01$ (increase in ξ allows for more luminosity or a reduction in intensity)

RHIC

- Observations and simulations of IBS induced emittance growth generally agree well, evolution of with stochastic cooling predictable.
- With cooled Au beams not yet operating at beam-beam limit (need new 56 MHz SRF to reduce debunching, >= 2013)
- Even at relatively small beam-beam parameters, equal cooling in both beams (= equal heating in HE LHC) is necessary to maintain good beam lifetimes

