
4.5. The custodial symmetry.

(Sikivie,Susskind,Voloshin,Zakharov,1980)

The tree-level relation ρ = M2
W/(M2

Z cos2 θw) = 1 is the

result of an (approximate) symmetry.

In any theory of electroweak interactions which con-

serves the electric charge and has an approximate global

SU(2) symmetry under which Aa
m transform as a triplet,

ρ = 1 at tree-level.

Approximate means : in the limit of g� = 0 and in the

absence of the Yukawa couplings.
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Proof: The gauge boson mass matrix is then of the

form




M2 0 0 0
0 M2 0 0
0 0 M2 m2

1
0 0 m2

1 m2
2




(62)

No photon mass → M2m2
2−m4

1 = 0. The W3−A mass

matrix is then of the form : (homework)


 M2
W ±MW

�
M2

Z −M2
W

±MW

�
M2

Z −M2
W M2

Z −M2
W



 (63)

It is then easy to check that MW = cos θwMZ.
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The Higgs potential V (Φ†Φ) is invariant under an SO(4)

symmetry. Indeed,

Φ =

�
Φ1 + iΦ2
Φ3 + iΦ4

�

, Φ†Φ =
4�

i=1
Φ2

→

SO(4) = SU(2)L × SU(2)R symmetry. The Higgs vev

Φ =

�
0
v√
2

�

breaks SO(4) → SO(3) = SU(2)D

Other Higgs representations ? Homework :

Consider Higgs triplets. Show that the Higgs vev gen-

erate the breaking SO(3) → SO(2). In this case there

is no custodial symmetry and ρ �= 1.
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A useful parametrization :

H =
�
iτ2Φ∗ Φ

�
=

�
Φ∗

0 Φ+
−Φ∗

+ Φ0

�

,Φ†Φ = TrH†
H

V (Φ†Φ) is invariant under H→ ULHU†

R, with UL,R uni-

tary matrices implementing SU(2)L× SU(2)R transfor-

mations. Symmetry breaking

�H� =
v
√

2
I2×2 breaks SU(2)L × SU(2)R → SU(2)D

U(1)Y and Yukawas break the custodial symmetry. How-

ever

LYuk = h
�
t̄L b̄L

�
H

�
tR
bR

�

is invariant under SU(2)D (if ht = hb).
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A one-loop computation in the SM gives

δρ =
3g2(m2

t −m2
b )

64π2M2
W

−
3g2

32π2 ln
mH

MZ
+ · · ·

where · · · are subleading contributions from the SM (or

eventual new physics contributions, see lectures Bog-

dan) that are smaller than 10−3.
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5. QUANTUM CORRECTIONS AND RENOR-

MALIZATION.

5.1. UV divergences and regularization.

Perturbation theory in QFT is plagued with UV diver-

gences. We have to keep an UV cutoff Λ in computing

physical quantities. There are three cases that arise :

- Super-renormalizable theories : only a finite number

of Feynman diagrams diverge.

- Renormalizable theories : a finite number of ampli-

tudes diverge. Divergences at all orders in pert. theory.

- Non-renormalizable theories : All amplitudes are di-

vergent at a certain order in perturbation theory.
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• In (super)renormalizable theories, UV divergences can

be absorbed into rescaling of fields and redefinitions

of the various couplings and masses. Taking the cou-

plings/masses from experience, the UV cutoff disap-

pears from physical quantities → the theory is predic-

tive at any energy scale.

• In non-renormalizable theories, we need an infinite

number of couplings and masses in order to absorbe

UV divergences. We would need an infinite amount of

experimental data to determine all these couplings →

at high-energies E > Λ the theory looses its predictive

power. At low-energy the theory is perfectly predictive.
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- 5.2. Relevant, marginal and irrelevant couplings

Consider a scalar theory of the form

SΛ =
�

d4x

�
1

2
(∂φ)2 +

m2φ2

2
+

�

n
λnφn

�

, (64)

where SΛ is the euclidian action defined with a cutoff

Λ. The couplings λn have (classical) mass dimensions

[λn] = 4 − n. Let us consider the theory with two dif-

ferent maximal euclidian momenta/cutoffs:

i) 0 < p < Λ

ii) 0 < p < Λ� = � Λ , where � < 1.

