Floating Point in Experimental HEP

Data Processing
(aka Reconstruction)

Vincenzo Innocente
CERN
PH/SFT & CMS

A Generic Multnyrpose LHC Detector

mputer m3 The image cannot be
omputer, btill appears, you may displayed. Your
it again computer may nopffave

enough memog#o open

e, g#fhe image
may havgsfeen
corrugs. Restart your
cogsfter, and then open|
€file again. If the red X
still appears, you may
have to delete the image
The imSSSSISIISHISVSIRNBURL o > u:tc- [ENOE and then insert it again
have cfSUGISHONNIORSIISINS -, o h- EES
iad Bocionoo L
the file agaififIf the red x still appears, you may have to
delete the iffage and then insert it again
The imagfffcannot be displayed. Your computer may not have enough memory to open thejs#fge, or the imagilinay have been corrupted. Restart pur
“ computeflfand then open the file again. If the red x still appears, you may have to delg mage and then iffert it again
The The image cannot be displayed. Your
image image, or the image may have been ¢
cannot file again. If the red x still appears, y
e again
display
ed
Your =
The image cannot be displaye
memory to open the image. ol
enough
memor
o
the
Three d “ "inam ic field
or
: ree detector layers In a magnefic ne
image
may
have
been B
The image cannot be displayed. Your computer may not have enough corru I n n e r- tra C ke r . Ve rtex a n d C h a rged pa rtl C I eS
.

The image cannot be displayed. Your computer may not have enough memory to open the tyour

image, or the image may have been corrupted. Restart your computer, and then open the comp
le again. If t x still appears, you may have to delete the image and then insert it uter,
again again and

Calorimeters: energy of electrons, photons,
hadrons

External tracker: identify muons
20/9/12 VI FP in EHEP

COIL

Total weight : 12,500 t
Overall diameter : 15 m
Overall length : 21.6 m
Magnetic field : 4 Tesla

By /2 v f.‘_'{{; — =0 <
K =

‘//

.. U
~| MUON BARREL

An experiment: CMS

SUPERCONDUCTING eSESR al\tlllnEg-Il;E\ﬁ§4 HCALPlastic scintillator

Crystals|y

S

copper
sandwich

79 o
%, L

IRON YOKE

EEENE
g
2

1’2.\ /
S

’ S)

Silicon Microstrips
Pixels

20/9/12

:
SusssEEEEEENERENE
5

m v,

. strips
Drift Tube Resistive Plate Cathode Strip Chambers (CSC)
Chambers (DT) Chambers (RPC) Resistive Plate Chambers (RPC)

VI FP in EHEP 3

Data and Algorithms

HEP main data are organized in Events (particle collisions)

Simulation, Reconstruction and Analysis programs process
“one Event at the time”

— Events are fairly independent of each other

— Trivial parallel processing

Event processing programs are composed of a number of

Algorithms selecting and transforming “raw” Event data
into “processed” (reconstructed) Event data and statistics

— Algorithms are mainly developed by “Physicists”

— Algorithms may require additional “detector conditions” data
(e.g. calibrations, geometry, environmental parameters, etc.)

— Statistical data (histograms, distributions, etc.) are typically the
final data processing results

High Energy Analysis Model

MonteCarlo
Simulation follows
the evolution of
physics processes
from collision to
digital signals

MC Data Comparison Real Data o
Reconstruction “goes

Particles back in time” from
digital signals to the
original particles

ProtoParticles produced in the

collision

A

GenParticles

MCParticles

Tracks

Information

Clusters

MCDigits Digits
(Raw data)

Processing

Analysis compares (at statistical level) reconstructed
events from real data with those from simulation

i “RAW, ESD, AOD, TAG” |

~2 MB/event RAW Triggered events Detector digitisation
recorded by DAQ

~100 kB/event ESD/RECO

|

Reconstructed Pseudo-physical information:
information Clusters, track candidates

Physical information:

10 KBlevent '_A";aIVSiS _ Transverse momentum,
even AOD information Association of particles, jets,
l (best) id of particles,
Classification Relevant information
~1 kB/event TAG information for fast event selection

20/9/12 VI FP in EHEP 6

Analogies with Industry

Signal/image processing

— DAC (including calibrations)

— Pattern recognition, “clustering”

Topological problems

— Closest neighbor, minimum path, space partitioning
Gamin g (our main source of inspiration!)

