

EuCARD HE-LHC'10

AccNet mini-workshop on a "High Energy LHC" 14-16 October 2010, Villa Bighi, MALTA

Considerations about the injectors of the HE-LHC

OUTLINE

- 1. Introduction
- 2. HE-LHC requirements
- 3. Possible solutions for the injectors
- 4. Summary

R. G. 2 15 October, 2010

1. Introduction

R. G. 3 15 October, 2010

Past...

- The injectors of LHC have already been the subject of investigation during past workshops, in view, at medium term, of the LHC luminosity upgrade and at long term, of a higher energy LHC:
 - LUMI06 [http://care-hhh.web.cern.ch/CARE-HHH/LUMI-06/default.html
 - LER06 [http://ler06.web.cern.ch/LER06/]
- Outcome had materialized in the LP-SPL / PS2 / SPS proposal, as described in the LUMI08 workshop
 - http://indico.cern.ch/conferenceDisplay.py?confld=43275
- However, as a result of the Chamonix2010 workshop [
 https://espace.cern.ch/acc-tec-sector/cham2010/default.aspx], the needs of the luminosity upgrade have been reduced and the decision taken to upgrade the existing injectors, instead of building new ones.

Present

 Matching the needs of the "High Luminosity LHC" (HL-LHC) is the objective of the "LHC Injectors Upgrade" (LIU) project [time period: ~2017 – 2030],

 The "High Energy LHC" (HE-LHC) sets different requirements on the injectors, and with a different time-scale [time period: ~2030 – 2050],

 Past workshops (especially LER06 and LUMI06) are highly valuable sources of information.

2. HE-LHC requirements

R. G. 15 October, 2010

Beam specifications

Derived from CERN-ATS-2010-177 ["First thoughts on a higher energy LHC"]

	Specific to HE-LHC				
	Nominal LHC	HL-LHC	HE	E-LHC	
Beam energy [GeV]	450	450	>	1000	
Distance between bunches [ns]	25	25 (resp. 50)		50	
Bunch population* [10 ¹¹ p/b]	1.2	~1.8 (resp. 3.6)	•	~1.4	
Transverse normalized emittance [μm]	3.75	≥ 2	3.75 (H) 1.84 (V)	2.59 (H & V)	
Longitudinal emittance [eVs]	1	1	? (<4)		

^{*} At LHC entrance, assuming 5% loss wrt to start of physics data taking at high energy

Comment: HE-LHC requirements are unlikely to be as well-defined as stated above...

3. Possible solutions for the injectors

R. G. 8 15 October, 2010

Highest energy injector

Only requirement outside the capability of the existing injectors: need for > 1 TeV.

Two options:

In the SPS tunnel

- H. Piekarz
 P. Spiller
 P. Fabbricatore
- ⇒ New SPS (HE-SPS) with fast cycling sc dipoles
- ⇒ Replacement of equipment in TI2 and TI8 transfer lines (sc magnets)

2. In the LHC tunnel

H. Piekarz K.H. Mess

- ⇒ No change to SPS and transfer lines
- ⇒ Additional double aperture 27 km ring compatible with detectors
 - ⇒ Bypasses
 - ⇒ Passage through detectors' centres using fast deflecting magnets

Open technical issues for the highest energy injector

	Possibility to re-use existing magnets in accelerator and/or Xfer lines?	HERA? TEVATRON?	
HE-SPS in the SPS tunnel	Injection energy in HE-SPS?		
	Space for hosting the injector in the SPS tunnel?	Superferric?	
	Magnet technology (if new magnets)?	51	
LER in LHC tunnel	Space for hosting HE-LHC and LER in the LHC tunnel?	Pipetron? Refurbishment of LHC magnets? Bypass?	
	Magnet technology?		
	Solution for the IPs?		
	Machine protection (Safe beam, beam dumps)?	Through IP?	

Lower energy accelerators (1/2)

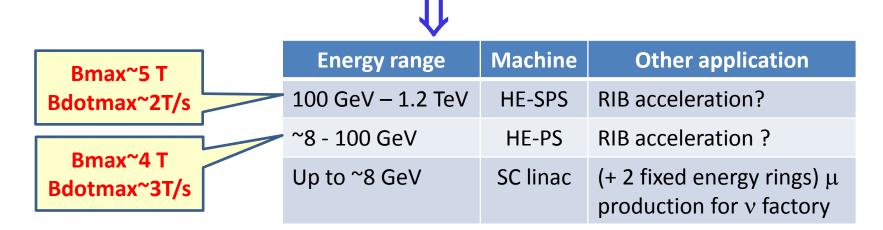
As of today, the existing injectors meet the basic needs of HE-LHC.

But... How far can their lifetime be extended (e.g.: PS will be 70 years old in 2029)?

⇒ It is perfectly reasonable to plan for modern & optimized new low energy injectors for the HE-LHC which will operate until ~2045.

Since the injector complex will "live" much longer than the HE-LHC, it should have the potential to serve more purposes, either in parallel with HE-LHC, or afterwards (possibly with upgrades).

- ⇒ Need to know about long term users' needs
- ⇒ Interest of building these new machines already during the lifetime of the LHC:
 - ⇒ to get benefits for the LHC
 - ⇒ to spread the construction effort of the HE-LHC over more years
 - ⇒ to serve earlier other users and avoid a gap in data collection.



Lower energy accelerators (2/2)

(My) guess of the optimum set of low energy accelerators to:

- Optimize the complex (reasonable energy range in the different accelerators, minimum number of beam transfers, "safe" technological choices)
- Have the potential to adapt to the requirements of a High Luminosity upgrade of the HE-LHC
- Serve the needs of the most demanding users known today (neutrino facility) simultaneously with HL-LHC and HE-LHC

Evaluation criteria

1. Beam dynamics / performance

- Beam characteristics
- Filling time/turn-around time
- Performance margin

2. Risks

- During construction (cost & performance)
- During operation (MTTF & MTTR, personnel and environment)

3. Operational impact

- During construction (compatibility with continuing physics)
- During operation (flexibility/capability to adapt to changing needs, capability to simultaneously satisfy other users, exotic test beams...)

4. Cost (material and personnel)

- During construction
- During operation

4. Final words

R. G. 14 15 October, 2010

Closing remarks

- A new >1 TeV synchrotron is necessary for the HE-LHC.
- For the lower energy accelerators, need to analyse (quantify)
 the advantages/drawbacks of keeping existing accelerators
 with respect to replacing them by a new optimized injector
 complex [level of acceptable risk of failure, manpower and
 material cost of maintenance/consolidation, reduction of
 environmental impact (electricity and water consumption)...].
- It would make sense to take into account additional needs.
 Which ones (High Luminosity HE-LHC, HE-LHeC, neutrino facility...)? When?
- Interest of making the new injectors available during the lifetime of HL-LHC.

THANK YOU FOR YOUR ATTENTION!

R. G. 15 October, 2010