

Nb3Sn Accelerator Magnet R&D at Fermilab

Alexander Zlobin Fermilab HE-LHC'2010, Malta, October 14-16, 2010

- During past decade the magnet R&D program has focused on the new generation accelerator magnets based on Nb3Sn superconductor
 - started in 1998 developing accelerator quality 10-12 T arc dipoles for a Very Large Hadron Collider (VLHC).
 - in 2003, the emphasis was shifted to the US-LARP work on Nb3Sn quadrupoles for a LHC IR upgrade.
- The most important breakthroughs in Nb3Sn accelerator magnet technology made at Fermilab
 - high-performance Nb3Sn strand and cables
 - reliable production-ready Nb3Sn coil technology
 - accelerator quality mechanical structures
 - coil pre-load techniques.

Nb3Sn Dipole (HFDA)

*

- Compact mechanical structure: collarless, Al clamps, yoke OD=400mm
- 2-layer 43.5-mm coil
- 1-mm Nb₃Sn strand
- 27 (28) strand cable
- Coil-yoke alignment
- Design B_{max}~12 T @4.5 K

HE-LHC'2010, Malta, 10/14/10

Nb3Sn Accelerator Magnet R&D at Fermilab

Nb3Sn Quadrupole (TQC)

- Mechanical structure (MQXB): SS collar, yoke, skin
- 2-layer 90-mm coil
- 0.7-mm Nb₃Sn strand
- 27 strand cable
- Coil-yoke alignment
- Design G_{max}~230/250 T/m @4.5/1.9K (B_{max}~12-13 T)

Nb3Sn Coil Technology

Coil fabrication technology:

- W&R method
- high-temperature insulation (ceramic, S2/E-glass)
- metallic components (bronze, Ti)
- <u>ceramic binder</u>
- coil vacuum impregnation (epoxy CTD101, liquid poliimid Matrimid)

Individual D and Q coils were tested and optimized using Coil Test Structures (CTS):

- similar level of magnetic field and its distribution
- comparable Lorentz forces
- same mechanical structure and assembly procedure
- advanced instrumentation
- shorter turnaround time
- lower cost

Dipole Quench Performance

- 6 short dipole and 6 CTS models were built and tested during 2002-2006:
- 2002-2003: first 3 D models with 1-mm MJR-54/61 strand suffered from flux jumps at B>6 T.
- 2004-2005: 3 D models with 1-mm PIT-196 strand reached Bmax=9.4/10.2T @4.5/2.2K (100% of SSL).
- 2006: D CTS with 1-mm RRP-108/127 coil reached Bmax= 11.4T @4.5 K (97% of SSL)

(F)

Current

- 7 quadrupole models and
- 5 quadrupole CTS models during 2007-2010:
- 2 collaring techniques
- 2006: MJR Q models -Gmax~200 T/m at 1.9 K
- 2007-2010: RRP models -Gmax~211/217 T/m at 4.5/3 K (FJ at 1.9K)

Nb3Sn D and Q Field Quality

- 6 HFDA models vs. first 6 40-mm SSC dipole models
- 4 Nb3Sn TQ (TQC and TQS) models vs. NbTi HGQ models
- Field harmonics in Nb3Sn models are larger than NbTi models
 - -new technology
- The geometry and alignment of Nb3Sn magnets need to (and can) be improved

Coil Magnetization Effects

- The persistent current effect is large but reproducible => smaller D_{eff} and passive correction
- FJ in low order harmonics in dipole models => smaller D_{eff}
- Large eddy current components => SS core

-2

2

3

Magnetic Field, T

6

5

Nb3Sn Coil Studies

	-1	1		1		14000	1					
СТЅ	Coil #	Strand	Cable	Insulation	Pole material	13000		TC	QM03		■ 20 A/s ◆ 100 A ▲ 250 A	; /s /s
TQM01	19	RRP- 54/61	w/o core	S2-glass sleeve	Bronze	(A)	**					
TQM02	17	RRP- 54/61	_"_	S2-glass sleeve	Bronze		TQM02					
TQM03a,b,c	34	RRP- 108/127	_"_	E-glass tape	Titanium	0 11000 0 0	•					:
TQM04	35	RRP- 108/127	25 μm SS core	S2-glass sleeve	Titanium	10000	•					
						9000	1.5 2.0 2	2.5 3.0 Tempera	3.5 ature (K)	4.0	4.5	5.0
14000 13500 -				▲ TQM03a ◆ TQM03b		14000 13000		1.9 K		0		
() 13000 -	13000 -		٠	□TQM03c		12000 E		А.5 К	▲ ▲	۵		ļ
12500 - O	0		•	_		11000 10000	▲ TQM03a 4.5K				A	
12000 -	12000 -			▲ ↑		9000	 ▲ TQM03a 1.9K ● TQM04a 4.5K ● TOM04a 1.9K 					
11500 +		· · ·		I I		8000					_	
1.	5	2 2.5	3 3.5	4 4.5	5		0 50 100	150 20	0 250	300	350	400
Temperature (T)							dI/dt (A/s)					

HE-LHC'2010, Malta, 10/14/10

Nb3Sn Accelerator Magnet R&D at Fermilab

Nb3Sn Technology Scale-up

- 2007: 2-m long dipole coil, 1-mm PIT-196
 - 2-m PIT mirror model reached its SSL
- 2008: 4-m long dipole coil, RRP-108/127
 - 4-m RRP mirror Imax~90% of SSL at 4.5 K (with coil heating to suppress FJ)
- 2010: 4-m long quadrupole coil, 0.7 RRP-114/127

HE-LHC'2010, Malta, 10/14/10

Nb3Sn Strand Improvement

Superconductor properties are critical for magnet quench performance, field quality, etc.

Collaborating with U.S. Industry on Nb3Sn strand optimization

- OST: RRP technology, 150/169 design
- HyperTech Research Inc.: TIT technology, 246+ SE
- Goal: to reduce the SE size without losing Jc, RRR

HE-LHC'2010, Malta, 10/14/10

- Coil production experience:
 - 20 dipole and 35 quadrupole 1-m long coils
 - Good size reproducibility
 - Short fabrication time
 - 2 dipole and 14 quadrupole 4-m long coils
- SS shell-based and collar-based structures were tested
- Collaring of brittle Nb3Sn coils was demonstrated
- Multiple reassembly and test without degradation
- Coil and magnet handling and transportation across the country and Atlantic ocean
- Acceptable quench performance and field quality, room for improvement
- The advances made in Nb3Sn accelerator magnet technology during the past decade make it possible for the first time to seriously consider such magnets with Bop<12 T (Bmax<15 T) in present and future accelerators.