PS2 main parameters and basic choices

Michael Benedikt

for the PS2 Working Group

Contents

- Overview on basic design choices and PS2 parameters
 - Performance requirements
 - Main machine parameters
 - Machine implementation and geometry
 - RF options and lattice options
 - Machine performance

White Paper Studies for LHC Injector Upgrade

Performance requirements

- Beam brightness for LHC luminosity upgrade:
 - Reach twice brightness of the ultimate 25 ns LHC beam (~20% reserve for losses): 4.2×10¹¹ per LHC bunch (inst. 1.7×10¹¹)
 - Determines average line density in the machine at injection and therefore the injection energy via incoherent SC tune spread.
- Significantly higher injection energy into SPS (~50 GeV).
 - Injection into SPS well above transition energy
 - Reduced space charge at SPS injection
 - Smaller transverse emittances and reduced losses
 - Potential for long-term SPS replacement with higher energy.
 - Ejection energy determines PS2 size and magnet requirements
- As versatile as existing PS
 - Protons, ions, high intensity physics beams, slow extraction, etc.

Considerations on machine size (i)

- Constraints from desired extraction energy ~50 GeV
 - Separated function (eventually complicated lattice for imag. γ_t)
 - Iron dominated dipoles B ≤ 1.8 T
 - Bending radius at 50 GeV ~100 m, bending length ~ 630 m
 - Additional space for quadrupoles: ~200 m (30% of dipoles)
 - Space requirements insertions: ~300m (RF, injection/extraction)
 - PS2 will have ~twice PS size i.e. R ~ 200 m and C ~ 1250 m.
- Constraints from filling SPS for physics
 - Complete filling of SPS circumference desired for HI FT physics
 - Use island multi-turn extraction scheme, similar to PS (5-turns)
 - Ideal PS2 length 1/5 SPS = 11/5 PS = 2.2 PS.

Considerations on machine size (ii)

- Constraints from synchronisation (rf cogging)
 - $N \times h_{PS2} = K \times h_{SPS}$ is needed for correct synchronisation
 - Best candidates are (N, K) = (77, 15) or (77, 16)
 - Where 77/15 is preferred since 5 PS2 are slightly shorter than the SPS.
- Optimum length for PS2 from above arguments
 - PS2 = 15/77 SPS = 15/77 * 11 PS = 15/7 PS.
 - Circumference PS2 = 15/7 PS = 1346.4 m
 - Radius PS2 = 214.3 m
 - h (200MHz SPS) = 4620, h (40MHz SPS) = 924, h (40MHz PS2) = 180

Considerations on magnet technology

Iron dominated magnets

- Coil either normalconducting or superconducting (SF option)
- Same pole shapes and field quality for NC and SF variants
- First NC design for dipoles and quadrupoles done.
- SF R&D programme ongoing only for dipole
- Short prototype for measurements end 2009/2010
- Fast cycling high field SC option (co theta) ruled out
 - Too high AC losses therefore uneconomic!
 - Gain for machine energy increase limited and not required.

Considerations on injection energy

- Incoherent space charge tune spread at injection:
 - Scaling from PS experience: with 1.4 GeV injection energy capable of producing the ultimate LHC beam ($\Delta Q_v \sim -0.25$)

$$\Delta Q_{\text{S.C.}} \propto -\frac{N_b}{\epsilon_n} \cdot \frac{1}{\beta \gamma^2} \cdot \frac{1}{B_b}$$

- B_b... bunching factor (average / peak density for single bunch)
- B_b will decrease by factor 2.15 when putting the same bunch in a machine with 2.15 larger circumference (ΔQ prop. R)!
- PS2: 2.4 x ultimate brightness in a 2.15 larger machine
 - ~5 times larger incoherent tune spread at given energy.
 - Compensation with ratio $\beta \gamma^2$ at injection: $(\beta \gamma^2)_{PS2} \approx 5.1 \cdot (\beta \gamma^2)_{PS}$
 - Injection energy PS2 ~ 4 GeV (ratio 4.9, for 4.2 GeV ratio 5.3)
 - Additional margin from bunching factor (PS: 150 ns / 327 ns)

