Zoltan Kunszt, ETH, Zurich

The case of a large-mass Higgs, Cern May 14, 2012

Unstable particles in quantum mechanics

* The energy spectrum of an unstable system is continuous: when it decays the outgoing particle goes to infinity.
* In case the decay probability is very small, we get quasi-stationary states, the particles are localized for long time, the energy spectrum is quasi-discrete. Smeared discrete energy levels.
* Boundary condition: at infinity only outgoing spherical waves. This boundary condition involves complex quantities, the energy eigen-values in general are also complex.

$$
\begin{aligned}
E & =E_{0}-\frac{i \Gamma}{2} \\
\exp (-i E t) & =\exp \left(-i E_{t}\right) \exp \left(-\frac{\Gamma}{2}\right)
\end{aligned}
$$

$$
\Gamma>0
$$

Elastic scattering from a three dimensional square-well potential

Schrödinger equation:

$$
\left[-\frac{1}{2 m} \Delta-V \Theta(a-r)\right] \Phi(\vec{r})=E \Phi(\vec{r})
$$

$\mathrm{l}=0$ solution:

$$
\begin{aligned}
& \Phi_{E}(r)= \begin{cases}\frac{A(E)}{r} \sin K r & , r \leq a \\
-\frac{B(E)}{r}\left[e^{-i k r}-\eta(E) e^{i k r}\right], \quad r \geq a\end{cases} \\
& \text { where } k=(2 m E)^{\frac{1}{2}} \text { and } K=[2 m(E+V)]^{\frac{1}{2}}
\end{aligned}
$$

A, B and η are determined by continuity of Φ_{E} and its derivative at $\mathrm{r}=\mathrm{a}$ and normalization.
H. A. Weldon, Phys.RevD14,2030(1976)

Scattering amplitude:

$$
\left\langle p_{2}\right| S\left|p_{1}\right\rangle=(2 \pi)^{3} \frac{\delta\left(p_{2}-p_{1}\right)}{4 \pi p_{1} p_{2}} \sum_{l=0}^{\infty}(2 l+1) e^{2 i \delta_{l}} P_{l}(\cos \Theta)
$$

Phase shift may be evaluated from asymptotic behavior:

$$
\Phi(\vec{r})_{\rightarrow \infty} \sim e^{i \vec{k} \vec{r}}+f(\Theta) \frac{e^{i k r}}{r}
$$

where

$$
f(\Theta)=\frac{1}{2 i k} \sum_{l=0}^{\infty}(2 l+1)\left(e^{2 i \delta_{l}}-1\right) P_{l}(\cos \Theta)
$$

Comparing the asymptotic forms we get

$$
\eta(E)=e^{2 i \delta_{0}}
$$

$\eta(E)$ is determined by the boundary condition

$$
\left.\frac{\Phi(r)_{E}^{\prime}}{\Phi(r)_{E}}\right|_{r<a}=\left.\frac{\Phi(r)_{E}^{\prime}}{\Phi(r)_{E}}\right|_{r>a}
$$

It gives the exact S-matrix :

$$
\eta(E)_{\mathrm{I}}=\frac{K \cot K a+i k}{K \cot K a-i k} e^{-2 i k a}
$$

where

$$
k=(2 m E)^{\frac{1}{2}}, \quad K=[2 m(E+V)]^{\frac{1}{2}}
$$

The S -matrix is two sheeted since it has a square-root cut in E

Assuming the cut is along the positive real axis, for the physical sheet we get

$$
0 \leq \arg \sqrt{E} \leq \pi, \quad \operatorname{Im} k \geq 0, \quad \operatorname{Im} K \geq 0
$$

With analytic continuation of $\eta_{\mathrm{I}}(E)$ we get

$$
\begin{gathered}
\eta(E)_{\mathrm{II}}=\frac{K \cot K a-i k}{K \cot K a+i k} e^{2 i k a} \\
\eta(E)_{\mathrm{I}}=\frac{K \cot K a+i k}{K \cot K a-i k} e^{-2 i k a} \\
k=(2 m E)^{\frac{1}{2}}, \quad K=[2 m(E+V)]^{\frac{1}{2}}
\end{gathered}
$$

$$
\begin{aligned}
& \left|\eta(E)_{\mathrm{I}}\right|^{2}=1 \quad \text { E is positive real } \\
& \eta(E)_{\mathrm{I}} \eta(E)_{\mathrm{II}}=1 \quad \text { E complex }
\end{aligned}
$$

