

LBNL High-Field Core Program

Shlomo Caspi

LBNL

EuCard Workshop on High Energy LHC Malta, October 14-16, 2010

S. Caspi, LBNL

Mission and Accomplishments In Nb₃Sn and HTS conductor

Critical contributions to high field magnet technology:

- Engineering properties of superconducting wires
- Cabling of traditional and advanced wires
- Pioneered the "wind-and-react" coil fabrication technology
- New concepts for mechanical support and magnet assembly
- Advances in modeling capabilities and diagnostic tools
- \Rightarrow Pushing the technological limits of accelerator magnets

Impact on the HEP community:

Technology to advance the energy/ luminosity frontier of the LHC

*LBNL has been working almost entirely on Nb₃Sn and HTS for the past 20 years

Progress in High Field Dipoles

.....

BERKELEY LAB

m

Tests of three different types of High Field Dipoles

13.8T,	1997
50mm	bore

14.5T, 2001

16T, 2003

Sub-scale Coil Test Configurations

HEP Conductor Development (CDP)

Coordinating National Labs, University, Industry

Achievements:

- Doubled the critical current density of Nb₃Sn
- Improved process uniformity & piece length

Current focus:

- Continue to improve critical current density
- Explore methods to reduce sub-element size
- From 2007, CDP supported Bi-2212 development

Full qualification in Accelerator configurations

Bi-2212 YBCO Demonstration in simple configurations

Sub-element designs Current focus on the 217 sub-element stack

Hierarchical Modeling of Strain State

<u>Goal</u>: Understand relations between conductor state at the different scales Requires developing, validating and correlating models at each scale

- Nonlinear Properties into Hierarchical Models of Nb₃Sn Strands
- Find J_c in Nb₃Sn magnets due to macroscopic loads
 - Compute strain at the filament level
 - Compute stress in micro-scale due to macro loading
 - Nonlinearity, finite deformation
- Cool-down effects

W&R Bi-2212 Technology Development

Beyond 16 T dipole fields

- Optimize Nb₃Sn
- Develop W&R Bi-2212
 - Collaborations
 - SWCC Showa Cable Systems Co. Ltd.
 - OST Oxford Instruments Superc. Technology
 - VHFSMC U.S. National Program on Bi-2212
 - LBNL: Magnet technology
 - Cabling
 - Compatibility
 - Wire, cable, and coil tests
 - Mechanics
 - Reactions
 - Quench
 - Define conductor requirements
- YBCO, Bi-2223

BERKELEY LAB

Subscale coil manufacture

- Purchase wire, make and insulate cable
- Wind coil on Inconel 600 reaction holder
- React, pot, test

Performance compared to LTS

B How does R&W Bi-2212 compare to record NbTi, Nb₃Sn?

A factor 3 - 4 in J_E is needed to become competitive with LTS

Process modified with respect to 'Original' (leakage, cabling), and precursor variance

Very High Field Superconducting Magnet Collaboration – DOE review April 20, 2010 Fermilab

Cable R&D

- Optimizing cable parameter space
- wide cables (60 strands)
- Fabrication for all LARP magnets
- Critical currents measurements
- Mechanical properties
- Study of strand strain under applied stress

Sub-element deformation

Nb₃Sn challenges

- After winding:
 - Formation of Nb₃Sn at 650 °C
 - Epoxy impregnation
 - Magnet assembly and pre-load
 - Cool-down to 1.9 K and excitation
- Strain status of the superconductor

Assembly and Pre-Stress

- Support structure that minimizes conductor motion and risk degradation
- Key and bladder technology to control pre-stress
- Applied force is provided by an outer shell or skin

HD2

HD1

- Clear bore 36-43 mm
- Coil design: block-dipole with flared ends
- Designed for accelerator field quality
- Easy to configure in two-aperture layout

Large Dipole Test Facility (LDF)

- Goal: Testing of cables and inserts in high transverse field and under load
- Relevant to LHC luminosity and the Muon Collider
- Received ARRA support:
 - Conductor orders (placed)
 - Magnet design (underway)
 - Facility for coil fabrication (underway)

clear aperture of 144 mm in the horizontal and 94 mm in the vertical

Short sample current I_{ss} at 4.5 / 1.9 K kA 16.3 / 18.2

Bore field at 4.5 / 1.9 K I_{ss}

15.5 / 17.0

16.8 / 18.6

Coil peak field at 4.5 / 1.9 K I_{ss}

Integrated modeling:

- Full CAD model for drawings and part fabrication
- 3D magnetic model
 - Iron 3D design
 - Conductor peak field
 - Field quality of end regions
- 3D mechanical model
 - Support structure
 - End support system
 - Mechanical and thermal analysis from assembly to operation

Roxie, TOSCA 3D magnetic model

ANSYS, ProE 3D mechanical model

Frictional Energy and Training

Pole-turn sliding under friction models quench patterns & training

- Analysis of irreversible coil displacements during excitation cycles (ratcheting)
- Evaluation of frictional energy dissipation during excitation cycles

Modeling quench propagation, computation of the thermal stress

Axial & turn to turn velocity;Temp. & voltage

Contributions to nuclear physics, fusion energy, light sources

.....

m

- Modeling of superconducting wires Nb₃Sn and HTS
- Cable fabrication and modeling of advanced wires
- Magnet design and coil fabrication
- Magnet assembly and mechanical support structure
- Advances in modeling capabilities and diagnostic tools
- Reached 13.8T, 14.5T and 16T in three types of dipoles
- Introducing accelerator features bore and field quality

 \Rightarrow Pushing the technological limits of accelerator magnets

- D. Arbelaez, B. Bingham, S. Caspi, D. Cheng,
 B. Collins, D. Dietderich, H. Felice, A. Godeke,
 R. Hafalia, J. Joseph, J. Krishnan, J. Lizarazo,
 M. Marchevsky, S. Prestemon, G. Sabbi, C. Vu,
 X. Wang.
- -P. Bish, H. Higley, D. Horler, S. King, C. Kozy, N. Liggins, J. Swanson, P. Wong

-D. Pickett, J. Smithwick, G. Thomas, K. Miho