

BNL - FNAL - LBNL - SLAC

LHC Accelerator Research Program Magnet Development

GianLuca Sabbi

for the US LARP collaboration

HE-LHC Workshop, October 14, 2010

Coordinates LHC Accelerator Research in the US:

- Started by DOE in 2003, progression from USLHC construction
- Collaboration of four national Labs: BNL, FNAL, LBNL, SLAC
- Funding level: \$12-13M/year (FY06-FY11)

Goals:

- Extend and improve the performance of LHC
 - > Maximize scientific output in support of the experiments
- Maintain and develop US Labs capabilities

Prepare for future projects

- Research and training for US accelerator physicists and engineers
- Advance US and international collaboration on HEP projects

Overview of LARP Activities

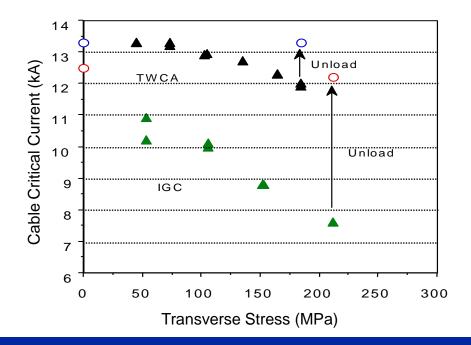
Accelerator Systems	<u>Instrumentation</u>	 Luminosity monitor Tune tracker, AC dipole Schottky monitor
	Accelerator Physics	 Electron cloud instability Beam-beam studies Crab crossing
	<u>Collimation</u>	Rotatable collimators
Magnet Systems	<u>Materials</u>	Strand characterizationCable development
	Model Quadrupoles	Technology QuadrupolesHigh-field Quadrupoles
	Long Quadrupoles	Coil fabricationStructure and assemblyInstrumentation and Test
Program Management	Programmatic Activities	Toohig FellowshipLong Term Visitors

- <u>Goal</u>: Develop Nb₃Sn quadrupoles for the LHC luminosity upgrade
- Potential to operate at higher field and/or larger temperature margin
- Follows Nb₃Sn development and demonstration by CDP & US Labs

LARP is a focused R&D program with specific scope & objectives:

- ➢ Application: High <u>Luminosity</u> LHC
- ➤ Timescale: ~2014
- > Budget: ~7M\$/year
- Magnet type: Large aperture IR Quadrupole
- \succ Conductor: Nb₃Sn
- Specific focus has been a key element of program success
- Considerable progress to date, much work is still required

Nb₃Sn Challenges


Brittleness:

LARP

- React coils after winding
- Epoxy impregnation

Strain sensitivity:

• Mechanical design and analysis to prevent degradation under high stress

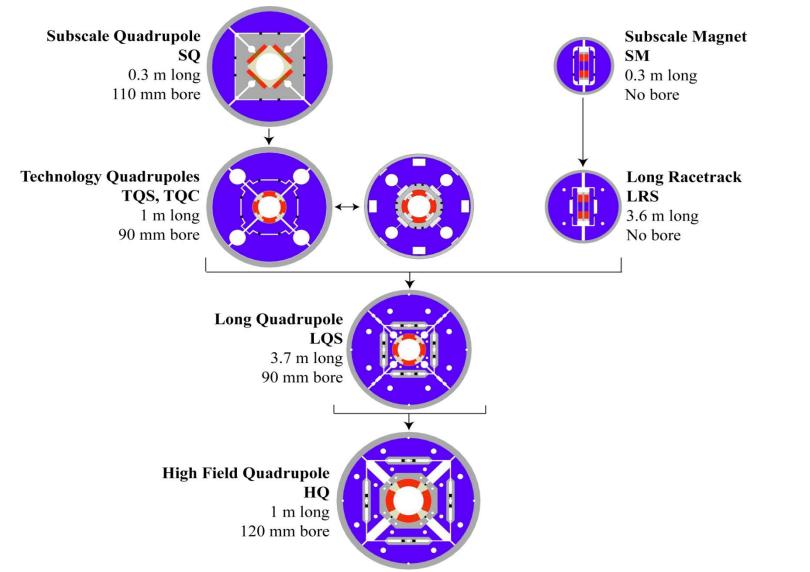
Material	NbTi	Nb ₃ Sn
Dipole Limit	~ 10 T	~ 17 T
Reaction	Ductile	~ 675ºC
Insulation	Polymide	S/E Glass
Coil parts	G-10	Stainless
Axial Strain	N/A	~ 0.3 %
Transverse stress	N/A	~ 200 MPa

