LHC beam dump, injection system and other kickers

B.Goddard, with input from L.Ducimetière, W.Bartmann, V.Mertens, J.Borburgh, M.Barnes, C.Bracco, V.Senaj, M.Meddahi, V.Kain, J.Uythoven

Outline of talk

Beam dumping

- Existing LHC beam dumping system
- Issues and challenges of LHC energy upgrades
 - Extraction, dilution, absorption, protection;
- Possible beam dump upgrade paths
- Injection
 - Injecting at 1-1.3 TeV
 - Issues and challenges, possible upgrade paths
- Other kicker systems
- Conclusion

Present system - concept

extract \Rightarrow dilute \Rightarrow absorb

- "Loss-free" fast extraction system
 - Laminated steel kickers (H)
 - DC Lambertson septum (V)
- Dilution system
 - Laminated steel kickers (H&V)
 - ▶ ~650 m drift length
- Vacuum windown
 - 15 mm thick CC, 0.2 mm thick steel backing foil
- Beam dump (absorber) block
 - > 7.7 m long, 0.7 m Ø C cylinder, steel and concrete shielding
- Protection devices
 - Graphite/CC/composite dilutors for septum and LHC machine

Assumptions

- Reuse existing tunnel and caverns
 - Same (similar) extraction trajectories in H & V
 - Similar kicker and septum angles
 - Maximum ~300 mm dilution sweep radius
- Similar quadrupole layout and optics
 - > 2 matching quads in LSS per side of IP (Q4, Q5)

Present design - schematic layout

Total 'beamline' length :

975m from kicker MKD to dump TDE

Extraction kickers – option I

- Keeping existing kicker types and 3 us rise time
 - Can increase installed length or increase field

		LHC Nominal	HE longer	HE higher I
MKD V gap	mm	72	72	72
MKD rise time	us	3.00	3.00	3.00
MKD angle	mrad	0.27	0.27	0.27
MKD B.dl	Tm	6.3	14.9	14.9
MKD gap field	Т	0.30	0.30	0.71
MKD peak field	Т	0.41	0.41	0.95
MKD dl/dT	kA/us	6.17	6.23	14.53
MKD I	kA	18.5	18.7	43.6
MKD length	m	21.0	49.0	21.0
MKD Filling factor		0.761	0.761	0.761
MKD Required length	m	27.6	64.4	27.6
MKD magnets		15	35	15

Increased length: 35 magnets/beam

- System length more than doubled
- 70 m spacing between Q4 and Q5 in LSS6
- Increased field
 - ▶ dI/dt more than doubled 70 kV on switches.
 - Not OK for air-insulated system (oil gains~30% but complex)
 - 43 kA feedthrough very challenging

Extraction kickers – option II

- New design: reduce vertical opening and increase rise time
- Scaling kicker opening to $\sqrt{450/1000}$: 62 \rightarrow 42 mm
- Kicker magnetic gap $72 \rightarrow 52 \text{ mm}$ (vacuum chamber)

		LHC Nominal	HE Nominal
MKD V gap	mm	72	52
MKD rise time	us	3.00	5.10
MKD angle	mrad	0.27	0.27
MKD B.dl	Tm	6.3	14.9
MKD field	Т	0.30	0.71
MKD peak field	Т	0.41	0.95
MKD dl/dT	kA/us	6.17	6.17
MKD I	kA	18.5	31.5
MKD length	m	21.0	21.0
MKD Filling factor		0.761	0.761
MKD Required length	m	27.6	27.6
MKD magnets		15.0	15.0

- ▶ 15 magnets, 0.71 T and 31.5 kA: gives 5.1 us rise time
- R&D needed on high current switches and high current feedthroughs, but looks more feasible

Dilution kickers and dump

- For beam dump block, would need full study to analyse extra dilution required from MKB kicker system
- Peak p+ density factor ~2.4 times higher
- Shower maximum further into dump block
- Transverse shower extent at shower maximum assumed to scale as beam size (pessimistic)
- ▶ Total energy to dump ~500 MJ as for LHC ultimate
- Assume sweep length should increase by a factor 2

Dump block - present TDE absorber

- Likely to require longer block with lower density, or at least different grading of carbon densities
- Longitudinal space exists in the UD caverns

Dilution kickers parameters

- Scaling sweep length required by energy and intensity means present 100 cm could be sufficient
 - Need to check explicitly with FLUKA effect of smaller beam size may not be an issue at the shower maximum
- ▶ 7 to 16.5 TeV requires 2.3 times more ∫B.dl
 - Already near saturation in iron → not possible to increase field per magnet
 - Apertures determined (to first order) by required sweep → not possible to reduce magnet gaps (maybe can optimise with two families per plane)
- Could keep same maximum strength but increase frequency
 - > 14 to 32 kHz, but increases dI/dt and hence V

