Report from Session 2 Main Dipoles

P. McIntyre 2005-24T ss Tripler, a lot of $\mathrm{Bi}-2212$, Je $=800 \mathrm{~A} / \mathrm{mm} 2$

E. Todesco 2010 20 T, 80\% ss 30\% NbTi 55 \%NbSn 15 \%HTS
All Je < 400 A/mm2

Conductor

- NbSn: 15-16 T (80\% ss !!)
- Developed, existing in moderastre quantities (tons); for ITER (less Jc) 400 tons
- Needs improvement in mechanical, stability
- Instability is an issue but we can manage
- A reduction 2 in - projected- cost is an asset
- 2 manufacturers only: 1 at good level, 1 near

Bi-2212

HTS (Bi-2212): needed for B > 16 T (at 80\%) 40% cost of material for 20% field $\mathrm{Je}=100-200 \mathrm{~A} / \mathrm{mm} 2$ today; difficult material; HEP is almost only client... Either a strong program or very likely to be abandoned

Time, h

YBCO

YBCO: may be a great hope: many developers
Cost is -still- stellar Lack of multikA compact cable may be a killer...

The many developers guidfed by othertr applications (Power, electrical devices...)

If we want gain we need to choose between Bi-2212 and Ybco, then push and guide development

New ideas needed...

what do they need to be developed?

We might go far to eliminate all of these problems if we could fully texture the powder in the subelements:

But how to do it?

Magnet Development Chart

LBL:16 T reached with bladder system...
 "common-coil"
 "block"

"cos-theta"

Adding a bore...

HD2: 43 mm bore
Target @ 4.2 K : 15.6 T

Extensive investigation of superconductor and classical structure

Conclusion from NbSn US program...

- @ FERMI
- 20 dipole and 35 quadrupole 1-m long coils
- Reasonable size reproducibility
- Short fabrication time
- 2 dipole and 14 quadrupole 4 -m long coils
- From CORE programs + LARP
- 11 T in dipoles and quadrupoles: we can count on it (but development on conductor and structure still needed...)
- 13-15 T in view, but 3 years needed...

Getting acquainted with HTS in special applications: BNL

- We have successfully designed, built and tested a large number of HTS coils and magnets:
- Number of HTS coils built: ~100
- Number of magnet structures built and tested: ~10
- We are performing HTS magnet R\&D on a wide range of programs:
- High T, low B (several, in house)
- Medium T, medium B (3 funded programs)
- Low T, high B (>20 T, 2 funded programs)

Main coil: layer wound
Bucking: double pancake

YBCO: 25 T-100 mm solenoids for SMES...

KEK : $\mathrm{Nb}_{3} \mathrm{Al}$ and more...

Supercond. Sci. Technol. 18 (2005) p. 284.

Compressive Load
 50 microstrain $\sim 0.00015 A$

Europe: Fresca-2 (2013)

Making a detailed 3D model is important: the devil is in the detail

- 3D turn by turn model

Hot points...

- Radiation facility (HiRadMat @ CERN)
- Design : for B>13-14 T consensus toward block design. Proved ? Not yet!
- Aperture: needs more than educated guess (small aperture favor block vs $\cos \vartheta)$
- CONDUCTOR
- Is the performance driver
- Is the cost driver
- 20 T: 4 G(CHF-\$-€)
- Mitigation measure: 15-16 T range
- Assess real margin ($80 \%, 90 \%$?)
- Needs to drive (and finance) development: Ybco > Bi-2212
- HL-LHC (11 T DS dipole, IR magnets @ 13 T) is a valid test bed
- Other specific issues: protection \& powering, stress management, small aperture, two-in-one design