— “walk-through” complex 3D geometries
— Detection of “collisions”

Navigation/Avionics (Kalman filtering)
— Tracking in a force field in presence of “noise”
— Trajectory identification and prediction

Accuracy, Precision

Measurement themselves require a modest
precision (16,24 bits)

Geometry/Materials often known at per-cent level

Dynamic range, when converted in natural units,
often requires a high precision FP representation
— Enengy range >10°

— Position: micron over 20m

Many conversions back and forth various
coordinate/measurement systems

Error manipulation (including correlations)

— Squared quantities: each transformation requires two
matrix multiplications

FP operations in reconstruction

* Signal calibration

— |deal for vectorization
* (if was not that calib requires lookup!)
e Calib-params may depend on “reconstructed quantities”

* “Geometry” transformation
— Trigonometry (also log/exp!)
— Small matrices (max 5x5, 6x6)

 Many logs, exp coming from parameterizations

Vectorization?

* Current code design and implementation often hinder
vectorization

— High granularity “naive” object model

— Fragmentation in several libraries (plugin model)
* [to will not help

— “Linear thinking” conditional code

* Only a massive redesign of data-structures and
algorithms will make vectorization effective

— Not alone: see

* http://research.scee.net/files/presentations/gcapaustralia09/
Pitfalls of Object Oriented Programming GCAP 09.pdf

* http://www.slideshare.net/DICEStudio/introduction-to-data-
oriented-design

20/9/12 VI FP in EHEP 10

Typical Profile (today)

CPI (cycle per instruction): 0.9636 % of SIMD in all uops: 19.22%
load instructions %: 30.577% % of comp. SIMD in all uops: 10.17%

store instructions %: 13.737%
load and store instructions %: 44.314% breakdown: %of all uops % of all SIMD
resource sta.IIs %O(of cycles): 30.631‘:& PACKED DOUBLE: 0.663% 3.449%
ot branch s miseradicrad: 2.247% PACKED_SINGLE: 0.613% 3.190%
% of Lé loads missed: 2.087% SCALAR_DOUBLE: 13.485% 70.159%
: . o~ a0 SCALAR_SINGLE: 4.038% 21.010%
computational x87 instr. %: 0.038% VECTOR_INTEGER: 0.421% 2.192%

More details (see next page):
Function where time is spent most
* No hot-spot: top 30 each between 2.5% and 0.5% of total

