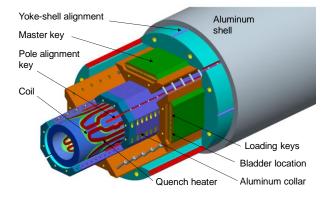


BERKELEY LAB

Next Steps in Magnet R&D

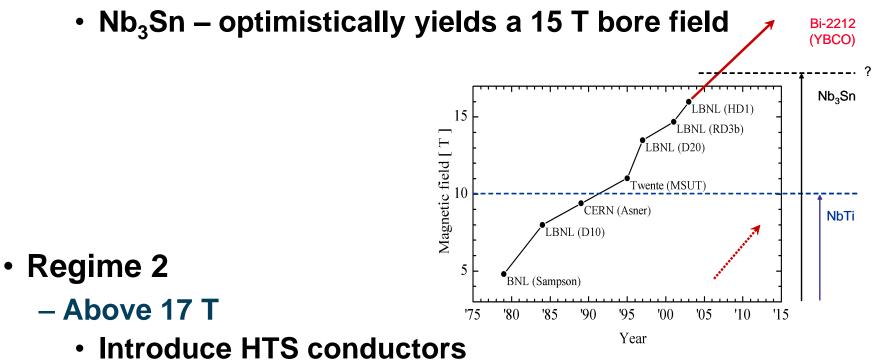

Steve Gourlay LBNL


EuCARD Workshop on a High Energy LHC

Malta October 14, 2010

Current Status

- Phase 1 of LARP magnet program close to completion
 - TQ technology development and reproducibility
 - surpassed LARP target gradient
 - LQ --handling, fab, protection of long magnets (~ 4m)
 - achieved 220 T/m



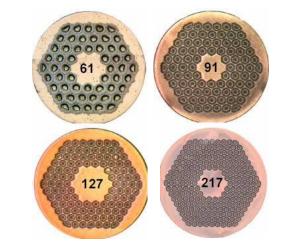
Excellent progress so far . . .

Next Phase – Two separate regimes

- Regime 1
 - Up to 17 T

A quantum leap in technology

Technological Readiness


Major risk

- Conductor
 - $-J_{c}$
 - Nearly fully optimized
 - 3,400 A/mm² has been achieved. Practical limit is 4,000 A/mm²
 - Some non-Cu area fraction is still not used for current transport (the Sn source area), but optimizing this would require a presently not available/known conductor fabrication method
 - Increase density of pinning sites
 - A factor 10 can increase the critical current around 12 T by a factor of 3.5 to 4, as demonstrated theoretically
 - Don't know how to do this in wires
 - $-\mathbf{D}_{\rm eff}$
 - Still important, but more so for medium field magnets (<10 T)

- Conductor cont'd
 - Strain dependence
 - Poorly understood need continued R&D
 - Not a show-stopper
- Bottom-line
 - Nearly ready to go

Should we spend much more effort to raise J_c ?

- Preparing for high radiation environment
 - Current filler matrix contains Boron
 - Need to transition to ceramic
 - CTD-101 not rad hard
 - Outgassing catastrophic expansion of matrix
 - Cyanate Ester (or blend)
 - Need to understand required properties
 - Start with ITER work
 - Polyimide

- Quench Protection
 - At 4 m, 14 T peak field, LQ is already a limit of stored energy.
 Now we want to go to 10 m and 20 T!
 - Heaters now at 400V/2m. May not want to go higher. What happens if we go to 6, 10, …?
 - Need more detailed quench calculations/tests
 - Include quench back
 - Mechanical issues
 - Still see some heater deformation @ 4.2K. Cycling tests are OK. Thermal cycles seem to be a problem.


- Delamination on coil Inner Diameter
- Different from "TQ-style" bubbles
 - larger => only underneath the large sections of the heaters
 - No conductor exposed
 - Not clear if bubble underneath stainless steel or only glass sheet => impact on heater performance ?
- Possible causes:
 - Superfluid helium + quench (only 2 quenches) <=> TQ
 - Heat from heaters on ID <=> LQ

Coil 6 (showing epoxy "peeling" related to double impregnation, already observed before test)

₉04/27/2010 H. Felice - Collaboration Meeting 14 - FNAL

LARP

- Structure
 - Field quality know how to do this
 - Dynamic range? Assuming higher energy injection
 - 2-in-1 configuration
 - Need to see if this is a viable option for tin magnets

Conductor

- Bi-2212

- J_e is presently in (almost) leak free wires around 200-250 A/mm² at 4.2 K, ~12 T, a factor of 3 less than NbTi and Nb₃Sn
- A factor 3-4 increase in 2212 J_e is needed to become competitive with Nb₃Sn. Without increase, 2212 is a dead end
- Strain dependence
 - The reduction of Jc with strain is irreversible in 2212
 - the intrinsic strain dependence is possibly reversible, brittle web of interconnected filaments needs to be supported in order to reduce stress concentrations
 - Potential show-stopper
- Other technical issues:
 - leakage, materials compatibility, the reaction of larger coils with sufficient T and O₂ homogeneity, etc. need more R&D

Conductor (con't)

- YBCO

- Very high current density but only 1% of the cross-section is YBCO, => J_e ~ 250 A/mm² comparable with 2212 and available tape insulation methods reduce this by another factor of two
- Expensive and only available in tape form
- Lack of filament structure
 - Can we learn how to use this?

– Bi-2223

- J_e's comparable to 2212 and YBCO
 - Still a tape but has filament structure
 - Perhaps it deserves a look

– Development of HTS conductors in industry is orthogonal to needs of HEP. How do we encourage/fund development?

Regime 2 – 17 T and above

- High Radiation environment
 - Is HTS less or more rad hard than Nb₃Sn?
 - Same issues as for Regime 1
- Quench Protection
 - Stored energy goes even higher
 - Hybrid designs Can we operate in series (and protect) or do we need separate power supplies?
- Structure
 - Integration of coils with different materials (maintain small tolerance)
 - Completely different processing for each conductor type
 - Bring together in low stress configuration (especially 2212)
 - Size accept large stray field? Active shielding?

 Accelerator magnets with peak fields less than 17 T are challenging but clearly feasible

- It will require a coordinated community development program

- Above 17 T requires significant conductor development and engineering
 - Much R&D to do

Acknowledgements

- Thanks to . . .
 - Paolo Ferracin
 - Helene Felice
 - Arno Godeke
 - Dan Dietderich
 - Shlomo Caspi

... for information and valuable discussions

