KEK Effort for High Field Magnets

Tatsushi NAKAMOTO KEK

EuCARD - HE-LHC'10 AccNet mini-workshop on a "High-Energy LHC", 14-16 October 2010 Villa Bighi, MALTA

1

Outline

Present R&D Status: < 15 T for HL-LHC</p>

- •Nb₃Al Superconductor
- •13 T Subscale Magnet
- •Radiation resistance

New Study Towards > 15 T
•Stress, Strain Issues

Outline

Present R&D Status: < 15 T for HL-LHC</p>

- •Nb₃Al Superconductor
- •13 T Subscale Magnet
- •Radiation resistance

New Study Towards > 15 T •Stress, Strain Issues

Motivation to Develop Nb₃Al

Critical current density (Jc) of Nb₃Sn is higher than Nb₃Al and advanced magnet technology has been developed by US-LARP.....

Better mechanical performance of Nb₃Al.
KEK & NIMS has developed RHQ-Nb₃Al for accelerator HFM application with support by CERN.

Nb₃Al Fabrication Process with RHQ Method: High Jc

: 50 A/dm², 7 m/h

Dia. w/ Cu: Dia. w/o Cu: Area Reduction: Filament Dia.: Barrier Thickness: Twist Pitch: Piece Length: 1.0 mm 0.7-0.73 mm ~70 % 35 μm 4-6 μm 45 mm < 1 km (400-ton extruder)

* ~2 lots production per year...

* Wire breakings

Non-Cu Jc of Nb₃Al

Magnetization Curves at 4.2 K

Dia 1.0 mm, Cu ratio 1.0, Twist Pitch 45 mm, B ramp 1 T/min, Temp. 4.2 K

Magnetization Curve at 1.9 K

Demonstration of Cable Fabrication

- Bonding strength of copper electroplating
- Cabling with ceramic insulation >> 28 strands, ~20 m long

13 T Sub-scale magnet
Cable test at FRESCA
*3 cables available

K1 cable: Cu ion-plating (<1 μm) + Cu electroplating (150 μm)

Wire Breaking with Ta Matrix

Nb₃Al wires by 400-ton extruder (1-km long wire) since 2004

9 1 C 3 4 5 8 7 8 9 10 11 12 13 14 15 18 12 13 12 10000 PRO (2) 1000

at Cold-Drawing

at Cold-Drawing

•Many wire breakings with Ta matrix.

•Breaking initiated at Ta matrix.

•Need to reduce breaking rate for long wire production.

>> Quality check, improvement of Ta sheets.

>> Trials with 7 different Ta ingredients are underway.

Outline

Present R&D Status: < 15 T for HL-LHC</p>

- •Nb₃Al Superconductor
- •13 T Subscale Magnet
- Radiation resistance

New Study Towards > 15 T •Stress, Strain Issues

13 T Sub-scale Nb3Al/Nb3Sfrss section of the magnet Hybrid Magnet Nb3Al Coils -14 turns -2 layers

- •Key design points
- The common coil concept, and the shell structure,
- Three Nb₃Al coils & two LBL-Nb₃Sn coils for Higher Peak Field.

Collaboration with

Item	Value					
Operation current	12.1 kA					
Peak field	13.1 T					
Stored energy	71.8 kJ					
Magnet Length	740 mm					
Shell Dia.	680 mm					
Nb3A1 Strand Dia.	1 mm					
Cu/Non-Cu ratio	0.96					
No. of Stands	28					
Cable dimension	13.93*1.84 mm2					
Cable Insulation	0.25 mm					
Nb3Al Coils No.	3					
Turns No. per layer	14					
Layers No. per coil	2					
Nb3Sn Coils No.	2					
Turns No. per layer	20					
Layers No. per coil	2					

Present Status - Coil Fabrication -

- 2 practice/dummy coil windings and heat treatment with alumina-ceramic tape completed.
- Temperature uniformity in vacuum furnace (800 °C) verified.
- Some vacuum impregnations done, but a leak problem...
- The 1st Nb₃Al coil will be wound in this month.