Integration in existing complex - Injection

- With injector upgrade i.e. (LP) SPL replacing PSB + PS (LE)
 - H- injection at ~4 GeV
- Ion operation
 - Beam from LEIR at ~1.25 GeV p-equivalent, rigidity 6.67 Tm
 - Requires LEIR upgrade: main converter, extraction elements, transfer line elements, rf system for LHC ion scheme with PS2.
- With staged approach i.e. PS2 before/in parallel to LP(SPL)
 - Injection from <u>existing PS</u> (to bridge PSB to PS2 energy gap)
 - PS running only at low energy, below transition ($\gamma_t \sim 6.1$).
 - Commissioning of PS2 in parallel to SPL and physics operation.
 - Performance limited by
 - PS SC limit at injection (line density corresponding to ultimate)
 - Filling pattern and cycling time (double batch PS -> PS2).

Integration in existing complex - Extraction

- Several extractions towards the SPS:
 - Fast (single turn type)
 - LHC beams
 - "Continuous Transfer" multi-turn extraction (5-turn)
 - Filling of SPS for fixed target physics.
 - Both extractions also with ion beams?
- Extraction for physics at PS2
 - Slow resonant extraction
 - High intensity fixed target (similar to SPS)
 - Fast extraction
 - Target test facility, etc.

PS2 experimental areas, anti-proton physics

- Experimental area for PS2
 - For high power experiments an under ground or strongly shielded area will be mandatory
 - PS EAST hall very limited for radiation protection reason
 - For (low-intensity) test beams a facility on surface could be considered
- Anti-proton programme
 - No straightforward way to send p to AD
 - ~ 1 km of transferline + reuse of PS tunnel for turning required
 - Full PS2 potential for anti-proton production cannot be exploited with AD and AD target station
 - Consider alternative solutions (new or modified/moved AD, etc.)
 - Antiproton programme not defined in PS2 period (>2017)
 - FAIR foresees antiproton programme from 2015.

Considerations on PS2 integration

- PS2 has to link the PS complex (Linac4 + SPL) with the SPS.
- Tangent to TT2/TT10
 - Compatible with ions
 - Commissioning strategy
 - Possibility for (limited)
 p-operation from PS
 complex
- Best suited position
 - Final flat part of TT10
 - 50 m underground
 - Shielding OK

Machine shape

- Location of the machine at end of TT10
 - Injection from SPL (parallel to TT10) (with short transfer line)
 - Injection of ions directly from TT10 for ions
 - Injection of protons directly from TT10 if required for commissioning or intermediate period.
 - Extraction towards the SPS via TT10 and existing SPS injection channel in point 1 with short transfer line
- Optimisation leads towards a racetrack shape of the machine
 - Two long zero-disperion straight sections, min. number of suppressors.
 - Super-symmetry 2 with mirror symmetry within superperiod, mirror planes centre arc and centre long straight section
 - One long straight section for injection and extraction
 - Other long straight section for RF

PS2 integration

Commissioning strategies

- PS commissioning from PS complex
 - Protons from PS to PS2 via TT10 and PS2 and fast injection channel for ions (needs upgrade to take 4 GeV beams).
 - In parallel to proton operation from PS complex to SPS
- PS commissioning from SPL
 - Commissioning of H- injection
 - Could be done after ring commissioning with protons from PS to reduce complexity.

General requirements on RF system

RF system must provide:

- Proton acceleration
- lon acceleration
- LHC bunch spacings
- Beam compatible with SPS fixed target operation

Frequency ranges

- Protons: revolution frequency ratio in PS: 1,094 (10% tuning)
- Protons: revolution frequency ratio in PS2: 1,024 (3% tuning)
- Pb54+ ions revolution frequency ratio in PS&PS2 with injection directly from LEIR at 4.8 Tm: 2,7 (300% tuning range)
- Pb54+ ions revolution frequency ratio in PS&PS2 with injection directly from upgraded LEIR at 6.7 Tm: 2,1 (210% tuning range)
 - Injection field 670 G for ions, 1650 G for protons

Basic rf options

10 MHz system

- Emulation of PS 10 MHz system
 - Tuning range > 3 (3 MHz 10 MHz), covers ion frequency range
 - Many harmonics for p-acceleration
 - Additional systems needed (20 and 40 MHz) for producing LHC type bunch patterns (25 and 50 ns) and shortening → rf gymnastics needed!

