

P.Fabbricatore INFN-Genova

Magnet design issues & concepts for the new injector

P.Fabbricatore

INFN-Genova, Italy

Starting from the development of the fast cycled dipole magnets for SIS300 some information and considerations for the development of future high field injector

This presentation is based on the work of many colleagues of INFN **DISCORAP** project

P.Fabbricatore INFN-Genova

SIS300 dipoles: fast cycled and curved magnet

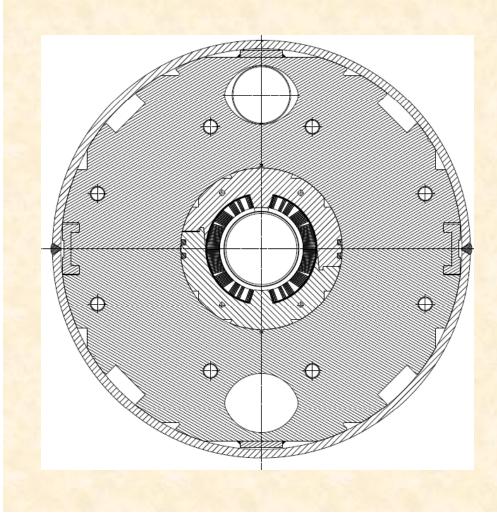


TABLE I MAIN REQUIREMENTS OF SIS300 SHORT DIPOLES

ACC

EUCARD

Nominal Field (T) :	4.5
Ramp rate (T/s)	
Radius of magnet geometrical curvature (m)	662/3
Magnetic Length (m)	3.879
Bending angle (deg)	3 1/3
Coil aperture (mm)	100
Max operating temperature (K)	4.7

TABLE II MAIN CARACTERISTICS OF THE MODEL MAGNET				
Block number	5			
Turn number/quadrant	34 (17+9+4+2+2)			
Operating current (A)	8920			
Yoke inner radius (mm)	96.85			
Yoke outer radius (mm)	240.00			
Peak field on conductor	4.90			
(with self field) (T)				
B _{peak} / B _o	1.09			
Working point on load line	69%			
Current sharing temperature (K)	5.69			

P.Fabbricatore INFN-Genova

Criticities of SIS300 dipoles

	Aperture (mm)	B (T)	dB/dt (T/s)	Π (T ² /s)	Q (W/m)
LHC	53	8.34	0.008	0.067	0.18
RHIC	80	3.5	0.06	0.21	0.35
SIS300	100	4.5	1	4.5	<10

Ramp 1T/s \rightarrow ac losses

→ Limited performances
→ Costs of Cryogenics

Hence: Development of a low loss conductor Design with loss minimization (taking care of eddy currents in structures)

Low ac losses \rightarrow Cored conductor \rightarrow Constructive problems

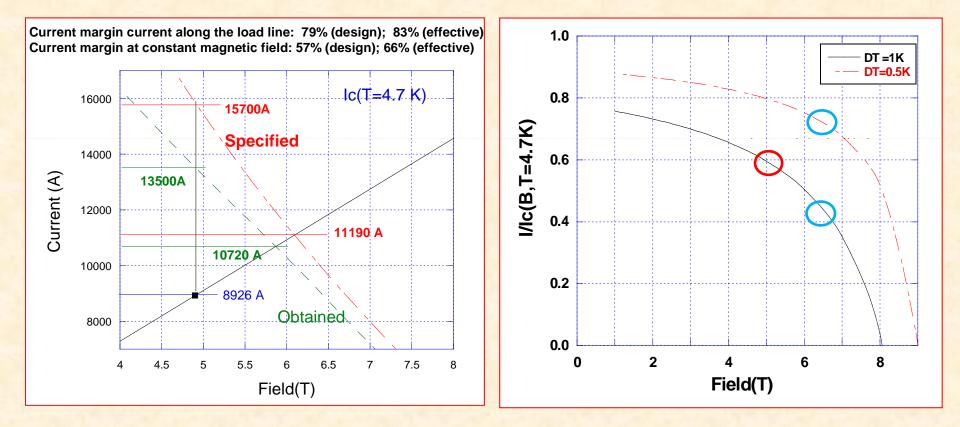
Curvature R=66.667 m (sagitta 117 mm) \rightarrow Design and constructive problems

10⁷ cycles \rightarrow Fatigue \rightarrow Mechanical design and materials optimization