e Trig/trans functions

» div/sqgrt latency

9.5e+07 5.30 % 8.1le+09 41.41 % 2e+09 10.07 % __ieee754_exp
3.5e+08 13.71 % 8.1e+09 45.49 % 0 0.00 % arena_malloc_small
6.7e+06 0.23 % 7.5e+09 47.55 % 3.8e+09 24.31 % __ieee754_atan2
6.6e+07 46.92 % 9.9e+09 63.11 % 4.2e+09 26.82 % void TkGluedMeasurementDet::doubleMatch< ...
1.9e+08 15.15 & 4.9e+09 33.67 % 0 0.00 % arena_dalloc_bin
1.4e+08 7.66 % 9.6e+09 68.94 % 5.9e+09 42.28 % ThirdHitPredictionFromCircle: :phi(double ...
3.4e+07 1.05 % 6e+09 43.11 % 3.6e+09 25.47 % atanf
3.9e+08 17.85 % 7.8e+09 58.89 % 0 0.00 % free
4.4e+07 2.68 % 8.5e+09 65.22 % 2.4e+09 18.60 ¥ _ ieee754_acos
2.5e+07 2.56 % 4.3e+09 34.11 % 1.1e+08 0.90 % ROOT: :Math: :SMatrix<double, (unsigned in ...
1.1e+07 11.71 % 4.4e+09 41.21 % 0 0.00 & cms: : TrackListMerger: :produce(edm: :Event ...
8.5e+07 204.00 % 8.6e+09 81.25 % 4.2e+09 39.96 ¥ magfieldparam::TkBfield::Bcyl(double, do ...
6.2e+06 0.59 % 4.6e+09 46.46 % 5.6e+08 5.70 ¥ _ ieee754_log
1.7e+06 0.99 % 4.9e+09 53.99 % 5.6e+07 0.61 % <unknown(s)>
1.8e+08 7.49 % 5.1e+09 59.85 % 2.8e+07 0.33 % strcmp
2.6e+08 20.20 % 5.5e+09 67.64 % 2.6e+09 32.26 % PixelTripletLargeTipGenerator::hitTriple ...
0 0.00 % 4.3e+09 57.80 % 1.1le+08 1.51 & do_lookup_ x
9.3e+07 11.99 % 4.9e+09 66.54 % 3.9e+09 53.23 % DAClusterizerInZ::update(double, std::ve ...
3.4e+07 11.88 % 3.5e+09 48.00 % 3.1e+08 4.22 % sincos
1.3e+08 24.73 % 2.5e+09 41.40 % 4.2e+08 6.82 % PixelTripletHLTGenerator::hitTriplets(Tr ...
4.8e+07 19.87 % 4.7e+09 77.57 % 4.5e+08 7.34 % tan
0 0.00 % 2.5e+09 45.01 % 0 0.00 % <unknown(s)>
7.3e+07 8.77 % 2.1e+09 37.74 % 5.9e+08 10.71 § _ ieee754_atan2f
9.8e+06 5.74 % 3.9e+09 71.26 % 2e+09 37.42 % AnalyticalCurvilinearJacobian: :computeFu ...
8.4e+06 9.26 % 3.4e+09 64.46 % 1.5e+09 28.77 % JacobianCurvilinearToLocal: :JacobianCurv ...
7.3e+06 9.85 % 1.7e+09 32.66 % 0 0.00 % SistripRecHit2D::sharesInput(TrackingRec ...
6.7e+07 24.80 % 3.1e+09 62.12 % 1.2e+09 23.72 % StripCPEfromTrackAngle: :localParameters(...
2.4e+07 17.47 % 2.9e+09 62.58 % 7e+08 15.34 % std::pair<bool, double> Chi2MeasurementE ...
1.6e+08 13.06 % 1.7e+09 36.84 % 0 0.00 & arena_malloc
0 0.09 % 5.3e+08 12.62 % 0 0.00 % PixelHitMatcher::compatibleSeeds(std::ve ...
6.6e+07 23.53 % 2.9e+09 69.80 % 2e+09 47.86 % ThirdHitPredictionFromCircle::angle(doub ...
2.8e+05 5.50 % 1.8e+09 43.09 % 1.7e+09 41.04 % RectangularPlaneBounds: :inside(Point3DBa ...
2.8e+05 0.04 % 1.1e+09 28.79 % 0 0.00 % inflate fast
0 0.00 % 2.3e+09 59.12 % 0 0.00 % fesetenv

Cost of operations (1in cpu cvycles)
op |instruction |sses |ssed [aws Jawd
3 3 3

+,- ADD,SUB 3

COMISS CMP.. 2,3 2,3 2,3 2,3

CVT.. 3 3 4 4

|, &7 AND,OR 1 1 1 1
MUL 5 5 5 5
DIV, SQRT 10-14 10-22 21-29 21-45

1.f/, RCP, RSQRT 5 7
1.f/sqrt

MOV 1,3,.. 1,3,. 1,4,.... 1,4,..