40 MHz system

- Motivated by (LP) SPL providing 0.5 ms (1 ms) quasi-continuous H⁻ beam 352 MHz, ~1.4E14 per pulse with chopping at 40 MHz.
 - Any LHC bunch pattern up to 40 MHz via chopping at injection
 - Minimizes rf gymnastics in PS2.
 - Question on possible tuning range (in particular for ions)
 - Bucket length limitation of 25 ns (50 ns with tuning range of factor 2)
 - Special schemes for ions, limited performance for single bunch (nTOF)
 - E-cloud issues in the PS2 with 40 MHz from injection?

Impact of rf on lattice design

- The increase of working range (PS: 1.4 -> 26GeV, PS2: 4 -> 50GeV):
 - Slows down longitudinal motion while increasing acceptances
 - Impacts on RF gymnastics → impact on cycle time
- Choice of γ_{tr} and the lattice plays a major role:

Acceptance (blue) and adiabaticity (red) ratios PS2/PS at injection (dashed) and ejection (solid)

keeping RF Voltages of present PS (thin lines) and doubling gradients (thick lines)

Lattice options and investigations

RF considerations favour:

- Small absolute values of γ_{tr} for reasonable duration of rf gymnastics (adiabaticity) and reasonable voltages at high energy
- Typical range of 8 < γ_{tr} < 12 seems appropriate
 - Range can be relaxed depending on choice of rf
 - No high energy gymnastics in 40 MHz scenario

Regular FODO

- For a machine length of ~twice PS with similar optical behaviour the "natural" value of γ_{tr} is in the range specified above.
- Such a lattice requires a transition crossing

• Search for lattices with imaginary γ_{tr} :

- Avoids transition crossing
- More complicated lattice design and more magnet types/families

Performance of PS2

- Twice average line density of PS
- Twice longer machine
- Twice extraction energy
- Identical acceleration time

Theoretically factor 8 increase in power (assuming identical normalised emittances)

- Shorter cycle time in some cases (LHC without double batch)
 - Basic machine cycle of 2.4 s with fast (CT) extraction at 50 GeV.
 - Physics cycle with 3.6 s with slow extraction at 50 GeV (phyics duty cycle 1/3)

LHC beams

- Example 25 ns beam (SPL injector):
 - PS2 will provide "twice ultimate" LHC bunches with 25 ns spacing
 - Bunch train for SPS twice as long as from PS
 - Only 2 injections (instead of 4) from PS to fill SPS for LHC
 - PS2 cycle length 2.4 s instead of 3.6 s for PS
 - Reduces SPS LHC cycle length by 8.4 of 21.6 s (3x3.6 1x2.4)
 - Accordingly reduced flat bottom with beam in LHC (35% reduction).

LHC beam from PS2

- Nominal bunch train at extraction (independent of rf route)
 - h=180 (40 MHz) with bunch shortening to fit SPS 200 MHz.
 - 168 buckets filled leaving a kicker gap of ~ 300 ns (50 GeV!)
 - Achieved by 42 filled buckets on h=45 (10 MHz) and 4 splittings
 - Alternatively with painting in 40 MHz directly from SPL (would allow up to 170 bunches)
 - No strong impact on LHC filling scheme (P.Collier)
- Any other bunch train pattern down to 25 ns spacing
 - Straightforward with SPL 40 MHz chopping and 40 MHz system
 - Limited to present schemes (75 ns, 1, 12, bunches etc...) with
 10 MHz system and "classical" splitting.

High-intensity physics beams

- SPS fixed target beam:
 - PS2 will provide twice line density of PS high-intensity FT beam
 - Twice circumference gives up to 4 times more intensity
 - ~1.2E14 per PS2 cycle
 - Five-turn extraction will fill SPS with single shot instead of 2 from PS
 - Twice more intensity in SPS via twice higher line density.
 - No injection flat bottom in the SPS
 - Clean bunch to bucket transfer PS2 40 MHz to SPS 200 MHz (cf. LHC)
 - ~7E11 protons per PS2 40 MHz bucket
 - Reduced by factor 5 to ~1.7E11 in 1 out of 5 SPS 200 MHz buckets
 - Transverse emittances: like upper limits of present CNGS beam
 - Norm. sigma emittances 15/8 mm mrad (h/v)
 - Adiabatic emittance damping at 50 GeV by $(\beta \gamma)_{13}/(\beta \gamma)_{50} = 0.27$
 - Therefore ~1/2 present beamsize due to emittance.