Our concern: how to couple (perfectly ?) curved objects

At the end of the construction, we can say that *many* constructive problems to be faced were mainly coming from the geometrical curvature, which also had forced specific design choices: one layer, mechanical strength provided by <u>collars</u> only, mid-plane gap in iron yoke, longitudinal pre-stress achieved after cool-down

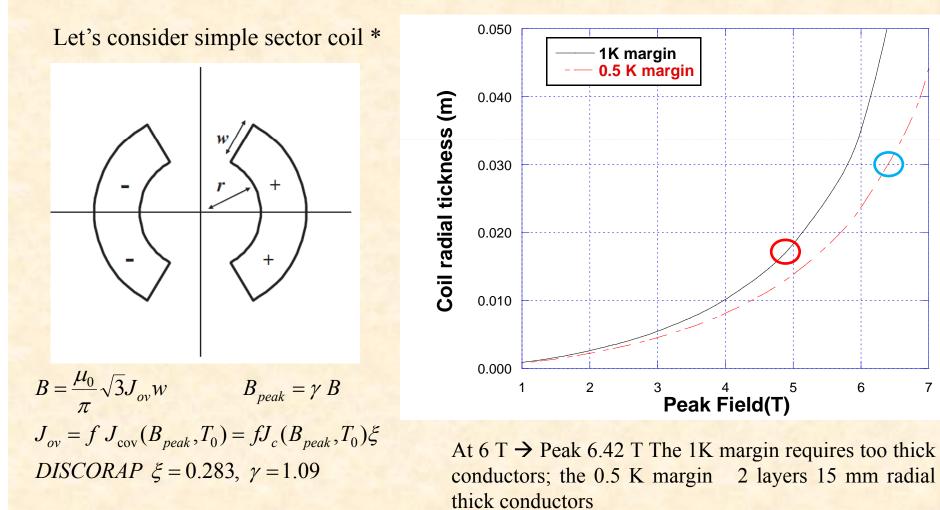
P.Fabbricatore INFN-Genova



MAIN CHARACTERISTICS

Magnet operating in supercritical He Parameter	SIS300 dipole	Injector 4T 100mm 1.5T/s	Injector 6T 100mm 1.0T/s
Injection magnetic field [T] and b_3	1.5 / -0.75	0.4/	0.4/
Maximum/ Peak magnetic field [T]	4.5/4.9		
Temperature Margin (K)	0.97		
AC losses in the superconductor during ramp [W/m]	3.5		
AC losses in the structures during ramp (eddy currents and magnetization) [W/m]	4.2		
Weight [T/m]	1.28		
Cost of cryostated magnet [€/m]	60-70		

A KEY PARAMETER: THE TEMPERATURE MARGIN



For Discorap the designed margin was 0.97 K In facts (after cable production) it is 0.76 K

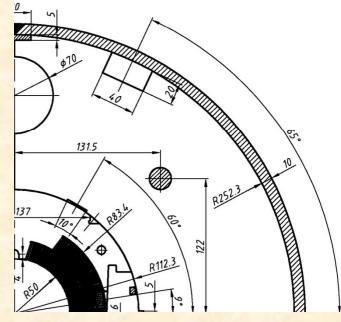
At increasing fields (6 T \rightarrow Peak 6.42 T) The 1K margin requires I/I_c=0.45; the 0.5 K margin I/I_c=0.72

THE TEMPERATURE MARGIN AFFECTS THE COIL LAYOUT

*L.Rossi and E.Todesco Physical Rev. Spec. Topics – Accelerators and beams 10, 112401 2007

7

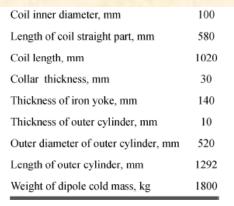
P.Fabbricatore INFN-Genova

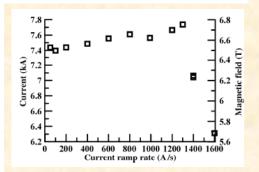

200

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 20, NO. 3, JUNE 2010

SIS 300 Dipole Model

S. Kozub, I. Bogdanov, V. Pokrovsky, A. Seletsky, P. Shcherbakov, L. Shirshov, V. Smirnov, V. Sytnik, L. Tkachenko, V. Zubko, E. Floch, G. Moritz, and H. Mueller





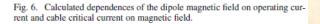
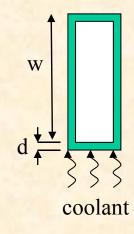