Program Components

1. Materials R&D:

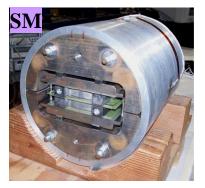
LARP

- Strand specification and procurement
- Cable fabrication, insulation and qualification
- Heat treatment optimization
- 2. Technology development with Racetrack Coils:
 - Subscale Quadrupole (SQ)
 - Long Racetrack (LR)
- 3. Cos 2θ Quadrupoles with 90 mm aperture:
 - Technology Quadrupole (TQ)
 - Long Quadrupole (LQ)
- 4. Cos 20 Quadrupoles with 120 mm aperture:
 - High-Field Quadrupole (HQ)
 - Long High-Field Quadrupole (LHQ)

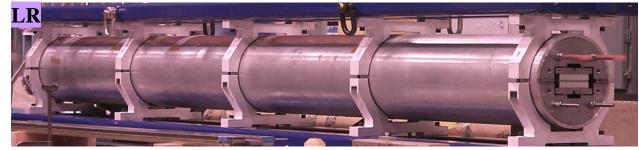

Completed

<u>Ongoing</u>

Completed ~75%



Magnet Development Chart



Magnet Series

HE-LHC, 10/14/2010

GianLuca Sabbi

A fully integrated program: HQ example

- Cable design and fabrication
- Magnetic design & analysis
- Mechanical design & analysis
- Coil parts design and procurement
- Instrumentation & quench protection
- Winding and curing tooling design
- Reaction and potting tooling design
- Coil winding and curing
- Coil reaction and potting
- Coil handling and shipping tooling
- Structures (baseline, revised, mirror)
- Assembly (baseline, revised, mirror)
- Magnet test
- Accelerator Integration

LBNL FNAL, LBNL LBNL FNAL LBNL LBNL, FNAL BNL LBNL BNL, LBNL BNL LBNL, BNL, FNAL LBNL, BNL, FNAL LBNL, CERN, FNAL BNL, LBNL, FNAL

Magnet Tests in the last 12 months

Dec. 2009	LQS01a (first Long Quadrupole) - FNAL
	 Achieved target gradient of 200 T/m
Dec. 2009	TQS03c (high stress) - CERN
	• 88% SSL w/200 MPa average coil stress
Feb. 2010	TQS03e (cycling) - CERN
	 No degradation after 1000 cycles
May 2010	HQS01a (first High-Field Quadrupole) - LBNL
	• >155 T/m @4.5K, already above NbTi limit @1.9K
June 2010	HQS01b (revised coil-structure shims) - LBNL
	• First Quench >150 T/m (78%); insulation failure
July 2010	LQS01b (revised coil-structure shims) - FNAL
	• Rapid training to >220 T/m @4.5K; retained at 1.9K
Oct. 2010	HQS0c (two new coils) - LBNL
	 Underway – Insulation integrity checks

Strand design and fabrication:

- + Solid performance from RRP 54/61 in LR, TQ, LQ, HQ models
- + New RRP 108/127 shows improved stability and robustness
- Only one vendor and production cycle is 12 (15) months
- Piece length (esp. 108/127) not yet sufficient for efficient production

Cable design and fabrication:

- + Three cable designs developed (LR, TQ/LQ, HQ)
- + More than 7 km of cable fabricated with minimal losses
- Control of inter-strand resistance not yet incorporated in magnets

Conductor performance:

- + Demonstrated capability of achieve full conductor potential
- + Demonstrated excellent tolerance to high stress levels
- + Stability margins always sufficient to reach performance goals

Quench performance and training:

+ Achieved high gradient - TQ: 238 T/m, LQ: 225 T/m, HQ:156 T/m

- + Fast training in optimized models (SQ, LR, TQ, LQ, HQ)
- + Steady progress through systematic analysis and correction

Magnetic and mechanical design:

- + Complete FEA modeling capabilities and high quality data *Performance issues can be quickly understood and corrected*
- + Further optimization underway for integration and production

Stress limits:

+ Satisfactory performance up to \sim 250 MPa peak, \sim 200 MPa average

+ No degradation in TQ after 1000 cycles

Coil fabrication technology:

- + Steady improvement in tooling and procedures
- + Distributed coil fabrication shows flexibility, robustness However: insulation failure in recent HQ test
- + Successful length scale-up in LR and LQ However: full coil modeling framework is not yet available

Quench protection:

- + Key parameters are well understood Propagation, detection & heater delays, peak temperatures
- + Steady improvements in modeling and heater fabrication
- Protection is intrinsically challenging
- Quench process in superfluid He may compromise heaters

Alignment and field quality:

- No coil alignment in LR, TQ, LQ models *Neither during fabrication nor at assembly/excitation*
- + Coil alignment features introduced in HQ models Shows good mechanical performance while engaging keys
- Dynamic effects are not yet controlled Cables with cores will be introduced in HQ models

Accelerator integration:

- + Studies underway to further optimize alignment, field quality, cooling, heat transfer, radiation damage etc.
- Much work left to do in this area

Working with CERN on design requirements and options Opportunities for collaboration with EuCARD, KEK, CERN etc.

