

Heat loads and cryogenics

L.Tavian, D. Delikaris CERN, Cryogenics Group, Technology Department Accelerators & Technology Sector

- Introduction
- Heat loads
 - Heat inleaks
 - Resistive heating
 - Beam induced heat load
- Cooling capacity requirement
- Conclusions

Cryogenics at CERN

Helium refrigeration capacity at CERN (kW@4.5 K)

Introduction

- Scaling from LHC loads
- Three main temperature levels
 - Thermal shield (TS): 50 and 75 K
 - Heat intercept (HI): 4.6 K & Beam screen (BS): 4.6-20 K (40-60 K or 85-100 K as an alternative compatible with vacuum specification)
 - Cold mass(CM): 2 K
- 8 cryogenic sectors
 - One cryogenic plant per continuous cryostat (arc + dispersion suppressors)
 - Dedicated cryogenic plants for high-load insertions (RF, IT...) as for HL-LHC
- Continuous cryostat (arc + dispersion suppressors) only considered in the following

Heat inleaks (w/o contingency)

 Assumption: thermal performance of the HE-LHC cryostat (magnet + cryogenic distribution QRL) similar to the one of the LHC cryomagnet.

Temperature level		LHC	HE-LHC
TS (50-75 K)	[W/m]	7.7	7.7
HI (4.6 K)	[W/m]	0.23	0.23
СМ (2 К)	[W/m]	0.21	0.21

Contingency (on heat inleaks); Reminder: LHC contingency factor = 1.5
 Overcapacity (on cryogenic plant's refrigeration power)

Resistive heating in SC splices

- Resistive heating proportional to:
 - the square of the magnet current,
 - the splice electrical resistance
 - the number of splices

		LHC nominal	HE-LHC
Main magnet current	[kA]	12	18
Splice resistance	[nOhm]	0.5	0.5
Number of splice per arc	[-]	2500	3750
Resistive heating on CM	[W/m]	0.1	0.34

Current lead cooling

- Assumptions:
 - HE-LHC is using the same type of HTS current lead as the LHC with the same cooling performance, i.e. 54 mg/s per kA of helium between 20 and 300 K
 - as the optics of the HE-LHC are not yet fully defined the number of individually powered magnets is not known \rightarrow total current entering or exiting proportional to the main magnet current
 - as for the LHC, it is assumed that high-load sectors enter two times more current than low-load sectors

		LHC nominal	HE-LHC
Main magnet current	[kA]	12	18
Total current in/out	[kA]	2750	4130
Total current high load sector CC	[kA]	460	690
Total current low load sector CC	[kA]	230	345
Specific CL cooling flow	[mg/s per kA]	54	54
High-load sector CL cooling flow	[g/s]	25	37
Low-load sector CL cooling flow	[g/s]	12	19

Beam-induced load	Energy	Bunch Population	Bunch Number	Bunch Length	Beam- screen aperture	Temp. Level
	E	N _{bunch}	n _{bunch}	σ _z [rms]	b	
Synchrotron radiation	E ⁴	N _{bunch}	n _{bunch}			BS
Image current		${\sf N}_{\sf bunch}{}^2$	n _{bunch}	$\sigma_z^{-3/2}$	b⁻¹	BS
Photo-electron cloud		N_{bunch}^{3}	n _{bunch}		b ⁻²	BS
Beam gas scattering		N _{bunch}	n _{bunch}			CM

Beam-induced loads (for BS operating between 4.6 and 20 K)

		LHC nominal	HE-LHC
Beam energy, E	[TeV]	7	16.5
Bunch population, N _{bunch}	[10 ¹¹ p]	1.15	1.29
Bunch number, n _{bunch}	[-]	2808	1404
Bunch length, σ_z [rms]	[cm]	7.55	6.55
Beam-screen aperture radius, b	[cm]	2	1.3
Synchrotron radiation	[W/m]	0.33	5.71
Image current	[W/m]	0.36	0.44
Photo-electron cloud	[W/m]	0.90	1.50
Beam gas scattering	[W/m]	0.05	0.03

The biggest change concerns the synchrotron-radiation load, which ۲ increases by a factor 17!

Operating the beam screen at higher temperature

- Operating beam screen at higher temperature will reduce the specific entropic cost of refrigeration, but:
 - As the electrical resistivity of the copper on the beam-screen surface increases with the temperature, the image-current load will also increase proportionally
 - The temperature difference between the beam screen and the cold bore will increase, i.e. the heat inleaks on the cold mass will increase as well
 - Changing the operating conditions and the specific heat load has a direct impact on the cooling capillary diameter
- Two alternative temperature ranges compatible with vacuum requirement:
 - 40-60 К
 - 85-100 K

Copper electrical resistivity

CERN

EUCARD

CM heat load vs. BS temperature

(See LHC Project Note 330)

Tbs_ave - Tcb [K]

 Cold bore heat load: 0.006 W/m for 4.6-20 K temperature range 0.17 W/m for 40-60 K temperature range 0.71 W/m for 85-100 K temperature range

Beam screen cooling capillary

		HE-LHC		
BS@	4.6-20 K	4.6-20 K	40-60 K	85-100 K
Inlet temperature [K]	4.6	4.6	40	85
Inlet pressure [bar]	3.0	3.0	20	20
Outlet temperature [K]	20	20	60	100
Outlet pressure [bar]	1.3	1.3	18	18
Specific heat load [W/m]	4.8	7.65	9.45	16.3
Loop length [m]	50	50	50	50
Number of capillary per aperture	2	2	2	2
Capillary inner diameter [mm]	3.7	4.4	3.8	6.0

• 40-60 K temperature range \rightarrow minimum diameter !

