Status of CMS

101st LHCC Meeting - Open Session - May 5, 2010

Outline

- Operations @ 7 TeV
- Performance @ 7 TeV
- Physics results at 0.9,2.36 and 7 TeV
- Summary & outlook

30/3: 7 TeV Collisions...

Tuesday March 30, 2 am: study of the position of the beams in IP5 (beams in non-colliding mode) using the interaction with beam gas.

The orbit is ok, beams are in colliding position

We are go!

Tuesday March 30, 12.58: separation bumps collapsed ~60Hz collision rate

30/3: 7 TeV Collisions...

Invariant Mass of Photon Pairs [GeV]

CMS Data Taking

CMS data taking efficiency \sim 92% this year and \sim 96% in the week before 26/4

CMS Operation at 7 TeV

Low Luminosity but:

Events with two primary vertices

Pile-up still at start (> 0.5 %) but getting more important with squeezed beams and will be an issue for high intensity beams. CMS will be ready for it

Triggers

7 TeV Start up: Work horse trigger = minimum bias triggers

- Hadronic Forward
 - HF: 2.5 ≤ |η|≤ 5.
- Beam Scintillator planes
 - BSC: ± 10.5 m from IP
- Beam Pick-up Timing
 - BPTX: ± 175 m from IP
- Trigger: Min Bias & Zero Bias
 - L1 Beam Scintillator Counters
 - L1 Trigger "BPTX" prescaled
- Minimum Bias selection:
 - BSC (OR 2 planes) + vertex: $\epsilon \sim 90\%$
 - HF (E > 3 GeV both sides): $\epsilon \sim 90\%$
 - Combined high ∈fficiency

Now with squeezed beams, deploy the full trigger menu

Triggers

- Developed menus for 10²⁷, 10²⁸ and 10²⁹cm⁻²/s luminosity scenarios
 - Rate predictions based on MC & data
 - Primary datasets for 10²⁹cm⁻²/s
- Developed menu evolution strategies for higher luminosities:
 - Preparing menu for each X2 increase
 - Target rate between 200 and 400Hz
- Studies going on to check impact of pile-up on CPU performance & rates
 - Dedicated multiple vertex trigger to capture pile-up events
- Fast validation of the trigger results and efficiencies
- Developing rate predictor tool for the online shifters

Trigger Performance

L1:

- Start of data taking used to improve the relative timing further (time scans)
- Trigger Efficiencies eg for the Muon and ECAL triggers:

HLT

- Farm Capacity~100 msec/evt
 - Average CPU processing time at L1 rate of 50 kHz
- Presently we spent ~15 ms/ event (min bias dominated)
- Expect ~ 40 ms/event for a
 lumi of 10³⁰ cm⁻²s⁻¹ on average

DAQ

L1 ~ 1KHz, <500 kB/evt, HLT~ 2% CPU loaded

Computing: Processing/Transfer

- Good experience with data processing
 - Tier-0. Software and infrastructure are stable

Job Type	Total Jobs	Failures	Success Rate	r b
Express	132314	94	99.93%	ple from Running
Repack	7262	6	99.92%	ole Rur
PromptReco	36538	0	100.00%	Exam _l 7TeV
AlcaSkim	21336	0	100.00%	ă E

- Tier-1s and Tier-2s making reliable contributions
- 49 Tier-2 institutes receive data
- > 450 users submitting jobs for analyses

(a) Express Latency

Dataset Evolution with Luminosity

Evolution of primary data sets with increasing luminosity

Tracker Performance

Resonances

 $\Omega^{\pm} \longrightarrow \Lambda K^{\pm}$

 ΛK^{-} or anti- ΛK^{+} Invariant mass

 combinations fit to a common vertex

 $\Lambda \pi$ Invariant mass

- tracks displaced from primary vertex $(d_{3D} > 3\sigma)$
- Common displaced vertex $(L_{3D} > 10 \sigma)$

Secondary Vertices (900 GeV)

- Observables for B-tagging
- •Event sample with Particle Flow jets with a cone of 0.5 and p_{τ} > 3 GeV

Charm Production

ECAL Performance Examples

Di-jets Events

E_T(GeV)

CMS Experiment at LHC, CERN Run 133450 Event 16358963

Sat Apr 17 2010, 12:25:05 CEST

Lumi section: 285

Jet1 p_T : 253 GeV Jet2 p_T : 244 GeV

Di-jet mass = 764 GeV

Di-jet selection

- •Jet $p_{T1,2} > 25 \text{ GeV}$
- $\bullet \Delta \Phi > 2.1$
- $|\eta| < 3$

Di-jet mass

Missing Transverse Energy

3 methods for the calculation of the missing E_T

- •Monte Carlo (Min Bias) describes the data well over 5 orders of magnitude
- •High ET tails subject of ongoing studies, and are found to be dominantly noise. Work in progress.