[2]. The bare cable has the following dimensions: 1.362 mm thin edge thickness, 1.598 mm thick edge thickness, 1.480 mm mean thickness, 0.90 keystone angle, and 15.1 mm width. The cable

TABLE I MAIN CHARACTERISTICS OF DIPOLE				
Central magnetic field, T	6			
Magnetic field ramp rate, T/s	1			
Operating current, A	6720			
Stored energy, kJ	260			
Inductance, mH	11.7			
Number of layers	2			
Inner layer turn number	64			
Outer layer turn number	76			

9 8 $B_0(meas.)$ $B_0(calc.)$ 7 $B_{max}(calc.)$ 6 Sum (a) 36 with a b b b b b b b b b b b b b b b b b b	

The magnet was tested at 4.3 K getting 6.8 T at 1T/s; the temperature margin is 1.0

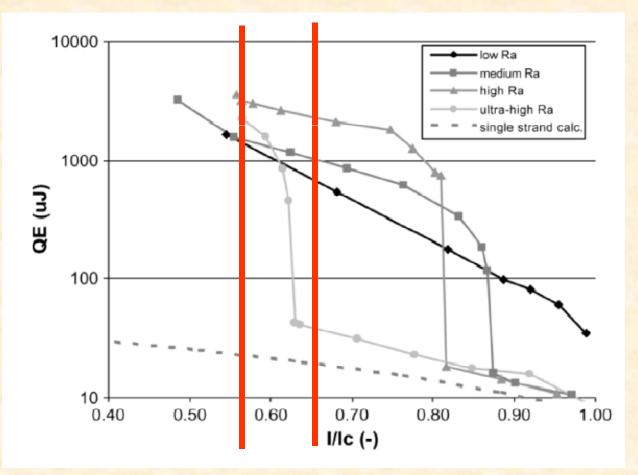
What temperature margin do we really need considering the ac losses?


Cooling of conductor only from inner short side.

Kapton thermal conductivity	k = 1.1 E-5	W/(K*mm)
Insulation thickness	d = 0.125	mm
Conductor width	w = 15.1	mm
• Average power density (ramp)	1300	W/m ³

$$\delta T = \frac{d \cdot w}{k} p = 0.25 \text{ K}$$

Much more refined models and measurements in


Thermal Analysis of the Fair SIS300 Model Dipole M.Sorbi et al in TRANSACTIONS OF THE CRYOGENIC ENGINEERING CONFERENCE-CEC: Advances in Cryogenic Engineering. AIP Conference Proceedings, Volume 1218, pp. 981-988 (2010).

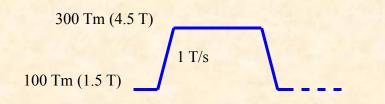
WILLERING et al.: STABILITY OF Nb-Ti RUTHERFORD CABLES WITH DIFFERENT CONTACT RESISTANCES

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 18, NO. 2, JUNE 2008

Disco_Rap design (57%) and effective (66%) working points

P.Fabbricatore INFN-Genova

AC losses

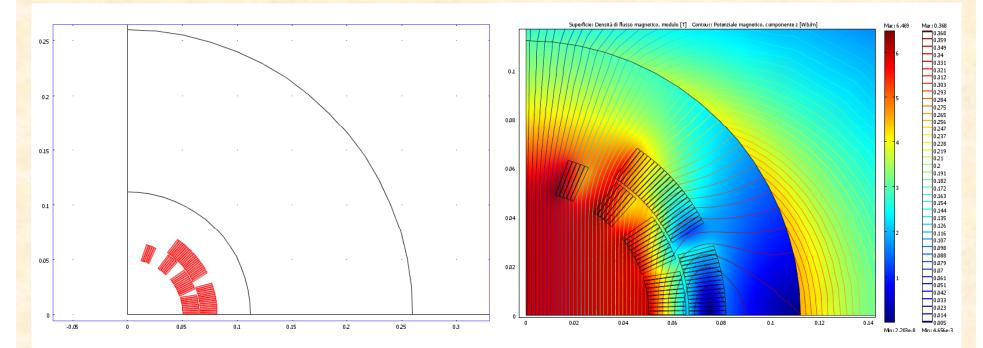

Ac losses in the superconducting cable

 Hysteretic losses in the superconductor
 Hysteretic ∞ d_f B_e J_c
 Coupling losses in the strand multifilamentary structure P_{if} = ^{B_i}/_{P_i} (^{L_p}/_{2π})²
 Losses due to coupling currents between strands P_{is} ∝ ^{B_i}/_{R_a} ; ^{B_i}/_{R_a}