The theory ii) has therefore a lower cutoff.
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It is interpreted as a theory where the high-momenta

of theory i) were integrated out. The theory i) has

the action (64). In the theory ii) the cutoff can be

redefined to be the same as in i) with the help of a

scale transformation

x� = � x , p� = �−1p , φ� = �−1φ (65)

In terms of the rescaled field and coordinates, the action

of theory ii) become (homework)

SΛ� =
�

d4x�
�
1

2
(∂�φ�)2 +

m�2(φ�)2

2
+

�

n
λ�n(φ

�)n
�

,

(66)
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where

m�2 =
1

�2
m2 , λ�n = �n−4 λn (67)

Notice that the new mass and couplings scale with their

classical dimension. We see therefore that the mass

and couplings with positive dimension grow in the IR,

whereas couplings with negative dimension decrease in

the IR. It is said that

[λn] > 0 → relevant coupling

[λn] = 0 → marginal coupling

[λn] < 0 → irrelevant coupling
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5.3. (Non)renormalizability and couplings dims.

There is a straight connection between renormalizability

and the three type of couplings above:

- relevant couplings → super-renormalizability.

- marginal couplings → renormalizability.

- irrelevant couplings → non-renormalizability.

It is easy to argue for this by dimensional arguments.

Take some simple examples.

a) - Relevant coupling

L =
1

2
(∂φ)2 −

m2φ2

2
− λ3φ3 . (68)

The coupling has dimension [λ3] = +1, so it is relevant.
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At one-loop, the UV divergent terms lead to (Hw:)

δL1 ∼ λ3Λ
2φ + λ2

3φ2 lnΛ ,

which are both of super-renormalizable type. The first

lead to mass renormalization, whereas the second leads

to a scalar tadpole.

At two loops, the only UV divergences are a cosmo-

logical constant and a scalar tadpole. At three loops,

there is only a log UV divergence in the cosmological

constant. No UV divergences exist at higher loops.

Dim. argument : The highest UV divergent term in
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the coupling is the three-loop vacuum energy

λ4
3 lnΛ (69)

Higher loops have higher powers in λ3 and cannot con-

tribute to the UV divergent terms in the effective la-

grangian

Obs: 1/m2 terms are IR, not UV contributions.

b) - Irrelevant coupling

L =
1

2
(∂φ)2 −

m2φ2

2
− λ6φ6 . (70)

The coupling has dimension [λ6] = −2, so it is irrele-

vant. At one-loop, the UV divergent terms in the
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eight-point amplitude lead to (Homework:)

Γ(8)
1−loop(pi) ∼ c λ2

6 lnΛ + · · · .

To cancel this divergence, one has to add a new cou-

pling to the original action

δL1 ∼ λ8φ8 ,

and to adjust the coupling λ8 such that

λ8 + c λ2
6 lnΛ = finite

At two-loops, we get new new UV divergences, like the

one in the six-point amplitude, prop. to

Γ(6)
2−loops(pi) ∼ c� (pipj)λ

2
6 lnΛ ,
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88

which can be canceled by adding another coupling

δL2 ∼ λ�8 φ4(∂φ)2 ,

such that

λ�8 + c� λ2
6 lnΛ = finite

The UV divergences proliferate at higher loop orders,

generating an infinite tower of operators of higher and

higher dimension.

Dimensional argument: Terms of the type λn
6φ4+2n lnΛ,

λn
6(∂φ)2φ2n lnΛ have the correct dimension to be gen-

erate for any n. Predictivity at high-energy is lost.
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• However, let us define λ6 ∼ 1/M2. Then :

In the IR E < M , the effect of non-renormalizable op-

erators on physical quantities is prop. to some power

or E/M and/or m/M , so their effects is negligible.

Effective theories with cutoff Λ (ex. General relativity,

Λ = MP ) are predictive at energies E << Λ.

Another viewpoint: for Lint =
�

n λnφn, leading cross-

section for 2 → 2 particle scattering is

σ =
�

n
cnλ2

nE2n−10
∼

1

E2

�

n
cn(

E

M
)2n

for λn ∼ 1/Mn−4 → predictive power lost for E ≥ M .
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Ex. 1 : Coupling renormalization for φ4 theory.