New Development:

- Thin alumina-ceramic tape (t0.08 mm)
- Cyanate Ester based resin

Development of Cyanate Ester Based Resin

- Better radiation resistance than Epoxy Resin
- Collaboration for accelerator HFM application (LHC upgrade):

Mitsubishi Gas Chemical: provider of Cyanate Ester resin Univ. of Hyogo: evaluation (bonding & mechanical properties) JAEA: gamma-ray irradiation, evaluation (evolved gas)

KEK: coil impregnation, evaluation

- 60 Cyanate Ester / 40 Epoxy
- low viscosity, low reaction temperature <150 °C
- pot life: 24hr@ 60 °C
- mechanical strength

Total Dose (Rads) Fabian and Hooker et. al., presented at "HHH-AMT, Topical Meeting on Insulation and Impregnation Technologies for Magnets"

Impregnation trial with dummy coil

Neutron Irradiation at Cold

- Severe radiation in the beam insertion system for the LHC upgrade.
- Degradation of stabilizers: even below 10²¹ n/m² (??)
 Quench protection is very concerned.
- Low temperature irradiation facility at KURR (Kyoto Univ. Research Reactor): T_{irrad.} from 10 K to 370 K Max. fast-neutron flux: 1 x 10¹⁶ n/m²/s (5MW)
- Sample candidates: copper, Nb3Al, (Nb3Sn, HTS), pure aluminum,
 - Threshold fluence of degradation start
 - Anneal effect on recovery by warm-up to RT
- First irradiation test will be carried out in November 2010.

Fluence up to 1*10^21/m2. Only 80% recovery by TC to RT.

Outline

Present R&D Status: < 15 T for HL-LHC</p>

- •Nb₃Al Superconductor
- •13 T Subscale Magnet
- •Radiation resistance

New Study Towards > 15 T
•Stress, Strain Issues

Strain Effects on Superconductor

Performance of superconductor (A15, HTS) strongly influenced by "Strains".

•Measurement with Walter Spring in High Field Magnet. >> Strains applied by fixture.

•Residual strains in composite SC due to different thermal contractions. >> $\Delta T \sim 1000 \text{ K}$

Could we know the real (3d) strains of SC in composite?

Stress/Strain in the SC Coil

Stress/Strain issues are unavoidable in HFM for HE-LHC (~20 T).

•Coil stress at operation: ~200 MPa at 15T (> 300 MPa at HE-LHC?)

>> Higher local strain at crossover, kink??

•Role of impregnation as reinforcement: w/ or w/o resins

How could we have better understanding on local strain behavior in the SC coil?

Neutron diffractometer at J-PARC with 10-stack cable sample under various loads would be a nice tooling...

Strain Study at J-PARC Neutron Facility

•Currently 120kW >> 1 MW

•The "lattice parameter" of Nb₃Al, Nb₃Sn, HTS by the neutron diffraction at 4 K to RT,

- $\Delta \epsilon / \epsilon < 0.005\%$, penetration depth > 50 mm,
- Residual strains of SC wires,
- Direct strain measurement under loads,
- Strain distribution of stacked cables.
- •Cryogenic loading frame (4K, 50kN) in JFY2010. •Preliminary test:

Clear peaks of Nb₃Al crystals. Residual strains by different matrixes.

•Beam time of 5 days in 2010B approved:

>> Nb₃Al wires (K1-K4, F1), Nb₃Sn wires (PIT, RRP) from CERN.

Strain Study at HFM Lab. at Tohoku Univ.

Collaboration with HFM Lab. at Tohoku Univ. since this year.
SC performance evaluation under various strains.

>> Correlation with neutron diffraction measurement at J-PARC. >> Nb₃Al wires (K1-K4, F1), Nb₃Sn wires (PIT, RRP) from CERN.

Outline

Present R&D Status: < 15 T for HL-LHC</p>

- •Nb₃Al Superconductor
- •13 T Subscale Magnet
- •Radiation resistance

New Study Towards > 15 T
•Stress, Strain Issues

Summary

- •Development of Nb3Al superconductor is underway by KEK and NIMS with support of CERN.
- •Industrialization of Nb3Al must be necessary for practical use.
 - cost, time, piece length, reduction of breaking, quality control
- •Magnet technology R&D with Nb₃Al:
 - 13 T sub-scale magnet
 - radiation resistance
- •For HFM application like HE-LHC, strain study on superconductors (A15, HTS) should be done. Engineering neutron diffractometer would be a nice tooling.