CNGS-type upgrade beam from PS2

Filling the SPS with 5 turns from PS2

- Filling is achieved in a single PS2 pulse 17.4 out of 23 micros
- Extraction kicker gap corr. to ~40 unfilled 40 MHz buckets.
 - Straightforward with SPL
 - 9 (36) or 12 (48) missing bunches at injection on h=45 (180) i.e. 10 (40) MHz
 - ~140 filled 40 MHz buckets in PS2

Summary

- Design goals for PS2
- Reasoning for parameter and design choices for PS2
- Beam performances for main users

 Thanks to all PS2 WG members and all colleagues that contributed to the study

PS2 preliminary parameters

Parameter	unit	PS2	PS
Injection energy kinetic	GeV	4.0	1.4
Extraction energy kinetic	GeV	~ 50	13/25
Max. intensity LHC (25ns)	ppb	4.0 x 10 ¹¹	1.7 x 10 ¹¹
Max. intensity FT	ppp	1.2 x 10 ¹⁴	3.3 x 10 ¹³
Max. stored energy	kJ	1000	70
Linear ramp rate	T/s	1.5	2.2
Repetition time (50 GeV)	s	~ 2.5	1.2/2.4
Max. effective beam power	kW	400	60

Backup slide: LHC beam from PS2 (ii)

Beam parameters

- Extraction energy: 50 GeV
- Maximum bunch intensity: 4E11 / protons per LHC bunch (25 ns)
- Bunch length rms: 1 ns (identical to PS)
- Transverse emittances norm. rms: 3 microm (identical to PS)
- Longitudinal emittance varying with intensity

Longitudinal aspects

- Scale longit. emittance with sqrt of intensity $\varepsilon = \varepsilon_0 \sqrt{(I/I_0)}$
 - (for stability in SPS, Elena)
 - I max = 4E11 $\rightarrow \epsilon$ max = 0.35 eVs* $\sqrt{(4/1.3)}$ = 0.6 eVs
- Momentum spread scales like emittance (bunch length = const.)
 - Scaling from nominal beam dp/p=2E-3 but @50 GeV dp/p=1E-3!
 - dp/p max = $1E-3*\sqrt{3} = 1.8 \rightarrow$ no aperture issues
- Voltage at PS2 extraction scales like intensity (emittance^2).
 - 3 times more voltage for shortening of the 4E11 bunch.

Back-up slide: Optics constraints for PS2 ring

LACES - X link -	MP	RIE	Incoherent space $\Delta Q_{sc} \propto \frac{N_b}{\epsilon_n \beta \gamma^2 B_f} < 0.2$
Basic beam parameters	PS	PS2	charge tune-shift $\epsilon_n \beta \gamma^2 B_f$
Injection kinetic energy [GeV]	1.4	4	Improve SPS performance
Extraction kinetic energy [GeV]	13/25	50	Analysis of possible bunch patterns:
Circumference [m]	200π	1346	$C_{PS2} = (15/77) C_{SPS} = (15/7) C_{PS}$
Transition energy [GeV]	6	8-12(i)	Time for bunch splitting with 10MHz RF systems
Dipole function type	Combined	Separated	
Dipole length [m]	5	3-4	Operational flexibility and low cost
Maximum bending field [T]	1.2	1.8	
Maximum quadrupole gradient [T/m]	5	17	Normal conducting magnets
Maximum beta functions [m]	23	60	Aperture considerations for high
Maximum dispersion function [m]	3	6	intensity SPS physics beam
Minimum drift space for dipoles [m]	1	0.5	
Minimum drift space for quads [m]	1	0.8	Space considerations
Layout	Circle	Racetrack	
Maximum arc length [m]		~510	Long straight section minimum length
# # #	-(1	for injection and extraction elements