 Losses in the iron (Irreversible Magnetization, Eddy currents)
 Eddy currents in the metallic structure (including beam pipe)

 Any discussion about the ac losses should start from the field cycle

For Discorap 6s ramps up and down Duty cycle 50%


For injector let's consider... Duty cycle 50% 1.0-1.5 TeV (4-6 T) 1.5 -1.0T/s 100 GeV (0.4T)

EUCARD

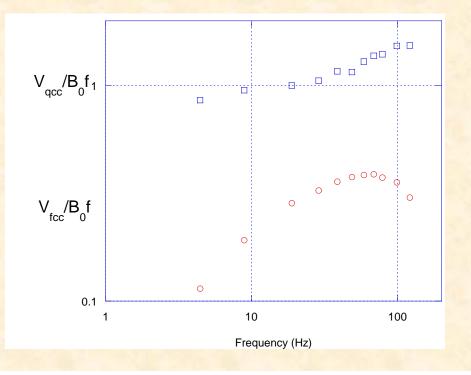
INFR Istituto Nazionale di Fisica Nucleare	1 Coil Collars Key 4 Iron yoke 5 Shell 7 C-Clamp 6 Staples	Magnet design issue for the new injector P.Fabbricatore INFN-Gen		Eucard Ad
Ac losses in the	SIS30	0 4.5T 100mm bore	LHC injector 4	T 100mm bore
magnet body (no end coils contribution)		s when ramping from to 4.5T at 1 T/s: 7.7 [W/m]	0.4 T to 4.0T	n ramping from at 1 or 1.5 T/s: - 15.5 [W/m]
Hysteresis	30 %	D _{fil effect} = $3.5 \ \mu m$ (2.5 μm geom. 3 μm eff.)	38%	30%
Coupling Strand	9 %	$CuMn \rho_t = 0.43 n\Omega \cdot m$ $(0.3 n\Omega \cdot m)$ $lp 5 mm (6.7 mm)$	9%	11%
Interstrand Ra+Rc	6 %	Cored cable	6%	7%
Total conductor	(45 %)		(53%)	(48%)
Collars + Yoke eddy + <u>Prot. sheets</u>	6 %	Collar 3 mm tick Iron 1 mm tick	6%	7%
Yoke magn	24%	H_c (A/m)=35	19%	17%
Beam pipe	14 %	$rac{\pi}{ ho_0}\dot{B}_0^2\cdot r_{av}^3\cdot\Delta r$	11%	14%
Collar-Keys-Pins	8 %		8%	10%
Yoke-Keys-Pins	3 %		3%	4%

Cosθ 6T dipole 100 mm bore

Peak Field 6.42 T; Temperature margin 0.65 K; Operating at 65% of short sample and 89% along the load line (with respect to an *ideal* conductor)

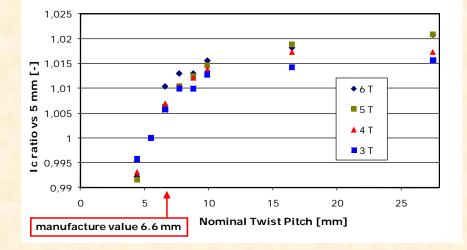
P.Fabbricatore INFN-Genova

	Injector 6T 100mm bore		
	Total loss when ramping from		
	0.4	to 6 T at 1 T/s:	
		13.5 [W/m]	
Hysteresis	40 %	D _{fil effect} = $3.5 \ \mu m$	
Coupling Strand	9 %	$\operatorname{CuMn} \rho_t = 0.43 \ \mathrm{n}\Omega \cdot \mathrm{m}$	
		lp 5 mm	
Interstrand Ra+Rc	9 %	Cored cable	
Total conductor	(58 %)		
Collars + Yoke	1.1 %	Collar 3 mm tick	
eddy + <u>Prot.sheets</u>		Iron 1 mm tick	
Yoke magn	23%	H_{c} (A/m)=35	
Beam pipe	8 %		
Collar-Keys-Pins	5 %		
Yoke-Keys-Pins	2 %		


P.Fabbricatore INFN-Genova

Margins for improvements

Improvefilamentquality.GoalJc(5T,4.22K) = 3000 A/mm2 with filamentsof effective diameter 2 μm


Better control of the transverse resistivity. Designed 0.44 n Ω m, obtained 0.3 n Ω m (presumably due to the filament deformation).

