

"Biologically based expert system for individualised patient allocation"

Michael Baumann Wolfgang Enghardt Alina Santiago

OncoRay – Center for Radiation Research in Oncology, Medizinische Fakultät Carl Gustav Carus, Dresden, Germany

STAATSMINISTERIUM FÜR WISSENSCHAFT UND KUNST

Bundesministerium für Bildung und Forschung

Objectives of WP 3

Objectives This work-package aims at developing a novel radiobiologically-driven software prototype which allows:

- biologically-based decision making for rational individualised allocation of tumours of different entities, stages and biology to treatment with photon beams vs. proton beams vs. ion beams (expert system module);
- biological stratification of prospective and retrospective uni- and multi-centre clinical data for state-of-the-art multiplexed analysis of the value of hadron beams for tumours of different entities, stages and biology (research tool module).

Motivation and Aim

- Scientific-based allocation of patients to different treatment modalities
- Limited availability of hadron beam therapy facilities
- Patient selection is essential for resource optimization

Development of a software prototype with two different aspects:

- Expert system module: Support to decision making about the best treatment option for an individual patient, based on radiobiological aspects of the tumor and patient features: photons vs protons vs carbon ions
- Research tool module: Multiparameter analysis of clinical data to determine the value of hadron therapy for different tumor entities, stage and biology

Defining the strategy

- The previous tasks are not easy:
 - Lack of accessible, individual clinical patient data
 - Series of patients not comparable
 - No randomized trials (lack of comprehensive data on tumor reactions against high and low LET radiation)
- First task: definition of strategy (What is our goal What is possible)
- Several concepts are possible

Concept I: Retrospective analysis

- Retrospective analysis of individual patient outcome data, treated with all three modalities
- This requires the creation of a database
- Collection of retrospective patient data practically not feasible
- Many series of patients treated with carbon therapy, many more with proton therapy but very heterogeneous data
 - different dose prescriptions
 - different fractionation
 - different physical beam properties
 - Retrospective joint outcome analysis even on individual patient data is not possible
 - Only qualitative assessment

Concept II: Decision based on tumor parameters

- Basic assumption: similar dose distributions delivered by protons and carbon ions
- Comparison of protons (low LET) versus carbon ions (high LET)
- Prediction based on a set of parameters that describe features of a specific tumor, e. g.:
 - alpha/beta ratio
 - hypoxia
 - proliferation
 - tumor volume
- Implies, calculation of the therapeutic gain:

$$f = \frac{RBE_{Tumor}^{HiLET} / RBE_{OAR}^{HiLET}}{RBE_{Tumor}^{LoLET} / RBE_{OAR}^{LoLET}}$$

(Ando et al 2005)

Concept II: Decision based on tumor parameters

- Determination of the RBE:
 - modelling or experimental data
 - RBE = RBE(LET, D, ...), e.g., Joiner, Scholz
- Only modelling is possible
 - Normal tissue must be included
 - Treatment planning

- Decision on the best treatment has to be based on the available methods:
 - clinical expertise
 - current irradiation machines
 - and treatment planning systems
- The first level of the comparison between modalities must be based on comparative treatment planning
- Normal tissue reaction has to be included in the analysis
- The introduction of quantitative criteria for the comparison is required: Different TCP and NTCP models will be implemented

- The third decision level: Other tumor and patient features will be integrated into the system, e. g., age, co-morbidities, hypoxia info, gene profiling info
- The tool will allow the validation of the models (Research tool)

1st Step: Prototype in Dresden

2nd Step: Integration of TCP/NTCP models Therapy Follow up follow up analysis **User interface** interface Modelling Dose Radiobiological NTCP 1 NTCP 2 TCP 1 comparison evaluation Data handling interface Photon lon Proton Established organ- and endpoint-related **TPS TPS TPS** standard models → Allegro results

TPS

TPS

TPS

3rd Step: Beyond ULICE Follow up Therapy analysis follow up **User interface** interface Modelling Dose Radiobiological Individual data comparison evaluation **NTCP** Hypoxia **TCP** Gene profiling Data handling interface Risk 2nd cancer (n scatter) Photon lon Proton

Work in progress: Deliverables

- 3.1 Evaluation of the world-wide radiobiological data base for rational decision making in prescription of different hadron beams
- 3.2 Development of unified protocols for measurement of radiobiological relevant parameters in individual patients and generation of exemplary data sets

Michael Baumann

Vincent Grégoire

- R. Gahbauer (UCL Brussels)
- A. Santiago (TU Dresden)

Work in progress: Deliverables

3.1/3.1	List of radiobiological relevant parameters determining tumour control dependent on the beam quality	M 18	Apr 2011
3.2/3.2	Report of different methods available for measurement of radiobiological relevant parameters in patients	M 18	Apr 2011
3.3/3.1	Report on data of the radiobiological effects of different beams on tumours	M 18	Apr 2011
3.4/3.3	Structure of the software modules	M 18	Apr 2011
3.5/3.2	Provision of exemplary molecular imaging data sets to WP 5	M 18	Apr 2011

R. Gahbauer: D3.2

A. Santiago: D3.1 and D3.3

WP 3.2: Selection criteria

Selection criteria low vs high LET: Resistance as indication for ions

- 1. Tumors successfully treated with high LET
- 2. Expected benefit from high LET due to:
 - hypoxia
 - proliferation
 - repair characteristics
- 3. Location near sensitive structures
- 4. Consider normal tissue consequences (paediatric tumors)

WP 3.2: Selection criteria

- 5. General selection criteria:
 - Subset selection most important: High frequency of occurrence, high clinical variability and range in prognosis
 - Subset selection not very important: low frequency of occurrence, historically bad outcomes and known resistance
- 6. Predictive Methods to quantify resistance in individual patients:
 - Individual history, estimation of growth rate, clinical judgement
 - Imaging: PET, Nuclear Medicine imaging, fMRI
 - Molecular, genetic profiling, genetic expression and hypersensitivities
 - Hypoxia (polarometric measurements, markers of, PET, MRI etc)
 - Repair characteristics (linear quadratic parameters NT/Tumor)

WP 3.1: Evaluation of the radiobiological data

- Review has been performed, report will be finished in time
- Main conclusions (shaped the software tool concept!):
 - Retrospective analysis: only qualitative
- Review rationale for high LET:
 - RBE studies, from the perspective of the therapeutic gain
- Decision based on set of tumor / NT parameters not possible

→ Modelling RBE

WP 3.1: Evaluation of the radiobiological data

- Besides, other parameters which determine LTC
 - Tumor volume, location (determines D)
- Account for individuality:
 - 1. Treatment planning (C12, proton, photons)
 - 2. Prospective assessment (TCP/NTCP)
 - 3. Patient features, tumor features