Radiation and thermal management:

- + Thermal margins are intrinsically high compared to NbTi
- Heat transfer is limited due to epoxy impregnation
- Epoxy is also the weak point in terms of radiation damage
- + Field/aperture margin can be effectively used for absorbers

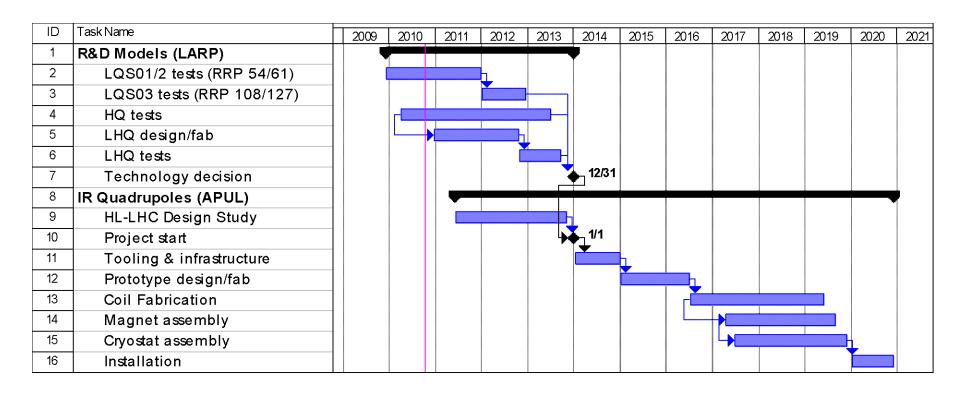
Production issues:

- + Demonstrated distributed production, extensive shipping
- Insulation failures observed in recent HQ tests Need more focus on reliability vs. performance
- + Insulation options for long cables are under development
- + Timeline from specifications to test is similar to NbTi
- Current infrastructure is limited to 4 m coil length

- Fully reproduce performance of the TQ short models
 - ➤ Higher gradient (220 T/m in TQS02, 240 T/m in TQS03)
 - Fast training (plateau in 5-10 quenches, no retraining)
- Systematic analysis of coil length effects
 - > Detailed modeling of the reaction process
 - Understand/optimize coil strain state after reaction
- Design and process optimization for construction
 - Coil size control/reproducibility
 - Protection heater design, esp. for inner layer
 - > One-side loading with 4 m keys/bladders
 - Cable insulation techniques for production

Present focus: address electrical insulation issues in HQ

- Progress on results analysis and identification of root cause, other contributing factors and possible solutions
- Near term: enhanced QA and selection of coils
- Long term: design modifications for improved robustness


Short model R&D:

- Performance limits, training, pre-load optimization
- Quench protection and thermal studies
- Cored cables to control dynamic effects
- Structure optimization for production and accelerator integration
- Field quality characterization and optimization

Scale-up to Long HQ model as a technology demonstrator for HL-LHC

From LARP R&D to HL-LHC Construction

- Assuming technology decision at the end of 2013 and installation in 2012
- 3 years for coil fabrication requires 2 production lines of full length coils
- 64 full length coils required i.e. one new coil completed every ~2 weeks

- IR Quadrupole development
- HE-LHC dipoles will require Nb₃Sn technology
 - Cabling and insulation of long ULs
 - > Long coil fabrication, mechanical structures
 - Instrumentation and analysis
 - Field quality, quench protection
- From cold mass development to accelerator integration:
 - Cooling, helium containment, alignment
- Development of radiation tolerant components
- Capability to organize/integrate R&D effort across Laboratories
- Initial feedback on series production and operation issues:
 - Infrastructure, production steps/times/cost
 - Reliability, failure rates in production/operations

- HTS materials development
- HTS (Bi-2212) coil fabrication technology
 - chemical compatibility, reaction process
- Cabling, in particular for YBCO tapes
- High field dipole designs:
 - Small aperture, block geometry
 - ➤ Two-in-one layout
- Hybrid Nb₃Sn/HTS coils:
 - ➤ internal splices or independent powering
 - > nested assembly and mechanical support
- Scale up to dipole length (additional factor of 2-3)
 - Coil fabrication, sagitta, quench protection
- Technology transfer, large scale production

- A large knowledge base is available after 5 years of fully integrated effort involving three US Labs and CERN
- Demonstrated all fundamental aspects of Nb₃Sn technology:
 - Steady progress in understanding and addressing R&D issues
- R&D effort should now focus on increased reliability, accelerator integration and production-oriented processes
 - Recent HQ insulation failure is a timely reminder
- HL-LHC is a key step for all future high-field applications
 - First demonstration represents a significant opportunity and risk
 - Strong synergy on technical and production issues
- Next few years will be critical and much work is still left to do
 - Integrate effort with CERN, EuCARD, KEK, US Labs