First implementation of Boole for TimePix Velo

Marcin Kucharczyk & Tomasz Skwarnicki

Syracuse University

Velo Upgrade meeting 24.11.2009

Pixel Velo - MiniPlane TIMEPIX

Geometry simulated in Gauss (Victor)

- MiniPlane TIMEPIX (see Paula's talk at Upgrade Meeting, 15 July)
- Number of stations and its positions THE SAME AS IN THE PRESENT VELO
- Square pixel cells: 55x55 μm, thickness: 150 μm
 (also 300 μm to compare with test beam & present Velo)
- RF foil shape taken from existing Velo, but a factor 2 thinner

Proposed TIMEPIX module layout

TIMEPIX digitization (Boole)

- VeloPix/VeloPixAlgorithms almost ready, not in CVS yet
 - → make MC charge deposits (based on existing Velo solutions, see details on the next slide)
 - → make ToT counts (linear approximation for now)
 - → create VeloPix clusters (for time being 3x3, maximum charge in central pixel)
 - → create associators: digit & cluster to MCHit & MCParticle
- Presented results
 - → MC09 bb inclusive
 - → generated within MiniPlane TIMEPIX geometry (see previous slide)

→ silicon thickness: 150 μm & 300 μm

MC charge deposits

Making MC charge deposits (adopted from existing Velo code – Chris Parkes)

- → VeloPixMCDeposit: channelID, depositedCharge, reference to MCHit
- → VeloPixMCDepositCreator algorithm
 - generate charge for each MC hit
 - calculate how many steps (simPoints) are taken for spreading the charge along the path in silicon
 - based on MCHit path and silicon thickness
 - allocate charge deposit to each simPoint
 - split charge equally among the set of simPoints
 - add delta rays and Gaussian fluctuations
 - diffuse charge from simPoints to pixels
 - Gaussian distribution in xy depending on distance to the electrode in z
 - distribute charge into the closest neighbour pixels by Gaussian integration

Digitization & clusterization

- Digitization
 - → VeloPixMCDigit: SmartRefVector of MC charge deposits, channelID
 - → VeloPixDigit: 4 bit ADC value, 28 bit channelID
- Clusterization (for now 3x3 clusters around maximum deposited charge)
 - → VeloPixLiteCluster: one 64-bit machine word: summary of cluster information used in trigger and pattern recognition
 - → VeloPixLiteCluster: channelID of center of gravity, sum of pulse heights, isLong pixel flag, xFraction position, yFraction position
 - → VeloPixCluster: LiteCluster, vector of channelIDs & corresponding ADC values
 - sort digits by depositedCharge (descending)
 - take the neighbour pixels
 - establish channelID of center of gravity

Lite cluster (38 bits)

I	yFraction	xFraction	isLong	sum of pulse heights	channeIID of center fo gravity
	3bits	3bits	1bit	3bits	28 bits

Total charge deposited on cluster (I)

- Sum of charges deposited in 3x3 cluster (averaged over all tracks)
 - \rightarrow silicon thickness = 150 µm \Rightarrow expected peak: ~11000 electrons
 - \rightarrow silicon thickness = 300 µm \Rightarrow expected peak: ~22000 electrons

MC 09 bb inclusive

Total charge deposited on cluster (II)

- Normalised to the path length
 - → low cluster ToT region affected by 3x3 clustering

MC 09 bb inclusive

Number of pixels per cluster

- Number of pixels per cluster
 - \rightarrow silicon thickness = 150 µm \Rightarrow mean: ~1.6
 - \rightarrow silicon thickness = 300 µm \Rightarrow mean: ~2.4

MC 09 bb inclusive

Number of pixels per cluster vs theta

- Number of pixels per cluster vs theta determined for MC Hit
 - \rightarrow silicon thickness = 150 μ m
 - \rightarrow silicon thickness = 300 µm
- Plateaus because of 3x3 clustering (need more realistic clustering algorithm to fix it)

MC 09 bb inclusive

$\Delta x(y)$ vs $\theta_{x(y)}$

- $\Delta x(y) = x(y)_{barycenter} x(y)_{MC \ Hit}$
 - → barycenter: *linear weighed average*
- larger angle region affected by 3x3 clustering

Resolution vs θ

- $\Delta x(y) = x(y)_{\text{barycenter}} x(y)_{\text{MC Hit}}$
 - pixel charges in #electrons
 - pixel charges digitized in 4 bits

(points)

(red curves)

MC 09 bb inclusive

Resolution vs $\theta \rightarrow test beam$

- Jan's presentation at Velo Upgrade meeting 09/09/09
 - thickness tested: 300 µm
 - average number of pixels per cluster: ~2.6

Conclusions

Digitization / clusterization package for TIMEPIX almost ready

- → charge deposits algorithm based on existing Velo solutions
- \rightarrow na \ddot{i} ve model of digitization
- → simplest clusterization for now
- → need to add model of raw data
- → need to properly integrate with official Boole configurable
- → package in CVS soon