

Status of Geant4 Simulations & Comparison with Data

Eva Sicking eva.sicking@cern.ch

LCG Physics Validation for LHC Simulations 07-07-2010

Status: Grid Simulations

- "Geant4 package" installed on grid
 - geant4-09-03-ref-05, geant4_vmc, CLHEP
 - tests with QGSP_BERT_{EMV, CHIPS}, CHIPS, (+optical)
- first central production in Mai 2010
 - 100.000 p+p events, Pythia D6T, 7TeV, QGSP_BERT_EMV
 - analysis discovered issues in implementation
 - so far, 7 generations of geant4 packages were tested, each with new improvements
 - detector experts have access to centrally produced Geant4 data and can start to validate it
 - small analysis can be performed, QA...

Data Sets for Comparison

7 TeV

- data: run 116571 (LHC10b period, pass2 reconstruction)
- Geant3 (Phojet, LHC10b1)
- Geant4, private production, Phojet
 - Physics Lists
 - QGSP_BERT_EMV (+ optical)
 - QGSP_BERT_CHIPS
 - CHIPS
 - TPC models
- default (tuned for Geant3 simulations)
- SetPrimaryIonisation(kTRUE)
- photo-absorption ionization model (PAI)

Compare Track Properties 7 TeV p+p

Data - Geant3 - Geant4

QGSP_BERT_EMV

Distance of Closest Approach

- DCA of global tracks and of TPC tracks
- all data agree good

Hits in ITS Layer

 ITS, the Inner Tracking System, is build out of six layers of silicon detectors

- data, Geant3 and Geant4 results give consistent results for the ITS
- before huge differences as high layer numbers
- need higher statistics to check in more detail

TPC Cluster Distribution

 the Time Projection Chamber is the main device, in the ALICE 'central barrel', for tracking of charged particles and particle identification

- maximum of NCL distribution differs strongly
- difference between Geant4 and data ΔNCL=30
 - energy loss is higher in Geant4
 - more clusters are produced
 - change energy loss model or tune gas gain

TRD Cluster Distribution

 the Transition Radiation Detector is build out of 6 chamber layers. These are visible in NCL distribution

- the simulated data shows a peak at high NCL, which is not visible in real data
- Geant4 results are shifted to higher numbers of clusters
 - energy loss is higher
 - more clusters are produced
 - change energy loss model or tune gas gain also in TRD

Calorimeter: EMCal

 EMCal is Electromagnetic Calorimeter of ALICE

- energy measured in the EMCAL deposited per cluster shows same shape in data, Geant4 and Geant3
- for more detailed comparison, more Geant4 events are needed.

Comparison: Physics Lists

Hits in ITS Layer

- different Physics Lists give same results
 - Geant4 is consistent within changing PLs
- good agreement with data and Geant3

TPC Cluster

- different Physics Lists give same results
 - Geant4 is consistent
 - but results are shifted compared to real data and Geant3

TRD Cluster

- different Physics Lists give same results
 - Geant4 is consistent
 - but results shows differences to real data
- also need higher statistics in TRD

Calorimeter EMCal

- different Physics Lists give same results
 - need more statistics

TPC Settings

Possible TPC Settings

- default
 - settings for energy loss as they are used in Geant3 simulation
 - see AliTPCv2::StepManager()
- SetPrimaryIonisation
 - change energy loss model to primary ionization in TPC
 StepMananger of simulation
 - see AliTPCv2::StepManager()
- SetPrimaryIonisation+Photoabsorption ionization model
 - primary ionization plus a PAI model added via geant4_vmc
 - see next slide

