Compact Muon Solenoid Detector

Piotr Traczyk

CERN

Compact

Muon

- The CMS detector was designed to provide optimal measurement of muons
- Muons give a relatively "clean" signal
- They appear as decay products of other particles in many of the processes we want to study

Solenoid

- CMS is built around a superconducting solenoid generating a magnetic field of 4 Tesla
- The current necessary for this 20 kA...
- Superconducting NbTi wire cooled to ~4K
- 13m length, 6m inner diameter enough to fit the tracker and calorimeters inside
- (cost ~80 MCHF)

ATLAS A Toroidal LHC Apparatus

CMS Compact Muon Solenoid

CMS detector overview

Construction of CMS

- · The detector was assembled on the surface
- Piece by piece lowered 100m down into the underground cavern

Two ways to detect a particle

(in CMS)

See the track

Or

Catch

Two ways to detect a particle

(in CMS)

Tracking detector

Calorimeter

Particle detectors are like...

MuDet: muon detectors

TrDet: trace detector + vertex detector

EMCal: elekcromagnetic caloriméter

HCal: hadron caloriméter

Particle identification in CMS

The Tracker

- Measures the trajectories of charged particles, result - momentum measurement and secondary vertex finding
- · The biggest silicon detector in history
- Over 220m² of silicon
- 75 milions of read-out channels
- Inner part 3 layers of pixel detectors, outside part 10-11 layers of silicon microstrips

Tracker

Electromagnetic Calorimeter

- · Electron and photon energy measurement
- ~80 000 PbWO₄ crystals
- The crystals are at the time the absorber and the scintillator
- · Very good energy resolution

Hadron Calorimeter

- Jet energy measurement
- Brass absorber interleaved with scintillator layers
- Steel blocks with embedded quartz fibers in the "forward" part

The Muon System - Drift Tubes

- Muon trajectory measurement (barrel)
- Measured quantity drift time of electrons produced by the passing muon
- Known drift velocity → distance measurement (~50-200µm precision)
- Alignment very important

Cathode Strip Chambers (CSC)

- Muon trajectory
 measurement in the endcaps
- Gaseous detector with layers of anode wires and cathode strips

Resistive Plate Chambers (RPC)

 Aim - fast estimation of muon momentum for the trigger system

 Logic - predefined pattern comparation

Trigger

Level-1 trigger. 40 MHz input :

- Specialized processors (25 ns pipelined, latency < 1 s
- Local pattern recognition and energy evaluation on prompt macro-granular information from calorimeter and muon detectors
- Particle identification: high p_t electron, photon, muon, jets, missing E_τ

High trigger levels (>1). 100 kHz input :

- Large network of processor farms
- Clean particle signature. All detector data
- Finer granularity precise measurement
- Effective mass cuts and event topology
- Track reconstruction and detector matching
- Event reconstruction and analysis

Once more:

The End

