A few slides to prime the discussion

Start simple (1)

- This is a mock-up exercise
 - to learn how we exchange information
 - to understands assumptions used by each collaboration
 - correlate assumptions
 - etc., etc.
- No intention to produce "official" projection

Start simple (2)

- pick one analysis, cut-and-count for now
 e.g. H→WW→2l2v + 0-jets (3 sub-channels)
 all numbers are made up
- factorize:
 - 1) event counts for signal and all backgrounds
 - 2) systematic list of systematic error sources with their pdf's and correlations across all...
 - 3) statistical machinery converting the above input into limits and significances

Why H→WW

- H→WW is good testing ground
 - many observables involved: leptons, jets, MET
 - variety of methods used (MC-driven, data-driven detector performance measurements, data-driven control samples for assessing some backgrounds)
 - role of systematic errors is rather large
- $H \rightarrow WW$ is a forerunner Higgs publication

Input information (1)

 Conceptually, for each channel, we track event counts for signal and a few backgrounds:

$$b = N \cdot w \cdot \prod \mathcal{E}_i$$

- N is some integer (number of MC events, number of events in a control sample in data); it gives a statistical uncertainty
- w is some scale factor, e.g., MC event weight $w=\sigma \cdot L$, or scale factor for $N_{\text{SignalRegion}} = w \cdot N_{\text{ControlRegion}}$. A slew of systematic errors may affect it.
- ϵ_i 's are efficiencies associated with reconstruction and subsequent cuts; they all come with some systematic errors

Input information (2)

- For signal and all bkgd's in each channel, we need:
 N
 - $\alpha = w \cdot \prod \varepsilon_i$
 - systematic errors on α (pdf and its parameters), broken down by all <u>independent</u> contributions

Then systematic errors can be treated as

- 100% correlated across channels, signals, backgrounds
- 0% correlated from one source to another

Input information (3)

• Conceptual table of input information:

events observed in experiment ==:

MC or DataControlSample events == overall scale factor ==

	Bin 1 (cha	annel 1)		Bin i (channel i)									
	n ₁												
Signal	Bkgd 1	•••	Bkgd j	Signal	Bkgd 1		Bkgd j						
N(0,1)	N(1,1)		N(j,1)	N(0,i)	N(1,i)		N(j,i)						
α(0,1)	α(1,1)		α(j,1)	α(0,i)	α(1,i)		α(j,i)						
	N(0,1)	Signal Bkgd 1 N(0,1) N(1,1)	N(0,1) N(1,1)	N(0,1) N(1,1) N(j,1)	N(0,1) N(1,1) N(j,1) N(0,1)	n1 Bkgd j Signal Bkgd 1 N(0,1) N(1,1) N(0,i) N(1,i)	N(0,1) N(1,1) Bkgd j Signal Bkgd 1						

Systematic Error Sources and Parameters

No.	Uncertainty Source description	df typ	Parameters															
NO.	Oncertainty Source description		paran	ameters parameters		param	neters	rs parameters										
1	Luminosity	InN	1.05		1.05		1.05		-		1.05		1.05		1.05		-	
2	Signal cross section x acceptance	InN	1.10								1.10							
3	Bkgd 1 cross section	InN			1.30								1.30					
		InN																
	Bkgd j (ch1) data-driven from control region: dw/w	InN							1.10									
	Bkgd j (ch2) data-driven from control region: dw/w	InN															1.20	
	muon Reconstruction Efficiency (2%)	InN	1.04		1.04		1.04		1.04		1.02		1.02		1.02		1.02	
	electron Reconstruction Efficiency (2%)	InN									1.04		1.04		1.04		1.04	

pdf's

 $b = N \cdot \alpha$

- e.g., lognormal for α (general purpose?)
- e.g., gamma distribution (stat contribution from N)
- use convolution when both are comparable
- any other favorites?
- truncated normal (avoid in general, but may be needed for comparisons with other tools)

Statistical Machinery

- RooStats and all tools available to crosscheck and compare (when possible)
- De-facto recent "standards":
 - CL_s , CL_{bs} , CL_b with marginalization and profiling of errors
 - Bayesian with a flat prior on signal strength
- New approaches? To be discussed...