Consider the φ4 theory

L =
1

2
(∂φ)2 −

m2
0

2
φ2
−

λ0

4!
φ4

and compute the four-point function at one-loop

Γ(k1k2k3k4) = −iλ0 +
(−iλ0)2

2
×

� d4p

(2π)4
i

p2 −m2
0

i

(p− k1 − k2)2 −m2
0

+ two crossing terms

After the Wick rotation to euclidian momenta

Γ(k1k2k3k4) = −iλ0 +
iλ2

0
2

� d4p

(2π)4
1

p2 + m2
0

1

(p− k1 − k2)2 + m2
0

+ two crossing terms
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The integral is log divergent in the UV. There are vari-

ous ways to ”renormalize” the integral. Here is a simple

way : Define

V (s) ≡
� d4p

(2π)4
1

p2 + m2
0

1

(p− k1 − k2)2 + m2
0

=
� Λ

p2≥µ2

d4p

(2π)4
1

p4 + finite ,

where the energy scale µ is arbitrary. We find (Hw)

Γ(k1k2k3k4) = −iλ0+
3iλ2

0
16π2 ln

Λ

µ
+finite = −iλ(µ)+finite

What is the physical interpretation of this manipula-

tion?
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i) λ0 is not a physical parameter. It can be chosen to

depend on Λ such that

λ(µ) = λ0(Λ)−
3λ2

0
16π2 ln

Λ

µ

is independent of Λ.

ii) Any value of µ leads to the same physical result. λ0

is independent of µ? Therefore

dλ

d lnµ
=

3λ2

16π2 = β(λ) (71)

describes the renormalization group equation (RGE) of

λ at one-loop. (71) is then a differential eq., whose

solution is (homework)
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λ(µ) =
λ(µ0)

1− 3λ(µ0)
16π2 ln µ

µ0

There is an equivalent prescription : add a local

”counterterm” to the lagrangian

L + δL = L0 ,

which cancels the UV divergence.

In renormalizable theories, a finite number of countert-

erms are needed in order to render the theory UV fi-

nite. In non-renormalizable theories, an infinite number

of counterterms are needed.
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Ex. 2 : QED and running of fine structure con-

stant.

We use here the counterterm method for the renormal-

ization of QED. In this case

L = −
1

4
F2

mn + Ψ̄(iγm∂m − qγmAm −M)Ψ

δL = −
1

4
(Z3 − 1)F2

mn + (Z2 − 1)Ψ̄iγm∂mΨ

−(Z1 − 1)qΨ̄γmAmΨ− (ZM − 1)MΨ̄Ψ

L0 = L+ δL = −
1

4
(F0

mn)
2 + Ψ̄0(iγ

m∂m − q0γmA0
m −M0)Ψ0

The relations between bare and renormalized quantities

are then
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A0
m = Z

1/2
3 Am , Ψ0 = Z

1/2
2 Ψ

M0 =
ZM

Z2
M , q0 =

Z1

Z2Z
1/2
3

q

In QED Z1 = Z2 (Ward identity) ⇒ q0 = Z
−1/2
3 q. The

RG running can be found from

µ
∂

∂µ
q0 = 0 ⇒ (Hw) β(q) = µ

∂q

∂µ
= q

∂ lnZ
1/2
3

∂ lnµ

By an explicit computation we find

Z3 = 1−
α

3π
ln

Λ

µ
+ finite , (72)

where µ is an arbitrary, renormalization scale.
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Then we find (α = q2/(4π))

β(q) =
q3

24π2 ⇒
1

α(Q)
=

1

α(µ)
−

1

3π
ln

Q

µ

The fine structure coupling increases with energy !

Screening of electric charge by vacuum polarization
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The strong coupling α3 is anti-screened due to gluon

self-interactions

Tendency of unification of couplings at high energy ?
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5.4. Global and gauge anomalies

Symmetries of the classical action can have anomalies

at the quantum level, generated by one-loop triangle

diagrams.

For global symmetries, this does not creates problems.

Consider to start with

L = Ψ̄iγmDmΨ−MΨ̄Ψ

For M → 0, the model has symmetry U(1)V × U(1)A.
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