G. Volpini et al., "Low-Loss NbTi Rutherford Cable for Application to the SIS-300 Dipole Magnet Prototype"; IEEE Trans. Appl. Supercond., 18, Issue 2, June 2008 pp 997-1000

P.Fabbricatore INFN-Genova

Decrease strand twist pitch. The measurements done during the development demonstrated that we can get values as low as 5 mm or less (4 mm)

• Use of electrical steel with lower coercitive field (30 A/m)

4

- Coil protection sheets in insulating material
- Decrease as possible eddy currents in the system collar-keys and yoke-keys

Istituto Nazionale di Fisica Nucleare	1 Coil 2 Collars 2 Collars 4 Iron yoke 5 Shell 7 C-Clamp 6 Staples	Magnet design issue for the new injector P.Fabbricatore INFN-Gen	
Pushing forward	LHC inj	ector 4T 100mm bore	LHC injector 6T 100mm bore
both design and technology		s when ramping from to 4.0T at 1.5 T/s: 11.5 [W/m]	Total loss when ramping from 0.4 T to 6.0T at 1.0 T/s: 10.6 [W/m]
Hysteresis	34 %	D _{fil effect} = $2\mu m$	40 %
Coupling Strand	7 %	CuMn $\rho_t = 0.43 \text{ n}\Omega \cdot \text{m}$ lp =4 mm	11 %
Interstrand Ra+Rc	8 %	Cored cable	8 %
Total conductor	(49 %)		(59%)
Collars + Yoke eddy + <u>Prot. sheets</u>	1 %	Insulated Prot. sheets	1 %
Yoke magn	20 %	H_{c} (A/m)=30	25 %
Beam pipe	19 %	-	10 %
Collar-Keys-Pins	8 %	Reduced of 50%	3 %
Yoke-Keys-Pins	3 %	Reduced of 50%	2 %

P.Fabbricatore INFN-Genova

Let's extrapolate!

Further reduction of ac losses requires drastic measures:

- 1) Warm iron (a re-design is necessary)
- 2) Ceramic beam pipe?
- 3) NbTi filament even smaller (1 μ m) but good Jc

Under these conditions the ac losses could be reduced to 5W/m when ramping.

INFN (i fisica Nucleare)Information (i fisica Nucleare)Information (i fisica Nucleare)Magnet design issues & concepts for the new injectorIstituto Nazionale (i fisica Nucleare)I fronyok (i fisica Nucleare)Magnet design issues & concepts (i fisica Nucleare)Information (i fisica Nucleare)Istituto Nazionale (i fisica Nucleare)I fronyok (i fisica Nucleare)Information (i fisica Nucleare)Information (i fisica Nucleare)Istituto Nazionale (i fisica Nucleare)Information (i fisica Nucleare)Info					
Parameters	SIS300 dipole	Injector 4T 100mm 1.5T/s	Injector 6T 100mm 1.0T/s		
Injection magnetic field [T] and b_3	1.5/ -0.75	0.4/ -4.5	0.4/-5.9		
Maximum/ Peak magnetic field [T]	4.5/4.9	4.0/4.4	6/6.42		
Temperature Margin (K)	0.97	1.46	0.65		
AC losses in the superconducting cable during ramp [W/m]	3.5	5.6	6.3		
AC losses in the structures during ramp (eddy currents and magnetization) [W/m]	3.5	5.9	4.3		
Weight [T/m]	1.28	1.28	1.68		
Const. Cost [K€/m] evaluated on 60 magnets	60-70	60-70	80-90		

P.Fabbricatore INFN-Genova

CONCLUSIONS

- •The R&D developments for SIS300 dipoles both at INFN and at IHEP in collaboration with GSI are setting the basis for demonstrating the feasibility of superconducting magnets 4.5-6 T ramped at 1T/s.
- •Advanced designs, construction techniques and first low loss conductors were developed.
- •More conclusive condiderations next year after testing the model magnets at operating temperatures at GSI.
- •We need more information regarding the effects due to mechanical fatigue.
- •On the basis of present knowledge some extrapolations can be done for HE LHC injector magnets.
- •In particular it appear one can get ac losses as low as 10W/m when ramping the magnet (5W/m as minimum limit). The field quality at injection energy could be an issue.