Participants / Collaborators

KEK:	T. Nakamoto, T. Ogitsu, K. Sasaki, N. Kimura, S. Kin,
	A. Terashima, K. Tsuchiya, Q. Xu, A. Yamamoto,
NIMS:	A. Kikuchi, T. Takeuchi, N. Banno

In cooperation with:
CERN: L. Rossi, G. de Rijk, L. Bottura
LBNL: G. Sabbi, S. Caspi et al.
Fermilab: A. Zlobin, E. Barzi, R. Yamada
CEA/Saclay: B. Bourdy et al.

Summary of Nb₃Al Strands

	JFY20	07-2008	JFY20	08-2009	JFY2009- 2010	JFY2010- 2011	
	K2	K1	K4	K3	K5	K6	
Wire No.	(ME492)	(ME493)	(ME502)	(ME501)			
Matrix material	Ta	Ta Ta		Та	Та	TBD	
Core & Skin material	Ta, Ta	Nb, Nb	Nb, Ta	Nb, Nb	Nb, Nb	TBD	
Matrix ratio	0.8	0.8	0.95	0.8	0.89	TBD	
# of filaments	222	222	222 (241)	294 (313)	222 (241)	TBD	
# of wire breakage	7	4	0	~10	>10		
RHO							
Wire dia (mm)	1.35	1.38	1.35	1.30	1.35	TBD	
Filam dia (µm)	69.8	70.4	66	57	67	TBD	
Barrier thick(µm)	8	8.2	11	7.7	10.8	TBD	
Twist pitch (mm)	0	0	54	0	54	TBD	
RHQ I (A)	202	237	213	208			
Final strand							
wire dia (with Cu)	1.00	1.00	0.99	0.995			
wire dia (w/o Cu)	0.72	0.73	0.70	0.71			
AR ratio (%)	72	72	73	69.9			
filament dia (µm)	37	37	34.1	32			
barrier thick (µm)	4.2	4.2	5.7	4.2			
twist pitch (mm)	45	45	45	45			
Non-Cu Jc (A/mm2)							
@ 10T with AR	1776	1596.4	1610	1872			
@ 12T with AR	1320	1226.3	1197	1409			
@ 15T with AR	785	776.6	707	872			

$J_{\rm c}$ (12 T) vs Temperature

Fabricated or fabricating strands

	200		20	005		2006	2006		2007		2007		2008	2008
ê,ç¼ No.	M21-3		ME451			ME458	ME476		ME492		ME493		ME1	ME2
Matrix material	Nb		Nb			Nb	Та		Та		Та		Та	Та
Core material	Nb, Nb		Nb, Nb			Nb, Nb	Та, Та	Nh	Та, Та	Та	Nb, Nb	ľh	Nb, Ta	Nb, Nb
Matrix ratio	0.8		0.69			0.79	0.8	NU	0.8	1a	0.8	U	0.8	0.8
Num of filam	144		294			546	222		222		222		222	222
Billet dia (mm)			55.5 ¢			58 φ	57.5 φ		57.5 φ		57.5 φ			
Frequency of wire brea	ıking		3			3 and crack	2		7		4			
RHQ														
Wire dia (mm)	0.8		1.35			1.35	1.35		1.35		1.35		1.35	1.35
Filam dia (µm)	51		62.7			44.2	69		69.8		69.8		69	69
Barrier thick(µm)	4.6		6.4			4.4	8		8		8		10	8
Al thickness (nm)	170		150			150	208		211		211		210	210
Twist pitch (mm)	32		55			0	54		0		0		54	54
RHQ I (A)	80.6	80.6	228	2	28	222	226	226		202				
Å@AR_ratio(%)		32						45		72		66.2		
wire dia (w/o Cu)		0.66		0 94	0.72			1.00		0.715		0.785		
wire dia (with Cu)		0.00		0.71	0.72			1.00		1.00		1.00		
filament dia (um)		34 7		44	33			38		37		40.6		
barrier thick (um)		3.1		4.5	3.4			4.4		4.2		4.7		
twist pitch (mm)		011			011			98		45		45		
non-Cu Jc (A/mm2)														
@ 10T w/o AR	1602													
@ 12T	1172													
@ 15T	661					430	623							
@ 10T AR		2176			1720					1776		1669		
@ 12T AR		1663			1302					1320		1230		
@ 15T AR		1032	630	949	817			807		785		718		29