Unitarity, Hermitian analyticity

$$
\begin{gathered}
(\sqrt{E})^{*}=-\sqrt{E^{*}} \\
\eta(E)_{\mathrm{I}}^{*}=\eta\left(E^{*}\right)_{\mathrm{I}}
\end{gathered}
$$

Location of the poles on the second Riemann sheet

The S-matrix has a second-sheet pole only if

The poles occur at a complex energy \tilde{E}

$$
\begin{aligned}
x \cot x & =-i y \\
x^{2}-y^{2} & =2 m V a^{2}
\end{aligned}
$$

Since x, y are complex we have four equations for four variables. We can easily see that
we have infinitely many solutions which fulfill the conditions

$$
\begin{aligned}
& n \pi<x_{1}<\left(n+\frac{1}{2}\right) \pi \quad y_{2}>0 \\
& \tilde{E}=E_{P}+\frac{i}{2} \gamma_{P} \quad, \tilde{E}=E_{P}-\frac{i}{2} \gamma_{P}
\end{aligned}
$$

$$
K \cot K a=-i k
$$

$$
\begin{aligned}
& x=a[2 m(\tilde{E}+V)]^{\frac{1}{2}}=x_{1}+i x_{2} \\
& y=a(2 m \tilde{E})^{\frac{1}{2}}=y_{1}+i y_{2}
\end{aligned}
$$

$$
x_{2} \geq 0, y_{2} \geq 0
$$

$$
\frac{\tan x_{1}}{x_{1}}=-\frac{\tanh x_{2}}{x_{2}}
$$

$$
x_{2}= \pm \cos x_{1}\left[\left(\frac{x_{1}}{\sin x_{1}}\right)^{2}-2 m V a^{2}\right]^{2}
$$

Schrödinger wave functions

The wave functions for an unstable is the analytic continuation in E of $\Phi(E, r)$ to the point $\quad \tilde{E} \quad$ on the second sheet. At this

$$
\begin{gathered}
\psi(E, r)=\left\{\begin{array}{l}
\frac{A(E)}{r} \sin K r, r \leq a \\
\frac{B(E) \eta(E)}{r} e^{i k r} r \geq a
\end{array}\right. \\
\psi_{\mathrm{II}}(\tilde{E}, r)=\Phi_{\mathrm{II}}(\tilde{E}, r) \\
\psi(E, r)_{\mathrm{II}}=\left\{\begin{array}{l}
-\frac{A(E)_{\mathrm{II}}}{r} \sin K r, r \leq a \\
\frac{B(E)_{\mathrm{I} \eta} \eta(E)_{\mathrm{II}}}{r} e^{-i k r} r \geq a
\end{array}\right.
\end{gathered}
$$ value

$$
\eta=\infty \quad B=0
$$

$$
B \eta=\text { finite }
$$

At large r only outgoing spherical waves
$\langle\psi(E) \mid \psi(E)\rangle \rightarrow$ analytically continue to $\tilde{\mathrm{E}}$
For large r diverges exponentially

$$
\begin{gathered}
\left\langle\psi_{\mathrm{II}}(\tilde{E}) \mid \psi_{\mathrm{II}}(\tilde{E})\right\rangle=0 \\
\left\langle\psi_{\mathrm{II}}\left(E^{*}\right) \mid \psi_{\mathrm{II}}(E)\right\rangle \neq 0
\end{gathered}
$$

At large r only outgoing spherical waves

Comments

From S-matrix theory to QFT:

Unstable states lie in a natural extension of the usual Hilbert space of stable particles. It corresponds to the second sheet of the S-matrix.

They are zero norm states and therefore Hamiltonian remain hermitian even with complex energy

$$
\langle E \mid E\rangle E=\langle E| H|E\rangle=E^{*}\langle E \mid E\rangle
$$

Similarly to the assumption of S-matrix theory, Green's function involving unstable particles should smoothly approach the value for stable ones as the interactions goes to zero.