Photo-Absorption Ionization Model

the Geant4 PAI model of energy loss and fluctuations is activated for the region with TPC (or TRD) gas:

```
// Set PAI model for TPC (TPC_Ne-CO2-N-2)
geant4->ProcessGeantCommand("/mcPhysics/emModel/selectMedium 219");
geant4->ProcessGeantCommand("/mcPhysics/emModel/setElossModel PAI");
geant4->ProcessGeantCommand("/mcPhysics/emModel/setFluctModel PAI");
geant4->ProcessGeantCommand("/mcPhysics/emModel/setParticles all");

// Set PAI model for TRD (TRD_XeCO2)
geant4->ProcessGeantCommand("/mcPhysics/emModel/selectMedium 291");
geant4->ProcessGeantCommand("/mcPhysics/emModel/setElossModel PAI");
geant4->ProcessGeantCommand("/mcPhysics/emModel/setFluctModel PAI");
geant4->ProcessGeantCommand("/mcPhysics/emModel/setParticles all");
```


TPC Settings

- different models give only slightly different NCL for Geant4
- compared to difference to real data, TPC results are not sensitive to model change
- neither PL nor models change TPC results sufficient
 - Check energy loss

Energy Loss in TPC

- dE/dx for pions with 0.4 < pT< 0.5 GeV/c is much higher for Geant4 → leads to higher numbers of clusters
- outlook: tune gas gain = conversion dE→nel to fit in dE from G4
 - yesterday's discussion with Vladimir, Ivana, and Marian

Additional Checks

Time Consumption

• simulation time per PL (on my private machine, can differ)

- Geant3:

106 sec/ev (160 sec/ev) (32/97)

– QGSP BERT EMV:

142 sec/ev (198 sec/ev)

QGSP_BERT_EMV+optical 220 sec/ev (277 sec/ev)

- QGSP BERT CHIPS

220 sec/ev (278 sec/ev)

- CHIPS

318 sec/ev (368 sec/ev)

Summed time: Simulation, digitization.

How can we reduce time consumption, especially with CHIPS PLs?

Production coming soon...

- planed to start the central productions this week using Revision AliRoot v18-Rev-23
 - 100,000 events each using
 - QGSP BERT EMV
 - QGSP_BERT_EMV +optical
 - QGSP_BERT_EMV + different TPC E-loss models
 - QGSP_BERT_CHIPS
 - CHIPS

Warnings in CHIPS and QGSP_BERT_CHIPS 24

G4PropagatorInField::ComputeStep() - WARNING

Zero progress for 51 attempted steps.

Proposed Step is 2.1145530897359e-05 but Step Taken is 2.1145530897359e-05

For Particle with Charge = -1 Momentum = 403.34902802447 Mass = 139.57

in volume DDIP

G4PropagatorInField::ComputeStep() - WARNING

Zero progress for 51 attempted steps.

Proposed Step is 2.1145522686234e-05 but Step Taken is 2.1145522686234e-05

For Particle with Charge = -1 Momentum = 403.34902802447 Mass = 139.57

in volume SD6D

. . .

- happens often in CHIPS and is repeated many times
- happens sometimes in QGSP_BERT_CHIPS
- was reported Geant4 team
 - is this serious? Increases the log very much

G4Transportation kills track


```
>>> Event 5
```

G4Transportation is killing track that is looping or stuck This track has 106.7424917058 MeV energy. Number of trials = 0 No of calls to AlongStepDoIt = 16243593

G4Transportation is killing track that is looping or stuck This track has 126.85150432809 MeV energy. Number of trials = 0 No of calls to AlongStepDoIt = 16357964

>>> Event 6

. . .

- happens sometimes with all PLs
- number of trials=0 !!
- was reported to Geant4 team
 - How can we check, where and why this happens

Summary

- ITS results of data, Geant3 and Geant4 are close to each other
- TPC and TRD Geant4 results show differences to data
 - tested different E-loss models
 - tested different PLs
 - outlook: tune the gas gain
- EMCAL results are close to each other
- central production is expected soon
 - enables to investigated detailed differences with high statistics
 - also simulation output (Hits, Digits) will be stored for that purpose

Thanks a lot, Ivana Hrivnacova and Olga Vladimirovna Datskova!!