Dilution kicker option I

• Increase installed length keeping switch voltage at 30 kV

		LHC Nominal	HE Nominal
MKB frequency	kHz	14.0	14.0
MKB angle	mrad	0.27	0.27
MKB B.dl	Tm	6.3	14.9
MKB field	Т	1.13	1.21
MKB peak field	Т	1.52	1.63
MKB voltage	kV	22.30	23.89
MKB I	kA	25.0	26.8
MKB length (H+V)	m	11.2	24.6
MKB Filling factor		0.49	0.49
MKB Required length	m	22.9	50.3
MKB magnets		10	22

- Peak field increases to 1.63 T just about OK
- Needs 22 magnets (presently 10)
- Installed length increases to 50.3 m

Dilution kicker option II

Increase frequency, reducing kick angle

		LHC Nominal	HE Nominal
MKB frequency	kHz	14.0	28.0
MKB angle	mrad	0.27	0.135
MKB B.dl	Tm	6.3	7.4
MKB field	Т	1.13	0.74
MKB peak field	Т	1.52	0.99
MKB voltage	kV	22.30	29.20
MKB I	kA	25.0	16.4
MKB length (H+V)	m	11.2	20.2
MKB Filling factor		0.49	0.49
MKB Required length	m	22.9	41.1
MKB magnets		10	18

- Needs 18 magnets total (presently 10)
- Total installed length 40 m (presently 22.9)
 - Will have an impact on the aperture probably needs few types
- As magnets not saturated, would gain with higher switch voltage

Dilution: Option II – increase frequency

 Dilution kicker frequency increase x2 - sweep length 100 cm with spiral

- Potential issues:
 - Can only realistically build damped sinusoidal field (can't spiral outwards) so need to cross inner turn with start of the sweep
 - Temperature profile and mechanical stresses in dump block to evaluate

Dilution system physical installation

 10 magnets presently on extracted beam line in long drift space between IP (extraction septa) and Q4

(Extra) dilution with SC quad in dump line?

- Present betas: 4-5 km
- Add quadrupole to reach about 12 km beta, to get similar sigmas
 - Need 6 m @ 100 T/m, ~100 mm full aperture
- Orbit : 4 mm \Rightarrow 45 urad \Rightarrow ~30 mm at dump (650 m drift).
 - Maybe slightly larger absorber block size and dump line : $\emptyset \approx 0.8$ m
- Integration likely to be an issue upstream of diluter kickers

Extraction septa

- 15 magnets, 4.5 m long each, to provide total of
 2.4 mrad vertically
- Lambertson design
 - > 3 types, 0.8, 0.99 and 1.17 T (septum 6, 12, 18 mm)
- ▶ Need to increase ∫B.dl by factor 2.35

Extraction septa parameters

- Use only type B and type C
 - Thinnest septum anyway not needed behind TCDS
- Increase field to maximum possible

		LHC Nominal	HE Nominal
MSD angle	mrad	2.4	2.4
MSD B.dl	Tm	56.0	132.0
MSD field	Т	0.84	1.06
MSD length	m	66.7	124.8
MSD Filling factor		0.916	0.916
MSD Required length	m	72.8	136.2
MSD magnets		15	28

- Total magnets/beam needed : 28 (14 B + 14 C)
- Total installed length is ~136 m (present 73 m)
 - Assume 32 m extra each side of IP6

28 Extraction septa in layout (R6)

Layout maybe just feasible – integration for protection devices and lattice quads?

Dump Protection devices

- Long (6 m), low density (C) absorbers intercept undiluted bunches
 - In front of septum (fixed) and in front of Q4 (mobile)
- Fixed 2.4 m steel mask in front of Q4

Dump protection – difficult with increasing E

Peak GeV/cc in Cu vs beam size at 450 GeV ad 7 TeV

- Low density to avoid material damage
- More total material required to dilute energy density
- Very long objects as a result...
- ...reduces apertures for extracted beam
- Or use sacrificial absorbers exchange after (hopefully rare) impacts with high intensity
- ▶ 10⁷ dilution factor, need ~16 λ_r of C 1.8 g/cc, or ~6 m at 7 TeV
- For 10^7 at 16.5 TeV, need ~0.6 0.8 g/cc to avoid damage \Rightarrow 14-16 m
- \blacktriangleright Some optimisation with graded density to get more λ_r