Muons

Clear muon signals in CMS already on the first minutes at 7 TeV

J/ψs Decaying into Muons

All muon tracks:

- Pixel layers with hits > 1
- Number of pixel+strip hits > 11
- |d0| < 5 cm, dz < 20 cm
- Global muons:
 - global $\chi^2 < 20$
- Tracker muons:
 - track $\chi^2 < 5$
 - TMLastStationAngTight bit on
- Vertex probability > 0.1%
- •Clear J/ψ signal in the data
- •Upsilon getting within reach (for the next time)

Charged Hadrons

p_T and η distributions of charged hadrons at $\sqrt{s} = 7$ TeV

- Similar analysis as in the CMS paper JHEP 02 (2010) 041
- Minimum bias selection using BSC trigger.
- Three methods used: tracks, tracklets and pixel clusters
- Results corrected to Non-Single Diffractive cross section.
- Diffraction controlled via forward activity measurements in CMS

Charged Hadrons

p_T and p_T distributions of charged hadrons at $\sqrt{s} = 7$ TeV

Charged Hadrons

 $< p_T >$ distribution and η density of charged hadrons at $\sqrt{s} = 7$ TeV

Comparison with recent model predictions

Rise of dN/dn in data stronger than currently used models

Forward Energy Flow

- MinBias event selection
- •Ratio of the energy flow at different energies

$$R_{Eflow}^{\sqrt{s_1,\sqrt{s_2}}} = \frac{\frac{1}{N_{\sqrt{s_1}}} \frac{\Delta E_{\sqrt{s_1}}}{\Delta \eta}}{\frac{1}{N_{\sqrt{s_2}}} \frac{\Delta E_{\sqrt{s_2}}}{\Delta \eta}}$$

Similar rise with collision energy as seen in dN/dn analysis

Bose Einstein Correlations

Correlations between identical bosons (pions) \sqrt{s} = 0.9 and 2.36 TeV

$$Q^2 = -(p1-p2)^2$$

- MinBias events
- Use 7 reference samples
- Combination of all ref. samples

$$\sqrt{s}$$
 = 0.9 TeV $r = 1.59 \pm 0.05$ (stat.) ± 0.19 (syst.) fm and $\lambda = 0.625 \pm 0.021$ (stat.) ± 0.046 (syst.) \sqrt{s} = 2.36 TeV $r = 1.99 \pm 0.18$ (stat.) ± 0.24 (syst.) fm and $\lambda = 0.663 \pm 0.073$ (stat.) ± 0.048 (syst.)

Multiplicity dependence

	Results of fits to 0.9 TeV data				
Multiplicity range	<i>P</i> -value	С	λ	r (fm)	
2 - 9	9.7×10^{-1}	0.90 ± 0.01	0.89 ± 0.05	1.00 ± 0.07 (stat.) ± 0.05 (syst.)	
10 - 14	3.8×10^{-1}	0.97 ± 0.01	0.64 ± 0.04	1.28 ± 0.08 (stat.) ± 0.09 (syst.)	
15 - 19	2.7×10^{-1}	0.96 ± 0.01	0.60 ± 0.04	1.40 ± 0.10 (stat.) ± 0.05 (syst.)	
20 - 29	2.4×10^{-1}	0.99 ± 0.01	0.59 ± 0.05	$1.98 \pm 0.14 \text{ (stat.)} \pm 0.45 \text{ (syst.)}$	
30 - 79	2.8×10^{-1}	1.00 ± 0.01	0.69 ± 0.09	2.76 ± 0.25 (stat.) ± 0.44 (syst.)	

Paper now in final stage of the approval process

Underlying Event Studies

Underlying event activity at $\sqrt{s} = 0.9$

- •MinBias event selection, with additional requirement of a 'hard' scattering via a track jet with $p_T > 3$ GeV
- •Study the particle density and scalar p_T sum in the transverse region, for particles with $|\eta| < 2$ and $p_T > 0.5$ GeV (uncorrected data)

Model Comparison: DW = Standard Tune CW = New Tune (p_{T0} = 1.8 GeV, ϵ = 0.3)

More food for MC model tuning...

Muon Charge Asymmetry

Cosmic Muon Solenoid

- •High energy cosmic muons measured during the 2008/2009 cosmic data runs, and from the 2006 on surface MTCC test
- Good understanding of the alignment is critical

Paper now in final stage of the approval process

W and Z Bosons

For 1 nb⁻¹, after acceptance, expect 8 W candidates and 0.8 Z candidates

W→ev: three candidates found

W→µv: three candidates found

- Apply lepton ID criteria established in advance from MC studies
- Apply loose kinematic cuts on lepton ET and MET (or MT)
 - •Lepton ET > 20 GeV, some MET > 20 GeV (or MT >50 GeV)
 - Looser 10 GeV cuts for Z hunting.

W and Z Bosons

Z→ee: one candidate found

Summary

- CMS is very well advanced with the detector commissioning and calibration
- CMS records physics data, following a well defined scheme, evolving with luminosity, for triggers and datasets and data distribution. We'll reach luminosities soon that will allow real stress tests of the system.
- Physics papers being completed on the low energy and 7 TeV collisions. Next Stop ICHEP2010, where CMS prepares for many analyses, luminosity permitting. Retuning of the Monte Carlos is ongoing.
- CMS would like to thank the LHC team for their extraordinary efforts and looks forward to forthcoming high luminosity running

BACKUP