20/9/12 VI FP in EHEP

Cost of functions (in cpu cycles 17sb)

Cephes | Cephes Cephes Approx

scalar autovect | handvect | (16bits)

S d S d S
sin,cos 55 100 30 50 11 30 20 12 30 25 45
large x >500
sincos 70 40 15 22 50
atan2 50 100 30 13 17 52 67 87
exp 650 65 42 55 10 23 27 12 26 16 36
log 50 105 37 42 11 28 24 12 12 30 27 59

SET_RESTORE_ROUND_NOEXF (FE_TONEAREST);

20/9/12 VI FP in EHEP 14

Where/how can we improve?

* Cost of a sin/cos/exp close to div/sqrt and to
the overhead of an indirect function call

— Inline math functions
* Help autovectorization too
* Trig-funs spend not negligible time in range
reduction

— Our angles are ALL in [-pi,pi] range
» Special version for reduced range?
* Move to “fractional-pi” instead of radiant

20/9/12 VI FP in EHEP 15

Where/how can we improve?

* Double precision often required to keep under
control coordinate system transformations (in
particular for the error matrices)

— Develop more robust algorithms

— avoid back&forth

— Choose (dynamically?) units (metrics) to avoid too large
dynamic-ranges

* Arguments of log/exp often in a limited range
— Use specialized implementation

* rsgrt/rcp (+ “tunable” Newton-Raphson)
— C-implementation in double precision faster than sse!

Example: multiple scattering

double ms(double radLen, double m2, double p2) { Already an
constexpr double amscon = 1.8496e-4; // (13.6MeV)**2 approximation
double e2 =p2 + m2;
double beta2 = p2/e2; Material density,
double fact = 1.f + 0.038f*log(radéten);—fact-"=fact; thickness, track angle
double a = fact/(beta2*p2); Known at percent?
return amscon*radLen*a;

}

2"d order polynomial by

FdD
float msf(float radLen, float m2, float p2) {

constexpr float amscon = 1.8496e-4; // (13:6MeV)**2
floate2 =p2+ m2;

float fact = 1.f + 0.038f*dirtylogf<2>(radLen); fact /= p2;
fact *=fact;

float a = e2*fact;

return amscon*radlLen*a;

Verify accuracy of approximation

float ref = ms(rl,m2,p2);

float rp = ms(rl*1.001,m2,p2); // 0.1% positive

float rm = ms(rl*0.999,m2,p2); // 0.1% negative

float apx = msf(rl,m2,p2); // fast approximation diff is in “bits”

// look if approximation inside uncertainty<interval

int dd = std::min(abs(diff(rm,ref));abs(diff(rp,ref)));

dd -= abs(diff(apx,ref)); #mnegative if apx-ref is larger than the uncer-interval
dm = std::min(dm,dd);

da = std::max(da,abs(diff(apx,ref))); // maximum “error” by approx
di = std::max(di,abs(diff(rp,ref)));

di = std::max(di,abs(diff(rm,ref))); // maximum uncertantly

/[ditto for minimum

* 0.1% accuracy corresponds to a difference of 13-14 bits
 Maximum error of the approximation is ~12 bits
* “dm” always positive

One More example

* In CMS the Vavilov distribution is used to
compute the probability of a cluster in a Silicon
Detector to come from a m.i.p.

— It is then encoded in an 8-bit quality word

* Precision tuned-down while verifying that the

final result (the 8-bits!) do not change

e Speed up of a factor 3...

Summary

 FP accounts for ~20% of HEP reconstruction
— Mostly double (for no good reason?)
— Not easy to vectorize as it stands
— Large use of std math-function

* glibm: excellent full-precision reference
— An overkill for any practical application

* Opportunities for improvements
— Move to Data-oriented-Design
— Reduce branches and indirect-calls
— Use fast (less precise, limited-range) math-fun
— Use metrics that will allow the use of floats
— Systematically verify required accuracy