Injection at 1-1.3 TeV

- Assume reuse of same transfer line tunnels
- An issue is strength of the injection kicker
 - Will need similar deflection to present 0.8 mrad
 - System already at technological limit (60 kV switch)
 - No extra space in present insertion layout
 - Complicated by combining injection and experiment!
 - Possible "solutions":
 - ▶ Increase installed length from 16.9 to around 34 40 m
 - \Box 40 46 m between quadrupoles (presently 22 m)
 - Completely new insertion layout and optics
 - Double rise time: 1 us increases to around 2 us
 - $\hfill\square$ Ferrite saturation should be OK below about 0. 2 T
 - □ Keep presently installed length of 16.9 m
 - Could increase PFN length by factor 2 and pulse length from 8 to 16 us, to reduce impact on LHC filling factor (but injector implications)
 - Need to watch out for issues like impedance, beam screen, heating, ...

Injection kicker: option 1

- Keep about the same installed length
- Reduce magnet gap according to beam size
- Increase kick strength at expense of rise time...

		LHC Nominal	HE I TeV	HE 1.3 TeV
MKI H gap	mm	54	46	42
MKI rise time	us	1.00	1.90	2.20
MKI angle	mrad	0.8	0.8	0.8
MKI B.dl	Tm	1.2	2.7	3.5
MKI gap field	Т	0.08	0.18	0.24
MKI peak field	Т	0.09	0.20	0.26
MKI dI/dT	kA/us	5.40	5.37	5.51
MKH	kA	5.4	10.2	12.1
MKI length	m	14.6	14.6	14.6
MKI Filling factor		0.864	0.864	0.864
MKI Required length	m	16.9	16.9	16.9
MKI magnets		4	4	4

- About 1.9 us for 1 TeV and 2.2 us for 1.3 TeV
 - Could increase pulse length to compensate
 - Ferrite saturation might be an issue for 1.3 TeV

Injection kicker: option 2

- Keep same rise time and increase number of magnets
- Reduce magnet gap according to beam size

		LHC Nominal	HE I TeV	HE 1.3 TeV
MKI H gap	mm	54	46	42
MKI rise time	us	1.00	1.00	1.00
MKI angle	mrad	0.8	0.8	0.8
MKI B.dl	Tm	1.2	2.7	3.5
MKI gap field	Т	0.08	0.09	0.11
MKI peak field	Т	0.09	0.10	0.12
MKI dl/dT	kA/us	5.40	5.10	5.39
MKII	kA	5.4	10.2	12.1
MKI length	m	14.6	29.2	32.9
MKI Filling factor		0.864	0.864	0.864
MKI Required length	m	16.9	33.8	38.0
MKI magnets		4	8	9

 34-38 m needed for injection kickers, so say 38-42 m between quadrupoles

Injection at 1-1.3 TeV – septum

- Injection septum design like dump septum
- More units and more space
 - Add more units need 43 55 m installed length (presently 21.8 m, with 22 m free drift) – need also to provide lever arm to get past cryostat, so should have maybe 50-60 m between quadrupoles around septum

Injection at 1-1.3 TeV - protection

- As for dump, injection protection device design increases in difficulty for 1-1.3 TeV
- Protection in transfer lines
- Protection against injection kicker failures
 - ▶ 8 MJ in 1.3 TeV injected beam, if 16 us long at 50 ns
 - Likely to need 6 8 m long objects

Other kickers (tune, aperture, AC dipole)

- Second order concerns
 - Weak devices presently single magnets with combined functions
 - 'Easy' to add more kicker modules and separate functions – no space constraints

Summary

- 16.5 TeV dump system: does not look impossible in similar layout to present system
 - ▶ 5 µs kicker rise time feasible, x2.6 kicker length \rightarrow optics issues
 - Increase septa ∫B.dl (x1.9 septa length, maybe gain by using more of MSDC type), seems feasible (integration?)
 - Increase dilution sweep length: higher f₀, needs more kickers
 OR SC dilution quadrupole plus kickers; integration issues
 - Upgrade dump block (longer, lower density), seems feasible
 - Upgrade protection devices for higher energy (longer, sacrificial elements), difficult
- ▶ 1-1.3 TeV injection system will need new layout
 - Longer kicker rise time 1.9 2.2 μs with longer pulse feasible, OR 1 μs with 8 – 9 magnets and 40 m quad spacing: optics?
 - Double number of septa but 60 m between quads: optics?
 - Injection protection devices need more space
 - Cohabitation with experiments in injection regions??