Summary of specific cryogenic heat loads

Temn		инс	HE-LHC			
level	Heat load source		nominal	BS @	BS @	BS @
TS	Heat inleaks Total TS	[W/m] [W/m]	7.7 7.7	4.0-20 K	40-60 K 7.7 7.7	82-100 K
HI	Heat inleaks Total HI	[W/m] [W/m]	0.23 0.23		0.23 0.23	
BS	Heat inleaks Synchrotron radiation Image current Photo-electron cloud Total BS	[W/m] [W/m] [W/m] [W/m]	0 0.33 0.36 0.90 1.82	0 5.71 0.44 1.50 7.65	-0.17 5.71 2.40 1.50 9.45	-0.71 5.71 9.81 1.50 16.3
СМ	Heat inleaks Resistive heating Beam-gas scattering Total CM	[W/m] [W/m] [W/m] [W/m]	0.21 0.10 0.05 0.36	0.21 0.34 0.03 0.58	0.38 0.34 0.03 0.74	0.92 0.34 0.03 1.29

Cold mass cooling

- LHC cooling scheme limited to 0.9 W/m (subcooling heat exchanger), i.e. not compatible with the 85-100 K BS temperature range.
- Cooling at 2 K: reduced conduction in superfluid helium to extract the heat from the coil.

Continuous cryostat

cooling capacity per sector

(values in brackets: equivalent entropic capacity in kW at 4.5 K) •Assumptions:

- Continuous cryostat length: 2800 m
- Overcapacity factor: 1.5 (for each temperature level) as for LHC plants

Tomporatura loval	HE-LHC	continuous c	LHC high-load sector		
iemperature iever	BS @ 4.6-20 K	BS @ 40-60 K	BS @ 85-100 K	BS @ 4.6-20 K	
TS (50-75 K) [kW]		33 (2.2)			
HI (4.6-20 K) [kW]	22 (10 1)	1.0 (0.5)	1.0 (0.5)	77(42)	
BS [kW]	55 (10.4 <i>)</i>	40 (3.5)	69 (3.3)	7.7 (4.5)	
CM (2 K) [kW]	2.4 (7.8)	3.1 (10.0)	5.4 (17.4)	2.7* (9.3)	
CL [g/s]		41 (1.8)			
Total equivalent entropic capacity	(30.8)	(30.8) (18.6) (25.8)			

*: 2.4 kW at 1.8 K plus 0.3 kW at 4.5 K

Equivalent entropic capacity

CERN

EUCARD

Electrical input power for continuous-cryostat refrigerators

	HE-LH	IHC			
		BS @ 4.6-20 K	BS @ 40-60 K	BS @ 85-100 K	refrigerator
Electrical input power per refrigerator	[MW]	7.7	4.7	6.5	4.4
Number of refrigerator	[-]	8	8	8	8
Total electrical input power	[MW]	62	37	52	35

Assuming a performance coefficient factor of 250 W/W (electrical / @4.5 K)

Concluding remarks [1/2]

- No contingency has been introduced in the numbers
- A lot of assumptions have to be confirmed (e.g. the splice resistance and number, the main magnet current, the current-leads distribution and number, and the cryostat performance)
- The optimization of the refrigeration cycle has still to be done (wrt temperature levels)
- Transient heat loads (ramp/de-ramp, fast de-ramp, quench), have still to be considered in order to define the correct level of buffering
- The insertion loads have still to be considered (dedicated new cryoplants as for HL-LHC)

Concluding remarks [2/2]

- Depending on the cooling scenario, up to 9 temperature levels have to be distributed along the continuous cryostats to supply or recover the different cooling loops
 → A rationalization study has to be done for reducing the number of distribution headers like:
 - operating the beam screen and the thermal shield with the same temperature range (40-60 K)
 - cooling the resistive part of HTS current lead with a helium flow at a higher temperature and pressure (e.g. 40 K, 20 bar)
- At the end of the LHC (2030), the LHC (& former LEP) cryogenics will reach 30 to 40 years operation; Initially specified for a 20-year operation, major overhauling has to be considered for the equipments re-affected to the HE-LHC project (cryoplants, QRL, distribution boxes...)

Additional slide Rationalization options

•Temperature range (9 levels) Inlet: 50 K (TS), 40 K (BS), 20 K (CL), 4.6 K Outlet: 300 K (CL), 75 K (TS), 60 K (BS), 4 K (Very Low Pumping) Quench recovery T

Rationalization options:
TS & BS @ 40-60 K
CL LHC 20-300 K (but regulated @ 50 K, saving distribution headers)
CL HE-LHC @ 40-300 K, 20b (taking profit from the TS & BS option)

Leading to reduced Temperature range (6 levels) Inlet: 40 K, 20 b (TS, BS, CL), 4.6 K Outlet: 300 K (CL), 60 K (TS, BS), 4 K (Very Low Pumping) Quench recovery T

Friday, October 15, 2010